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Progressive Cracking of a
Multilayer System Upon Thermal
Cycling
This article considers progressive cracking upon thermal cycling of a thin multilayer o
thick substrate. The prototypical system comprises a thin elastic layer of a diele
material above another thin metal interconnect layer attached to a silicon subst
Residual stresses exist because of the thermal expansion misfit and due to depo
Putative fabrication flaws are presumed to be present in the dielectric. When activat
residual stresses these flaws can induce cracks that channel along the dielectric. C
tions that induce yielding of the metal upon initial cooling are shown to exacerbate
phenomenon. Moreover, subsequent thermal cycling may induce ratcheting, wh
cracks develop progressively due to repeated yielding of the metal layer. The rol
initial stress, cyclic temperature amplitude, and interconnect yield strength in these
nomena are investigated using finite element models which explicitly account for c
yielding. The most deleterious situation is found to be that wherein the entire metal
reaches yield at some stage during the temperature cycle. Several scenarios relev
semiconductor devices are considered.@DOI: 10.1115/1.1379529#
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1 Introduction
Upon thermal cycling during fabrication and qualification te

ing, multilayers comprised of materials with disparate thermom
chanical properties are susceptible to complex mechanical
sponses. These cyclic phenomena are most pronounced whe
of the constituents is susceptible to yielding~such as a metal in-
terconnect! and when there are substantial differences in ther
expansion coefficient among the constituents. One of the m
important of these responses, referred to as ratcheting, has
subject to the least analysis. It is characterized by material
placements that increase systematically with each cycle. The
nomenon is dictated by cyclic yielding, biased by an applied
residual stress.

Related behaviors have been found in pressure vessels su
to thermal cycling~@1–7#!; this prompted both theoretical an
experimental studies on model systems consisting of two bar
unequal length and cross sections. These ‘‘two-bar structu
have proven effective in identifying various regimes of behav
including the unusual phenomenon of ‘‘compressive ratchetin
wherein the barsshortenduring temperature cycling despite th
present of a steadytensileload. For systems with disparate mat
rials ~such as those considered here!, a more recent and well
known example of similar behavior occurs in particle-reinforc
metals, which elongate along the load axis with each ther
cycle, resulting in large deformations after multiple cycles~@8#!.
Bree diagrams are used to characterize the behavior~examples of
which are provided as Fig. 1!, by indicating the combination o
thermal expansion misfit, yield strength, and applied stress
activate ratcheting. Outside this domain, the system exhibits
nign behavior, designated as shakedown, wherein the cyclic p
tic straining is limited to the first few cycles.

The present article explores one manifestation of ratcheting
evant to some electronic devices. It involves plastic deformati
that occur in a metal layer~Al or Cu!, when encapsulated in
dielectric ~such as SiNx! containing an incipient crack. Onc

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dece
ber 22, 1999; final revision, November 7, 2000. Associate Editor: K. Ravi-Chan
Discussion on the paper should be addressed to the Editor, Professor Lew
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
t-
e-
re-
one

al
ost

been
is-
he-
or

bject

s of
es’’
or,
g,’’
e
-

ed
al

that
be-
las-

rel-
ns

nucleated and upon thermal cycling, the cracks channel along
dielectric, as illustrated schematically in Fig. 2. Such cracks
referred to as steady-state, because the associated energy r
rate is independent of their length. They propagate in a man
governed by the opening displacement profile through the fi
thickness, in the wake of the crack.

To address the problem, the tri-layer model illustrated in Fig
is used. It is comprised of two thin layers on a semi-infinite elas
substrate. The top layer is elastic~representative of a dielectric
layer! and the second is elastic/plastic~representative of meta
interconnects!. Where specific properties are needed for analy
those summarized on Table 1 are used. Initially, the effect of p
ticity in the metal layer on the behavior during the first cycle
addressed and related to effects that occur in thin elastic fi
deposited on elastic-plastic substrates~@9#!. The multilayer sce-
nario differs in two important ways from that for the semi-infini
elastic-plastic substrate:~i! the residual stress in the metal lay
enhances plastic deformation, and~ii ! the finite thickness of the
metal layer~between the dielectric and substrate! provides con-
straint that limits plastic deformation. The focus of this paper is
the first of these effects. The second will be explored in a co
panion paper~@10#!. It will be shown here that, when the residu
stress is sufficiently low such that the plastic zone is small rela
to the thickness of the metal layer, the present results for cr
opening reduce to those derived by Beuth and Klingbeil@9#.

2 Numerical Model
For scenarios where the crack face opens monotonically,

steady-state energy release rate,Gss is related to work done by the
residual stress through the crack opening. For uniform fi
stresses,s, this may be expressed as

Gss5E
0

s

d~s!ds (1a)

whered is the integral of the crack opening displacements o
the crack face, as in

d5
1

h E0

h

u~z!dz (1b)

whereh is the layer thickness. Note that crack-opening displa
ments are used here, which are one-half of the total crack ope

-
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Fig. 1 Bree diagrams for a metal-matrix composite „left … and a
two-bar model used for studying pressure vessels „right …, illus-
trating the relationship between thermal loading, applied ten-
sile loading, and regions of ratcheting and shakedown

Fig. 2 Schematic of a channeling crack in a multilayer depos-
ited on an elastic substrate. The middle layer represents an
elastic-plastic interconnect, while the top layer is representa-
tive of an elastic dielectric; N is the number of thermal cycles.
514 Õ Vol. 68, JULY 2001
~measured from crack face to crack face!. For monotonic opening
of channeling cracks, the difficulty in accounting for plastic d
sipation can be avoided by considering the work done by
equivalent pressure acting on the crack face~@9#!. The key result
is that plasticity increases the crack openings, resulting in hig
crack driving forces.

Determining the corresponding response upon cyclic load
requires a plasticity flow theory. Simply applying a cyclic pressu
to the crack faces does not accurately capture the near-tip d
mations. Nevertheless, since the film is elastic, the opening pro
of the crack still provides the correct measure of the energy
lease rate. Moreover, the steady-state opening in the wake, c
lated from a plastic analysis, provides a driving force estimate
reveals important trends. This estimate,Gss

up ,

Gss
up5sd, (2)

is believed to be an upper bound.~For an elastic system, this
expression is exact.! Full three-dimensional calculations of th
near-tip deformations for a channeling crack are currently un
way to determine the extent to which~2! overestimates the crac
driving force ~@10#!.

While direct evaluation ofGss is not possible using~2!, it is
still apparent that increases in crack openings correspond to la
crack driving forces. Accordingly, as the opening displacem
increases during thermal cycling, the cracks can reach critica
and channel. This happens whenGss reaches the fracture tough
ness of the dielectric layer,G. The ratcheting effect is reflected i
increases ind with thermal cycling, in the presence of a dielectr
subject to an initial tension. The focus here is on conditions wh
cause the crack opening to increase with thermal cyclingIt
should be emphasized that, for the present scenarios, the c

Table 1 Properties of the representative system

E ~GPa! a ~ppm/°C! n «Y

Top, SiNx 100 6 0.2 -
Middle, Al 70 25 0.3 0.002

Substrate, Si 200 4 0.2 -
Fig. 3 Schematic of tri-layer system used to define the finite element model
Transactions of the ASME
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opens systematically and plastic deformation prohibits crack c
sure. Crack face contact does not occur at any point during
loading cycle. It will be shown in Section 3 that, through prope
choice of normalization, the results for crack openings and
upper boundGss

up are identical.
The model characterizes the deformations that occur in a

resentative slice in the wake of the crack, which is modeled
plane-strain~See Fig. 3.! The substrate is taken to be semi-infinit
The top layer (SiNx) and substrate~Si! are modeled using isotro
pic elasticity, while the middle layer~Al ! is modeled as elastic
perfectly plastic, using conventional isotropicJ2 flow theory. The
finite element models are developed using the commercial c
ABAQUS. Plane-strain eight-noded reduced-integration hybrid
ements are used; these elements, which include the hydros
pressure as an additional elemental variable, are most effectiv
handling the nearly incompressible behavior of the plastic z
near the crack tip. Convergence tests illustrate that acceptabl
sults are obtained when the dimensions of the outer boundarie
at least 100 times the combined thickness of the top two laye

Special care has been taken to accurately capture the beh
near the crack tip. Cyclic loading represents a complication fr
monotonic scenarios, as compressive stresses may develop w
act to reduce the crack opening. Furthermore, the large geom
changes at the tip must be accurately accounted for. Singul
elements can lead to numerical difficulties upon load rever
including ambiguous tip deformations that arise when the ela
layer penetrates the plastically deformed elements. To circum
this, the crack tip at the interface was modeled as a se
cylindrical cavity with a tip radius about two orders of magnitu
smaller than the thickness of the top elastic layer. Converge
tests have indicated that the crack-opening integrals calculate
~1b! ~and the energy release rate estimate calculated via~2!! are
independent of the initial tip radius. Moreover, the crack open
at the surface is independent of the numerical details. Again
should be noted that for the problems of present interest, the in
opening experienced during the fabrication/cooling stage is la
enough such that the crack does not close at any point during
cycling.

The initial stresses in the layers exert a substantial influenc
the behavior. These are introduced into the model by assig
nominal, initial temperature changes to the layers prior to ther
cycling. In all cases, the dielectric is given a temperature in
that causes it to be in residual tension prior to cycling~see the
Appendix!. The metal layer is given a range of initial condition
that simulate most of the expected practical scenarios, as out
in the Appendix. One extreme, scenario A, allows the meta
have fully yielded in tension before cycling: the most likely sc
nario. Scenario B permits the metal to be stress-free before
cling: This would happen if the system were cooled below am
ent prior to cycling. Scenario C examines an intermediate c
wherein the layer is in residual tension at a stress below the y
strength. In the following analyses, initial cooling is first exam
ined, in order to characterize the influence of residual stress in
metal on the initial energy release rate before cycling.

3 The Effect of Residual Stress in the Metal Layer
Cracking of thin elastic films on astress-freesemi-infinite

elastic-plastic substrate has been previously addressed~@9#!. These
results are applicable to the initial cooling of the layered syste
provided that:~i! the plastic zone is smaller than the thickness
the metal layer, and~ii ! the residual stresses in themetal layer
are too small to significantly enhance plastic deformation. T
present calculations explore domains where the prior results
inappropriate.

The calculations are performed to simulate fabrication sit
tions that encompass all practical scenarios, as elaborated up
the Appendix. These scenarios induce bi-axial misfit stresse
the dielectric and metal layers, designateds1

0 for the dielectric
Journal of Applied Mechanics
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layer ands2
0 for the metal layer. These misfit stresses can

related to thermal expansions and intrins˙ic stresses by

s1
05

E1~a12as!DT1
d

~12n1!
1s1

I (2a)

s2
05

E2~a22as!DT2
d

~12n2!
1s2

I (2b)

wherea1 , a2 and as are the thermal expansion coefficients f
the dielectric, metal and substrate, respectively,DT1

d andDT2
d are

the cooling ranges from ‘‘deposition’’ to ambient,E1 andE2 refer
to the respective Young’s moduli,n1 andn2 to the Poisson’s ra-
tios, ands1

I ands2
I to the intrinsic stress in the two layers. No

that in some scenarioss2
0 exceeds the yield strength of the met

layer,sY . In such cases, the actual stress in this layer remain
sY , except near the crack tip, where hydrostatic stresses
present.

The results of the calculations are expressed in terms of
following nondimensional quantities. The crack opening is n
malized by the value that results from a purely elastic analysis
a system comprised of layers with identical elastic propert
given by ~@11#!

d05
1.97~12n1

2!s1
0h1

E1
(3)

whereh1 is the thickness of the dielectric layer. The factor 1.
arises from the integration of the corresponding crack open
profile, as in Eq.~1b!. For such a system, the residual stress in
metal layer has no effect on the crack-opening displacem
~@11#!. The nondimensional crack opening is thus

D[
d

d0
5

E1d

1.97~12n1
2!s1

0h1
. (4a)

As noted earlier, an upper bound estimate of the crack driv
force may be obtained by assuming that the initial misfit str
acts through the current crack opening from the elastic-pla
analysis. Thus, the parameterD also represents the normalize
upper-bound estimate for the energy release rate, as in

D[
Gss

ub

G0
5

s1
0d

G0
5

E1Gss
ub

1.97~12n1
2!~s1

0!2h1
(4b)

where G05s1
0d0 and represents the energy release rate for

homogeneous elastic case where the layers have identical e
properties. In the cases considered here, the adjacent metal la
less stiff than the dielectric, whereupon the elastic crack open
~and thus the energy release rate! is slightly larger than that for the
homogenouscase. For an elastic system with material propert
listed in Table 1D[1.08. Plastic deformation further increases
this value, as elaborated below. Several normalized stress m
sures are used to elicit understanding. The first of these is the
of the misfit stress in the dielectric to the yield strength of t
metal, given as

S1[
s1

0

sY
. (5)

For a specified metal~givensY!, and a dielectric with no intrinsic
stress~s1

I 50 in ~2a!!, S1 is explicitly dependent on the tempera
ture change experienced by the dielectric from deposition to
bient. That is

S15
E1~a12as!DT1

d

sY~12n1!
. (6)
JULY 2001, Vol. 68 Õ 515
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A second useful measure is the ratio of the misfit stress in
metal layer to its yield strength, given as

S2[
s2

0

sY
. (7)

This measure is the normalized magnitude of the stress in
metal layer that would result from a purely elastic analysis. Re
that plasticity limits the actual stress in the metal layer, such
(sxx /sY)2<1,1 even thoughS2 exceeds unity. Again, for a meta
layer with no intrinsic stresses,S2 is explicitly dependent on the

1Hydrostatic stresses cause this inequality to be violated in a small zone nea
tip.

Fig. 4 „a… Crack-opening as a function of stress in the dielec-
tric „monotonic loading …, for constant ratios of stress in the
metal layer to stress in the dielectric. The result is also an up-
per bound estimate for the energy release rate. „b… Crack-
opening „or upper bound estimate of the energy release rate …

as a function of stress in the metal layer „monotonic loading …,
for constant ratios of stress in the metal layer to stress in the
dielectric.
516 Õ Vol. 68, JULY 2001
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temperature change experienced by the metal from depositio
ambient, via an expression identical to~5!, with an appropriate
change in subscripts.

Somewhat different insight into the role of material propert
can be gained by using the ratio of the misfit stresses:

SR[
s2

0

s1
0 5

S2

S1
. (8)

This quantity is used primarily to assess the role of the fabrica
sequence~or initial cooling!, since it reflects the explicit influence
of the thermal expansion mismatch. This can be seen by con
ering a system with no intrinsic stresses, whereupon

SR5
E2~a22as!~12n1!DT2

d

E1~a12as!~12n2!DT1
d . (9)

For a multilayer wherein both layers experience the same in
temperature change, (DT1

d5DT2
d5DTd), it should be emphasized

that SR is purely a function of the elastic properties and the th
mal expansion coefficients of the system. In this scenario,
temperature changeDTd can be thought of as an alternative ind
pendent variable, as it does not enter into the expression forSR .

The first results are obtained for a system cooled from a u
form temperature, such thatSR remains constant~8!, while S1 is
varied ~Fig. 4~a!!. The corresponding misfit stress in the me
layer is dictated by:S25SR•S1 . Absent intrinsic stresses, th
abscissa can be re-expressed as the temperature change
‘‘deposition’’ to ambient for an Al layer, using the properties in
dicated in Table 2 and Eq.~6!. The limit wherein the misfit stress
in the metal layer is small,SR→0, corresponds to the case prev
ously considered by Beuth and Klingbeil@9#. Thus, these results
express the history of the crack opening as the system is coo
as well an upper bound estimate for the crack driving force. T
critical temperature at which the entire metal layer yields in
axial tension is labeled in the figure for eachSR . Note that when
the stress nears this level, the crack opening increases sub
tially. This effect represents an increase in energy release rate
to plastic deformation enhanced by the misfit stress in the m
layer.

The abrupt increase crack opening when the metal layer
comes fully plastic is illustrated more vividly by Fig. 4~b!. The
results in this figure are generated by converting the absciss
the previous figure (S1) into the stress in the metal layer (S2) via
the misfit stress ratioSR . Since this procedure implies a differen
scaling for each curve~dictated by the value ofSR!, the abscissa
cannotbe reinterpreted using a single temperature scale as
done in Fig. 4~a!. ~Put another way, the coefficient that dictat
the temperature scale (DTd) depends onSR in Fig. 4~b!, while in
Fig. 4~a! it does not.! Nevertheless, a single temperature scale c
be determined for each of the curves in Fig. 4~b! using the prop-
erties outlined in Table 1, Eq.~6!, and Eq.~8!.

With this in mind, the curves can again be thought of as
history of the crack opening~and the energy release rate estima!
as the system is cooled. It is obvious from Fig. 4~b! that general
yielding of the metal layer results in a dramatic increase in cr
opening, and rationally, the crack driving force. Moreover, t
increase is more pronounced when the stress in the dielectric

r the

Table 2 Cyclic loading cases in Fig. 7

Case
Temperature
range~°C!

Stress range,
DS2

Initial
stress,S2 S1

max
Scenario

~see Appendix!

a 240,80 2.1 to 0.3 1 1.07 A
b 240,100 2.1 to 0.0 1 1.07 A
c 250,100 0.75 to21.5 0 1.09 B
d 250,100 2.25, 0 1 1.09 A
e 275,150 1.1 to22.2 0 1.13 C
Transactions of the ASME
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ceeds the yield strength of the metal. The curves in Figs. 4~a! and
4~b! represent a general monotonic loading scenario that h
lights the increase in energy release rate due to residual stress
the metal layer. The results remain valid for nonzero intrin
stresses and different temperature changes for each layer. For
cases, the figures cannot be interpreted either in terms of a s
temperature change, or as the history of the crack driving forc
the system is cooled. Rather, each point in Figs. 4~a! and 4~b!
represents the energy release rate at the end of a fabricatio
quence characterized bySR andS1 .

Alternatively, the fabrication sequence can be characterized
simply specifying the stresses in the layers after cooling. Then,
energy release rate after cooling can be plotted for various fi
values of S1 and S2 , as illustrated in Fig. 5. The curves ar
terminated at misfit ratios for materials with properties similar
those listed in Table 2: that isSR51.5. When the misfit stress in
the metal layer is larger than its yield strength, the stress in
layer plays a more significant role than the misfit stress in
dielectric. The most probable scenarios fall in the shaded regio
Fig. 5, dictated by the thermal expansion mismatch between
metal layer and substrate. The limit of no residual stress in
metal layer~i.e., S2→0! represents the scenario previous cons
ered by Beuth and Klingbeil@9#.

Some fabrication sequences do not correspond to steadily
creasing the layer stresses with a fixed ratio (SR). Then, strictly,
the energy release rate at the end of the cooling stage is affe
by the details of the sequence, since the material behavior is p
dependent. For example, slightly different results are obtaine
the stress in one layer is increased in one loading step, and
held fixed while the stress in the second layer is increased to
final value. However, numerical calculations for several scena
have illustrated that the energy release rate is relatively insens
to these details. That is, the system behaves in a nearly p
independentmanner, and acceptable results are obtained for a
wide range of fabrication scenarios merely by specifying the fi
values ofS1 andS2 .

4 Cyclic Loading and Ratcheting
All cyclic calculations are conducted using the properties giv

in Table 1. The effect of constant amplitude temperature cyc
on the crack opening at the surface of the dielectric as a func
of time is illustrated in Fig. 6. One result is for a metal layer th
yields upon initial cooling, and experiences temperature cyc

Fig. 5 Crack-opening as a function of stress in the metal layer
for several values of stress in the dielectric „monotonic load-
ing …. The stress ratio during the loading stage „SR… is dictated
by the ratio of S1 and S2 .
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between240 and 80°C. The other result is for a scenario wher
the metal layer is taken to be stress-free before temperature
cling, with subsequent temperatures ranging between250 and
100°C.~The two cases also correspond to those considered in
7.! Both of these temperature ranges are representative of qu
cation testing. Ratcheting of the crack is obvious for the c
involving the larger cyclic temperature range; during cycling, t
metal layer experiences yielding in compression atDT;67°C,
and develops tension~below the yield strength! at the temperature
minimum. This case corresponds to Scenario B in the Appen
For the other case, the metal layer yields repeatedly in tension
does not experience compression; this case corresponds to
nario A in the Appendix. These two situations illustrate that yie
ing of the metal layer prior to cycling influences ratcheting prim
rily by shifting the stress range experienced by the metal layer
will be discussed in detail, unidirectional yielding alone, eith
before or during cycling, is not sufficient to cause ratcheting.

The crack openings and upper-bound energy release rate
termined using~2!, are summarized on Fig. 7, wherein the max

Fig. 6 Crack-opening displacements at the surface of the di-
electric as a function of time „or thermal cycles … for two repre-
sentative cases; the cases are the same as those labeled in Fig.
7 and described in Table 2

Fig. 7 Crack-opening „or upper bound estimate of the energy
release rate … as a function of time „or thermal cycles … for rep-
resentative cases outlined in Table 2
JULY 2001, Vol. 68 Õ 517
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mum values during each temperature cycle, are normalized by
elastic result. In this manner, the fractional increase in crack op
ing ~or energy release rate! due to plastic deformation is high
lighted. The scenarios considered are summarized in Table 2
each case, the initial misfit stress in the dielectric is equated to
yield strength of the metal~140 MPa!. The starting point for each
curve (N51) represents the crack opening at the end of the in
cooling period. Note that the cases shown in the figure cover
extreme range of scenarios outlined in the Appendix. Cases~a!,
~b!, and~d! in Fig. 7 represent scenario A, which is characteriz
by fully yielding the metal layer prior to cycling. Case~c! repre-
sents scenario B, which is characterized by an initially stress-
layer; in this case the metal layer experiences unidirectional yi
ing. Case~e! represents scenario B as well, but with the me
layer experiencing fully reversed yielding. Cases with init
stresses in the metal layer that are below the layer’s yield stre
~scenario C! show similar behavior.

These cases illustrate that ratcheting is affected most stro
by the temperature amplitude and the corresponding misfit st
rangein the metal layer. The level of initial misfit has only a sma
effect, as illustrated by cases~c! and ~d!, which experience the
same temperature range and differ only in the initial stress. Yie
ing in the metal layer prior to cycling merely serves to increa
slightly the overall crack driving force. Moreover, fully reverse
yielding causes a dramatic increase in the ratcheting rate~case
~e!!. The increases in crack opening from the first to the te
cycle, plotted on Fig. 8, verify that the misfit stress range exp
enced by the metal layer dominates ratcheting. For two of
lines plotted, the temperature is prescribed such that the minim
temperature was equal to minus one-half of the maximum; thi
representative of qualification testing. The third line~appropri-
ately labeled! is for cases wherein the maximum temperature
held fixed at 100°C, and the minimum is adjusted accordin
The horizontal axis may be reinterpreted as one of the rele
temperatures~mean, minimum or maximum! by using the proper-
ties outlined in Table 1, with a different scaling for each curve

Although the curves correspond to a variety of combinations
the minimum, maximum, and mean misfit stresses, the consis
finding is that ratcheting only becomes significant when the to
amplitude of the misfit stress in the metal is approximately tw
the yield strength. The calculations presented on these figure
well as others conducted for a wide range of cases, have dem
strated two necessary criteria for ratcheting:~i! the entire metal
layer must yield~or come close to yielding! at some stage during
the cycle, and~ii ! the misfit stress in the metal layer must becom
less than or equal to zero at some stage during the cycle.

It had been expected that the misfit stress in the dielec

Fig. 8 Fractional increase in crack opening from the first ther-
mal cycle to the tenth thermal cycle, plotted as a function of
total stress amplitude range in the metal layer
518 Õ Vol. 68, JULY 2001
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would play a similar role. However, the predictions~Fig. 9! reveal
that, while this stress influences the magnitude of the magnit
of the crack opening, it has relatively little effect on the ratcheti
behavior. In the figure, the dashed lines correspond to scenar
and the solid lines to scenario B. In all cases, the tempera
ranges from250°C to 100°C. Because the curves are normaliz
by d0 , they would remain constant for a purely elastic syste
Thus, the curves represent the growing importance of plastic
formation as the stress in the dielectric increases. Note that ra
eting occurs forall values ofS1 : but the ratchetingrate is inde-
pendent of the mean stress. For the entire range ofS1 in Fig. 9,
the fractional increase from the first to tenth cycles is betwe
1.85 and 2.00. This implies that the curves shown in Fig. 8
valid for a wide range of stresses in the dielectric. Again, yield
in the metal layer prior to cycling is shown to slightly raise th
magnitude of the energy release rate, but has almost no effe
on the ratcheting. This weak dependence is consistent with
illustrated in Fig. 8~which plots results forS151!, since all of
the cases shown in Fig. 9 correspond to a misfit stress amplit
DS2;2.25.

5 Implications and Conclusions
When the stress amplitudes in the dielectric are on the orde

the yield strength in the metal, the preceding conditions for rat
eting and shakedown can be used to construct a modified B
diagram~Fig. 10~a!!, where the initial stress in the metal layer an
the stress range in the metal are used as coordinates. The s
down limit is defined by the fact the minimum stress must be l
than zero and the maximum stress must exceed yield. The ons
‘‘strong ratcheting’’ is defined by the requirement that the me
layer experience fully reversed yielding. An initial stress in t
metal layer affects ratcheting by determining whether a speci
temperature change is large enough to satisfy both ratcheting
teria. This diagram may be used for the preliminary design
systems that resist ratcheting. When the stress amplitude in
dielectric are significantly larger than the yield strength of t
metal, the diagram must be modified. There is some evide
from the calculations that large stress amplitudes shift the ra
eting boundaries to lower temperature amplitudes, as sketche
Fig. 10~b!.

It should be noted that the structural ratcheting exhibited in t
analysis is not a result of crack face interactions, since the cr
opens upon cooling and plastic deformation prohibits crack c

Fig. 9 Crack opening as a function of initial stress in the di-
electric layer, for two scenarios. Because of the small differ-
ence in thermal expansion between the dielectric and sub-
strate, the mean stress in the dielectric remains close to the
initial value.
Transactions of the ASME
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sure. Rather, the ratcheting behavior is a result of repeated pl
straining near the crack tip due to the presence of a biased s
in the top elastic layer. Such ratcheting is generally understoo
be dependent on strain-hardening and whether it is kinemati
isotropic. The former is manifest as a Bauschinger effect, whe
the yield strength in compression is reduced by prior yielding
tension. Calculations for the present problem incorporating str
hardening reveal that such material hardening can limit the m
nitude of the crack opening~and hence, energy release rate!, but
does not eliminate the ratcheting deformation over the first five
ten cycles. Full details of these simulations are available in@10#. A
brief summary is given of results obtained for hardening descri
by a Ramberg-Osgood law,«5s/E1(3/7)(s/sY)n. With low to
moderate hardening (n>10), the differences between kinemat
and isotropic behavior are negligible; moreover, the reduction
energy release rate due to hardening~relative to the elastic-
perfectly plastic result! is on the order of ten percent after te
cycles. For stronger hardening (n<5), the difference between
kinematic and isotropic behavior is substantial, with significa
reductions in crack driving force. For example, consider case~d!
in Fig. 7; using the same loading, modulus and yield strain,
taking n55, the kinematic hardening calculation predictsD
54.4 after ten cycles, as opposed toD55.4 for the elastic-
perfectly plastic case. The isotropic strain-hardening predic
~with the same properties! yields D53.2. Further calculations fo
moderate to high levels of strain-hardening demonstrate
shakedown occurs after six or so cycles, wherein the crack o
ing increases by about 50 percent.

Appendix

Scenarios Chosen to Illustrate the Effects of Initial Stress on
Ratcheting

Scenario A: Stress in the Middle Layer at Yield.The metal
layer experiences general yielding upon initial cooling if the te
perature decrease after deposition,DT2

d , satisfies

Fig. 10 Modified Bree diagram for a trilayer: „a… for moderate
values of mean stress in the dielectric, „b… for high levels of
mean stress in the dielectric
Journal of Applied Mechanics
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DT2
d>

~12n2!«Y

~a22as!
. (A1)

Thereafter, the temperatureamplitudewhich would cause fully
reversed cyclic yielding is

DTR52
~12n2!«Y

~a22as!
. (A2)

Scenario B: Initially Stress-Free Metal Layer.After initial
cooling, the metal layer is taken to be stress free, with the stres
the dielectric given by~2a!, with the intrinsic stress equal to zero
Then, the entire system is subject to the same temperature c
DT, such the change in stress in the dielectric is given by

Ds i5
Ei~a i2as!DT

~12n i !
. (A3)

The cyclic temperature amplitude that would cause general yi
ing of the metal layer is given by

DTY5
~12n2!«Y

~a22as!
. (A4)

For the properties given in Table 1, this critical temperature a
plitude isDTY'67°C. Since the initial stress in the metal is zer
larger cyclic temperature amplitudes would cause fully revers
yielding.

Scenario C: Residual Stress in the Both Layers.Both layers
experience the same initial cooling from the ‘‘deposition’’ tem
perature. The initial stresses are then given by~2!, with DT1

d

5DT2
d . If this temperature change is greater than that given

~A1!, the metal would have fully yielded and the behavior is ide
tical to scenario A. The entire system is subject to the same t
perature change,DT, so that the change in stress in the top lay
is again given by~A3!. The temperatureamplitudewhich would
cause general yielding upon cycling is then

DTY5
~12n2!«Y

~a22as!
2DT1

d . (A5)

Fully reversed cyclic yielding occurs if the temperature amplitu
is greater than

DTRY5
~12n2!«Y

~a22as!
1DT1

d . (A5)

If there is no initial temperature change~i.e., DT1
d5DT2

d50!, this
scenario is identical to scenario B. Thus, the distinction betw
the scenarios is whether or not there is an initial stress in the m
layer prior to cycling.
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A Theory for Strain-Based
Structural System Identification
A theory for structural system identification which utilizes strains and translational
placements as measured outputs is presented. The state variables of the funda
first-order form consist of the strains and the elemental or substructural rigid-body
tion amplitudes. The theory is applicable to, and to some respects, motivated b
advances and expanded use of embedded piezoelectric sensors and fiber optics. A
feature of the present theory is its ability to provide rotational flexibility without having
measure rotational quantities. The theory is illustrated by simple ideal examples.
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1 Introduction
The identification of structural models using measured

sponses plays a fundamental role in vibration and noise contr
design, as well as in model-based damage detection or he
monitoring of structural systems under service. Most exist
identification procedures use the applied excitations or prescr
displacements or accelerations and the measured acceleratio
displacements as inputs and outputs, respectively. Consequ
although strain gauges have been extensively used in static te
and strength assessment, very seldom are the outputs of s
gauges incorporated directly into a system realization proced

In recent years, new sensors have come of age for struc
measurements, including embedded optical fibers, embedde
ezoelectric sensors, and laser-based differential kinematic m
surements. The outputs from these sensors are difficult to con
into conventional nodal displacements. This calls for the deve
ment of a new system identification theory which exploits m
surements from these new-generation sensors in constructio
the governing equations of motion for vibrating structures, not j
for quasi-static properties such as static mode shapes and str
levels.

The other issue in structural system identification is the co
lation of system-identified models directly with those genera
by the finite element method. With the exception of solid e
ments, the finite element modeling of beams, plates, and sh
usually involve rotational degrees-of-freedom. The installat
and accuracy of rotational sensors have been problematic.
result, rotational sensors have not been widely utilized, wh
limits the fidelity of identified models. We will show that the us
of strain plus translational displacements may be utilized to
cumvent the need for measuring rotational motions.

Critical to the use of strains for system identification and th
incorporation into theory is the concept of structural partitionin
Strains are typically valid over only a very localized region, a
therefore any theory which includes strains as an output or s
variable must hold for the local level only. This leads to ma
ematical substructuring, also known as partitioning or domain
composition. While typically used for systematic processing

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb. 1
2000; final revision, Feb. 21, 2001. Associate Editor: A. K. Mal. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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parallel computers, among other uses, substructuring in this
text is defined as the separation of dynamics of the system
local regions, plus any interaction dynamics which act betwe
partitions. These subregions can be tied to a reference finite
ment model, for which one substructure includes one or m
finite elements.

This paper covers the basic theory of how a substructural str
based system identification procedure might be implemented. F
we review the equations corresponding to conventional no
displacement/acceleration based system identification. This is
lowed by a derivation of the expression of displacement in ter
of strain, rather than vice versa. Next, these expressions are
lized to derive the strain-based equations of motion which serv
the foundation of substructural system identification and appl
tions. Finally, several simple examples are presented to dem
strate how this theory may be utilized in practice.

2 Linear Equations of Motion for Vibrating Structures
Before embarking into a derivation of new theory, it is wise

review the mathematics involved with traditional global syste
identification practices. In particular, we want to remind readers
the origin of the standard second-order system of equations
erning the vibrating motion, as well as the related input/out
relationship. Once these equations have been recalled, it wil
easier for the reader to relate the new theory in the follow
sections with the more traditional practices represented in
section.

The discrete energy functionalP for a linear damped structure
can be expressed as

P~ug!5ug
TS 1

2
Kgug2fg

DD , fg
D5fg2Mgüg2Dgu̇g (1)

whereug is the displacement vector of the assembled structurefg
D

is the D’Alembert’s force vector which consists of the appli
force vectorfg , the resisting inertia forceMgüg , and the dissipat-
ing forceDgu̇g . Mg , Dg , andKg are the assembled mass, dam
ing, and stiffness matrices, where the subscriptg designates ‘‘an
assembled global structure’’ to distinguish from ‘‘partitioned su
structures,’’ and the superscript (•) designates time differentiation

The discrete, damped, time-invariant, linear equations of m
tion for vibrating structures can be obtained from the station
value of the preceding discrete energy functional, viz.,dP50:

Mgüg1Dgu̇g1Kgug5fg . (2)
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The input-output relation or frequency response function is
tained through a harmonic decomposition of the input-output v
tors as

Fug

fg
G5ej vtF ūg

f̄g
G (3)

with solution for the frequency-domain outputūg as

ūg5Hg~v! f̄g , Hg~v!5~Kg1 j vDg2v2Mg!21 (4)

where Hg(v) will be called the ‘‘global’’ frequency respons
function.

A conventional identification process first obtains the freque
response function~4! by using the measured input forcefg and the
output, usually in terms of the acceleration vectorüg . Once the
frequency response function is obtained, the three structural
trices Mg , Dg , and Kg may be found by a system realizatio
algorithm ~@1#! followed by a mass-normalized transformatio
procedure of Alvin and Park@2#.

3 Derivation of Strain-to-Displacement Relation
One difficulty in a systematic derivation of strain-based syst

identification algorithms has been that while it is trivial to expre
the strains in terms of displacements, the converse has not
easy. We first note that the displacementu on an element or sub
structure can be decomposed into two parts, that is, deformatid
and rigid-body motionr ~see, e.g.,@3#!:

u5d1r . (5)

The rigid-body component can be represented by

r5Faa (6)

whereFa represents the elemental rigid-body modes that dep
only on the geometry of the element under consideration, ana
are the associated generalized coordinates.

In order to make strains available for use in system identifi
tion, the deformation vectord must be expressed in terms of th
strains. To this end, we begin with the well-known stra
displacement relation

s5STu (7)

wheres is a general strain variable and$STPRm3n,m<n% is the
discrete strain-displacement relation matrix that can be derive
a variety of ways, e.g., by relying on the finite element sha
functions of the assumed element. Substitutingu from ~5! yields

s5ST~d1r !5ST~d1Faa!5STd (8)

since the rigid-body modesFa do not incur any strain.
The deformationd can be obtained from the previous equati

as

d5Fss, Fs5S~STS!21. (9)

Substituting~9! and~6! into ~5!, we arrive at the desired result,
strain-to-displacementrelation:

u5Fss1Faa5FH s
aJ F5@Fs Fa# (10)

where we note that the column size ofFa is at most 6ns , in
which ns is the total number of partitioned substructures. Sin
the preceding expressions are relatively new concepts, we
some simple examples below.

3.1 Discrete Bar Element. For a planar bar element, th
strain in the element is the axial strainex caused by elongation o
the bar. It is related to the axial displacements (u1 ,u2) at the bar
endpoints by the discrete strain-displacement relation given b

ex5
1

l
@21 1#Hu1

u2
J (11)
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where l is the length of the bar element. From this, one obtai
via ~9!, that

Fs5
l

2 F21
1 G . (12)

Since the elemental rigid-body modeFa is given by

Fa
T5@1 1# (13)

the displacement-strain relation for a bar element can be writte

Hu1

u2
J 5

l

2 F21
1 Gex1F11Ga. (14)

3.2 Discrete Beam Element. Derivation of the desired
displacement-strain relation for a beam element presents
challenges and new insight into the advantages of strain-ba
system identification. If one employs the Euler-Bernoulli form
lation of a plane beam element, it is well known that the bend
strains are evaluated at two Barlow points, viz.,j561/A3, where
the beam axial coordinatex is given by$x5 l j/2,21<j<1%. The
bending strain-displacement relation for an element is thus gi
by ~@4#!

s5H k1~j521/A3!

k2~j51/A3! J 5STu, uT5$w1 u1 w2 u2%
(15)

ST5
1

l 2 F22A3 2~11A3!l 2A3 ~12A3!l

2A3 ~211A3!l 22A3 ~11A3!l
G

where (w1 ,w2) and (u1 ,u2) are the vertical and rotational beam
displacements at the element endpoints, (k1 ,k2) are the bending
strains or curvatures at the two Barlow points, andl is the beam
length. The elemental rigid-body modes include one transla
and one rotation, which can be shown to be

Fa
T5F 1 0 1 0

2 l 2 l 2G . (16)

When the preceding two expressions are substituted into~9! and
~10!, we obtain the desired strain-to-displacement relation.

F w1

u1

w2

u2

G5
A3

6~ l 214!

33
2 l 2 l 2

2A3l 2
1

2
~A311!l 3 2A3l 1

1

2
~2A311!l 2

l 2 2 l 2

2A3l 1
1

2
~A321!l 3 2A3l 1

1

2
~A311!l 3

4
3Hk1

k2
J 1F 1 2 l

0 2

1 l

0 2

G Haw

au
J (17)

3.3 Determination of Rotation Degrees-of-Freedom. Ob-
serve that the preceding strain-to-displacement relation states
if strain is measured at the two strain sensor locations, along w
the two translations (w1 ,w2), the rotations (u1 ,u2) and the two
rigid-mode amplitudes (aw ,au) can be obtained for a beam ele
ment. This is accomplished in the following manner, as presen
by Park and Reich@5#. Equation~10! is partitioned into translation
and rotation:
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Fig. 1 Example of partitioning into four substructures
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where

uw5 Hw1

w2
J uu5 H u1

u2
J (19)

with similar partitions onFs andFa . This equation is rewritten
to solve for the unknown rigid-body amplitudes and rotation
degrees-of-freedom

H a
uu

J 5A21H FFsw

Fsu

Gs2F I
0GuwJ

(20)

A5F2Faw
0

2Fau
I
G .

From the last equation, it is clear that the rotations and rig
body amplitudes can be uniquely determined in this manner.
only assumptions in this exercise are the geometry and elem
type, so as long as the model chosen is a reasonable match
physical reality, this estimate of the rotation at the element e
points should be valid. The results of this procedure can be
lized in several ways. If the global model is desired, then
rotations can be determined and used in a global system ide
cation procedure as in Section 2. Alternatively, the rigid-body a
plitudes can be determined and used in a strain-based ident
tion process with applications in damage detection and he
monitoring ~@6#! or model updating. Both options will be dis
cussed in the following sections.

4 Strain-Based Equations of Motion
As described in the previous section, conventional structu

system identification utilizes the excitation forces and the ac
erations as the input and output quantities. This practice preclu
the use of other sensor output such as strains and deformat
which has hampered the use of piezoelectric strain gauges, op
fibers, and other embedded sensors in the system identifica
process. In order to more effectively make use of such sensors
wish to determine the equations of motion in terms of these lo
ized strain quantities.

To this end, consider a structure partitioned into substructu
as shown in Fig. 1. Note that, after partitioning, the global no
that lie on the partition boundaries are co-owned by two or m
substructures. For example, global node 13 is co-owned by
four substructures while global node 3 is co-owned by subst
tures 1 and 2. In other words, partitioning is a disassembly pro
given by
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Partitioned Partioning Assembled

displacement
⇐

operator displacement (21

whereL is the assembly Boolean matrix that relates the glo
and substructural displacements. In addition, the global stiffn
matrix Kg is formed by the assembly of individual substructur
stiffnesses via the assembly operatorL :

Kg5LTKL , K5F K ~1!

K ~2!

K ~3!

�

K ~ns!

G (22)

where K is the block-diagonal collection of unassembled su
structural stiffness matricesK (s). The force vector that is conju
gate with the substructural displacement is given by

LTf5fg (23)

where it is noted thatLT acts as an assembly operator whereasL
is a disassembly operator as shown in~21!.

It is important to note that only part of the total substructu
displacementsu lie on the substructural boundaries. The substr
tural boundary displacements, if they are to satisfy the equilibri
state for the global structure, must be constrained so that th
displacements that are co-owned by the assembled structure b
same. This can be mathematically stated by using~21! as follows:

Bl
T~u2Lug!50 (24)

where Bl is a Boolean operator which extracts the partiti
boundary nodes of all the partitioned substructures.

The system energy with constraints can thus be stated as

P~u,l,ug!5uTS 1

2
Ku2f1Mü1Du̇D1lTBl

T~u2Lug!

(25)

whereM andD are the substructural mass and damping matric
respectively, andl are the localized Lagrangian multipliers o
interface forces between respective substructures. The strai
displacement relation~10! can now be introduced into the con
strained system energy expression~25! to yield
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P~s,a,l,ug!5~Fss1Faa!TH 1

2
K ~Fss1Faa!2f1M ~Fss̈

1Faä!1D~Fsṡ1Faȧ!J
1lTBl

T$~Fss1Faa!2Lug%. (26)

The stationary value ofdP in the previous equation thus yield
the following matrix equation set:

3
S M s

d2

dt2
1Ds

d

dt
1K sD S M sa

d2

dt2
1Dsa

d

dtD Fs
TBl 0

S M sa
T

d2

dt2
1Dsa

T
d

dtD S Ma

d2

dt2
1Da

d

dtD Fa
TBl 0

Bl
TFs Bl

TFa 0 2Lb

0 0 2Lb
T 0

4
3H s

a
l

ug

J 5H Fs
Tf

Fa
Tf
0
0
J (27)

whereLb5Bl
TL . Since the measured output vector consists of

strain s and the rigid-body amplitudea, we eliminatel and ug
from the preceding equation. This can be accomplished as
lows. First, we recast the first two rows in~27! in the form

Mfq̈5b2Fbl, Fb5FTBl (28)
b5FTf2Dfq̇2Kfq

whereqT5$sT aT% and the strain-based matrices are given by

Kf5FTKF5FK s 0

0 0G
(29)

Df5FTDF5F Ds Dsa

Dsa
T Da

G , Mf5FTMF5F M s M sa

M sa
T Ma

G .

The third row of ~27!, after time-differentiating twice, can b
expressed as

Fb
Tq̈2Lbüg50 (30)

which, upon into substituting~28!, becomes

Fb
TMf

21$b2Fbl%2Lbüg50. (31)

Hence,l can be solved to yield

l5Mb$Fb
TMf

21q̈2Lbüg%, Mb5~Fb
TMf

21Fb!21. (32)

Substituting this into the last row of~27!, one obtains

üg5ML
21Lb

TMbFb
TMf

21b, ML5Lb
TMbLb (33)

Finally, from the preceding two equations,l is obtained as

l5PbFb
TMf

21b, Pb5Mb2MbLbML
21Lb

TMb (34)

Eliminating l from ~27! and~34!, we obtain the desired input
output relation:

Mfq̈5Pfb5Pf$FTf2Dfq̇2Kfq%
(35)

Pf5I2FbPbFb
TMf

21

which can be rearranged in a standard second-order form

Mfq̈1PfDfq̇1PfKfq5Pfff , ff5FTf. (36)

This equation is designated as thestrain-basedequation of motion
for linear structures. We will employ this equation to develop
strain output-based structural system identification in the next
tion.
524 Õ Vol. 68, JULY 2001
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5 System Identification Based on Strain-Based Mea-
sured Input and Output Data

System identification based on the strain-based equation
motion ~36! is in many respects no different from convention
methods based on the global equations of motion~2!. In order for
the reader to connect the present method to conventional meth
we first offer their relations by means of coordinate transformat
procedures.

First, the strain-to-displacement relation~10! and the global-to-
substructural displacement relation~21! can be combined to give

q5 H s
aJ 5F21Lug . (37)

Second, the external energy invariance condition gives

ug
Tfg5uTf5qTff⇒fg5LTF2Tff . (38)

Substituting the global displacement-based frequency resp
functions ~4! into ~37! and making use of~38!, we obtain the
desired frequency response function in terms of strains:

q̄5Hf~v! f̄f (39)
Hf~v!5F21LH g~v!LTF2T.

Note from~36! that the analytical strain-based frequency respo
functionsHf(v) can also be expressed as

Hf~v!5$2v2Mf1 j vPfDf1PfKf%21Pf . (40)

Given the information in this and previous sections, we c
formulate a logical procedure for strain-based structural sys
identification. While not unique, these steps outline the most lo
cal path for substructural-based damage detection and mode
dating ~@6#!.

Step 1: Using the strainss and the selected translational di
placements (u,v,w), obtain the rigid-body amplitudesa from
~10! to determine the strain-based output vectory5q.

Step 2: Using ~38!, obtain the strain-based input signalff .
Step 3: Using the strain-based input and output$ff ,y%, obtain

the Markov parameters~discrete impulse response! or the fre-
quency response functions~see, e.g.,@7#!.

Step 4: Perform system realization using the Markov para
eters determined from Step 3 to obtain~A,B,C,D! that describe
the state space model given by~see, e.g.,@1#!

ẋ~ t !5Ax~ t !1Bff~ t !, xT5$sT aT ṡT ȧT%

y~ t !5Cx~ t !1Dff~ t ! (41)

A5F 0 I

2Mf
21PfKf 2Mf

21PfDf
G , B5F 0

Mf
21Pf

G
whereC andD are the output and direct transmission operato
respectively.

Step 5: Using the procedure of Alvin and Park@2# obtain the
strain-based structural parameters (Mf ,Df ,Kf) for damage de-
tection or model updating applications.

Alternatively, Step 5 could be replaced by two steps wh
result in global structural parameters:

Step 5a: Using ~37! and~38!, transform the strain-based ma
trices ~A,B,C,D! into the global form.

Step 5b: Obtain global structural parameters (Mg ,Dg ,Kg)
via the procedure of Alvin and Park@2#.

6 Illustrative Examples
In order to demonstrate the strain-based system identifica

procedure outlined in the preceding section, two examples
presented. The first is a simple two-element cantilever be
which illustrates directly the concepts presented in the previ
sections. The second example is the identification of a continu
structure, namely a cantilever plate. This second example h
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Fig. 2 Partitioned two-beam system
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lights some of the advantages of the present procedure whe
goal includes localization as well as measurement and identi
tion.

6.1 Cantilever Beam. The first example is a numerica
simulation of a simple two-element beam. It is used to dem
strate the ability of the strain-based system identification pro
dure to determine rotational motion without direct measureme
The dynamics of the global system are reconstructed from
identified mass, damping, and stiffness matrices from a simul
strain-based system realization test. These are compared t
system frequency response functions reconstructed from a g
system realization analysis which include the rotation meas
ments directly.

The cantilever beam is modeled with two Bernoulli beam e
ments as shown in Fig. 2. In the strain-based numerical eva
tion, two transverse displacements (w1 ,w2) and four strains, at
the two Barlow points for each element, are measured. The b
ing strain at a location is computed by placing two axial str
gauges as shown in Fig. 2 according to

s5
1

2 S st

ht
2

sb

hb
D . (42)
anics
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ca-

l
n-

ce-
ts.

the
ted
the

obal
re-

le-
lua-

nd-
in

For the global system realization, the transverse displacement
rotation at each node is measured.

A burst random input is applied vertically at the free end a
subsequently is transformed into the strain-based forceff . After
carrying out the strain-based realization~Steps 2–4!, the structural
matrices (Mg ,Dg ,Kg) are obtained as described by Steps 5a a
5b. The global realization is done based on traditional sys
realization practices. For both sets of analysis, the mass, dam
and stiffness matrices are used to reconstruct the system frequ
response functions. Figure 3 shows both sets of reconstructed
quency response functions. Observe that, even though no rot
is measured, the present strain-based realization procedure
vides the frequency response function corresponding to rotati
degrees of freedom. The strain-based rotational frequency
sponse function lies directly on top of the global rotational fr
quency response function, which indicates that the strain-ba
rotations are the same as they would be if they had been meas
directly. This information would not be available from most e
isting system identification procedures without explicit measu
ment of the rotation degrees-of-freedom.

6.2 Continuum Structure. The second example is a cant
lever plate, modeled with 12 elements as shown in Fig. 4. T
Fig. 3 Comparison of strain-based realization versus global realization
JULY 2001, Vol. 68 Õ 525
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goal of this exercise is to determine the system parameter
mass and stiffness, or the combination of mass-normalized s
ness as in Eq.~43!, based on a reduced set of sensor locatio
These may include rotation degrees-of-freedom, which may
difficult or impossible to determine directly. An alternative is
measure strain and then compute rotations in post-processing
which it is necessary to determine locations at which strain is
be measured. There are a number of equivalent sets of strain
surements possible. The set we choose to measure is pictur
Fig. 5. There are 20 strain gauges on each element used to d
mine nine bending strains, as we wish to completely describe
dynamics of each element. There are 12 displacements for
free-free plate element, minus three rigid-body modes, leav
nine flexible degrees-of-freedom which must be accounted
Because we wish to determine not only the strain state, but
the rigid-body dynamics of each element, we also measure
transverse displacement at each node, as in Fig. 5. This allow
to solve for the rigid-body variables as in Eq.~20!. Only six strain
degrees-of-freedom are required for elements at a natural bo
ary, equal to the number of degrees-of-freedom of each fixed-
element.

A vibration test for the plate in Fig. 4 was simulated using
burst-random signal at two input locations. The system respo
consisting of 16 displacements and 99 strains, was calculated

Fig. 4 Cantilevered plate

Fig. 5 Elemental strain measurement locations
526 Õ Vol. 68, JULY 2001
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to the force input at 4 kHz. The input and output were then a
aliased and resampled at 2 kHz, sufficient to capture the firs
flexible modes of the system. System identification was done
the resulting 115 degree-of-freedom localized system. For c
parison, a separate system identification analysis was done u
the 16 translational displacements at the nodes.

A method of comparison of the quality of the identified mod
is to determine a mass-normalized stiffness

K̃5M21/2KM 21/2. (43)

Reduced-order mass and stiffness matrices based on the mea
system modes corresponding to selected sensor locations ca
computed as in the previous example. For instance, if the se
locations at nodes I, J, K, and N are chosen, then the transv
displacement-only~TDO! mass-normalized stiffness matrixK̃
from Eq. ~43! is determined to be

K̃TDO5106F 3.9370 23.7017 20.1439 20.8441

23.7017 4.4683 0.0743 0.7395

20.1439 0.0743 0.3131 20.1796

20.8441 0.7395 20.1796 0.3989

G
(44)

where

K̃exact5106F 4.8399 24.4907 0.2824 21.3607

24.4907 5.1490 20.3743 1.2469

0.2824 20.3743 0.3461 20.3015

21.3607 1.2469 20.3015 0.6058

G
(45)

is the analytical Guyan-reduced matrix~@8#! for the selected sen
sor set~which is determined based on a full set of eigensolutio
rather than the measured set used to determineK̃TDO!. The error
norm of the matrices, defined as

iK̃TDO2K̃exacti

iK̃exacti
(46)

can also be determined to compare the results.K̃TDO has about 21
percent error in the matrix norm as compared withK̃exact.

On the other hand, the strain-based identification proced
using the same set of measured modes, can be used to dete
a 12 degree-of-freedom equivalent model which contains tra
verse displacements as well as the two rotations at the sele
nodes. The resultant model matrices can then be reduced to
four transverse displacements using Guyan reduction. This str
based~SB! mass-normalized stiffness matrix is found to be

K̃SB5106F 5.4342 24.6592 20.3427 20.8092

24.9235 5.1698 0.2558 0.6672

20.4680 0.3512 0.3461 20.1516

20.9527 0.7674 20.1602 0.3705

G .

(47)

This matrix has approximately 15 percent error in matrix norm
compared to the analytical model. Additionally, the transverse
placement model (K̃TDO) has an average of about 19 percent er
in the diagonal value of the matrix, while the strain-based vers
contains approximately 13 percent error on the diagonal. Fina
Table 1 shows that the reduced-order eigenvalues from the st
based~SB! model offer definite improvement over the transver
displacement-only model. The eigenvectors, in Table 2, are
comparable quality with respect to the analytical model, as e
denced by similar values in the modal assurance criterion~MAC!.
This shows that the inclusion of rotation degree-of-freedom m
be able to improve the quality of the identified model paramet
for reduced sensor set selection, even if rotation sensors are
included in the final sensor set.
Transactions of the ASME
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6.3 Discussion. One criticism of the present methodology
regards to continuum structures is the large number of sen
required to completely describe the dynamics of a single subst
ture or element. It is true that there is a considerable increas
the model order, and therefore computational cost of determin
such models. However, consider the situation where we wis
determine the local displacements and rotations such that an
ment is completely characterized. A common setup for this sit
tion is pictured on the left in Fig. 6. While this is an acceptab
configuration for measuring response, the eight measured deg
of-freedom are not sufficient to completely characterize the
ment. It is important to note that we are not interested in sim
measuring response. We are interested in localization, which
quires us to measure enough spatial data to resolve the dyna
of each substructure independently.

On the right in Fig. 6 we have a more realistic setup for de
mining the rotations at each of the four corner nodes of the p
element. Because we cannot mount the rotation sensors on t
the displacement sensor at the node, we must place two senso
sides opposite the node and then interpolate the value at the n
This must be done for both rotation angles at the node, and th
fore requires four sensors to measure the two rotations at
node. In the end, in order to completely determine the displa
ment field for one free-free element, 20 measurements mus
taken, whereas 24 must be taken using a combination of displ
ments and strains as was suggested in Section 5.

It may seem then that it would be of greater advantage to
these 20 translational sensors to characterize the dynamics o
element. However, there are several issues which force cons
ation of a strain-based system. The first of these is clutter.
strain-based measurements are spread out over the surface
structure, which improves the access to each sensor and gr

Table 1 Eigenvalue comparison for the reduced-order models

Table 2 Eigenvector comparison for the reduced-order
models

Fig. 6 Two methods for measuring rotation angles
Journal of Applied Mechanics
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reduces the amount of sensor clutter occurring around the n
locations. The second issue is weight. The weight difference
tween accelerometers or rotation rate sensors and strain gaug
very large. Strain gauges add essentially no nonstructural ma
the system. The same cannot be said for accelerometers or
tional sensors.

Finally, the issue of cost must be addressed. Rotation sen
are expensive, costing anywhere from $500–2500 each. S
gauges, on the other hand, are extremely inexpensive, on the o
of $1–10 each. Even in the ideal case where the number of
quired rotation angle sensors equals the number of rota
degrees-of-freedom, a large cost disparity still exists between
two methods of measurement. So, in terms of hardware cost
sensor clutter, it appears that a combination of nodal displa
ments and elemental strains may be a better method of deter
ing the local dynamics of a continuum structure.

7 Conclusions
A theory for strain-based structural identification is develop

The present theory, when used in conjunction with strain a
translational displacement sensors, can identify the system c
acteristics that consist of translational as well as rotatio
degrees-of-freedom. The state variables consist of the strains
the rigid-body amplitudes of substructures for which the cor
sponding set of measured strains are utilized.

The present theory becomes attractive in utilizing embed
piezoelectric sensors, embedded fiber optics and other microe
tronic high-precision sensors, thus opening possibilities in tu
with recent advances in sensor miniaturization technology. To
best of the authors’ knowledge, this has not been presented in
literature.

In order to render the present strain output-based identifica
theory practical to the structural identification community, seve
implementation and computational procedures need to be de
oped. These include the development of an instrumentation g
so that measured strain gauge outputs can reflect the theo
closely as possible, and experimental validation for typical str
tural elements and substructures.
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Deformation of Inhomogeneous
Elastic Solids With Two-
Dimensional Damage
A general correlation is derived between macroscopic stresses/strains and micros
deformation on the damage surfaces for inhomogeneous elastic solids with
dimensional damage. Assuming linear elastic behavior for the undamaged material
macroscopic deformation associated with nonlinear strains, or damage strains, is s
to be the weighted sum of the microscopic deformations on the damage surface
inhomogeneous materials with periodic structures (laminated composites, for exa
and various identifiable damage modes, simple relations are derived between the m
scopic deformation and microscopic damage. When the number of identifiable da
modes is less than or equal to the number of relevant measurable macroscopic strain
correlation can be used to evaluate the damage progression from simple macros
stress and strain measurements. The simple case of a unidirectional fiber-reinforced
posite under longitudinal load is used to show how the results can help detect
characterize the damage using macroscopic measurements, without resorting to as
tions of detailed microscopic deformation mechanisms.@DOI: 10.1115/1.1380384#
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Introduction
It was shown by the authors~@1#! that the macroscopic me

chanical behavior of unidirectional fiber-reinforced brittle mat
composites can be correlated explicitly with the microscopic
formation and damage. Although the statement was verified b
ad hoc cylinder theory, in this paper it is shown to be a result o
more general theory based on first principles.

Throughout this study, damage is assumed to occur only
two-dimensional internal surfaces. Linear elasticity is assume
every point of the material. Results are presented after a gen
description of the deformation of solids with two-dimension
damage is given. For inhomogeneous materials with perio
structures, such as fiber composites, the results are much sim
and thus special attention is directed to unidirectional compos
with brittle matrix damaged by longitudinal loading.

Various approaches have been developed in the past to s
damage in elastic solids. In an important branch of micromech
ics, the overall moduli of solids with voids and other inhomog
neities were studied by many investigators, see Mura@2# for an
extensive list of references in the field. Several analytical a
numerical methods~@3–7#! have been developed to determine t
microscopic stress and strain distributions, and overall ela
moduli were calculated through clever averaging schemes. W
based on first principles of mechanics, the approach usually
quires explicit stress and strain distributions or crack-opening
placements in the damaged solids under study. This restricts
application to simple cases, and numerical schemes are often
essary for more complex ones.

For periodic structures like unidirectional fiber composites w
identifiable damage modes, one has the luxury of estimating s
distributions in closed form, and a different approach can
adopted. Since the problems of periodic structures with dam
usually defy analytical attempts to obtain exact closed form so
tions, drastic assumptions~shear lag assumption, for example! are

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar
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usually required~@8–14#!. This approach usually leads to simpl
fied equations and great physical insight to the problems un
study. The drawback is that the model has to be developed cas
case, for different materials and different loading conditio
Sometimes a mechanical phenomenon may not be covered
theory, not because it is not mechanically related, but because
assumptions simply exclude any possibility to explain it. For e
ample, transverse strains typically cannot be easily explained
one-dimensional theory of unidirectional composites under lon
tudinal loading.

One can also make phenomenological assumptions on the
stitutive equations of the materials with damage~@15–17#!. Inter-
nal variables describing damage are linked to macroscopic de
mation either through energy considerations or direct assump
of certain functional forms. Experimental data is required to ch
acterize necessary phenomenological parameters. Solution
microscopic stresses and strains are not necessary. The sele
of internal variables and phenomenological laws are required
be mechanically sound so that useful results can be obtaine
goal not easily achieved. Phenomenological parameters acqu
from experimental data are expected to have physical significa
but the lack of their correlation to fundamental properties throu
first principles leaves something to be desired.

In this paper, the authors try to approach the problems from
principles of solid mechanics, so that the results can be gen
and elegant. The correlation between macroscopic and mi
scopic deformation is also presented in a way that physical ins
can be easily obtained and all parameters have solid physical
nificance. While no attempt is made to obtain the microsco
stress or strain distributions, the results are useful for mate
characterization and damage evaluation, especially for inhomo
neous materials with periodic structures.

Betti’s Reciprocal Theorem
A modified version of Betti’s reciprocal theorem is derived

this section so that the effect of initial~or residual! stresses is
included. Consider a linear elastic bodyV with surfaceS and
initial stresss i j

R . From Hooke’s law, the strainekl induced by the
additional stress (s i j 2s i j

R) is determined by

s i j 2s i j
R5ci jkl ekl , (1)
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whereci jkl is the stiffness tensor. The italic indicesi and j range
from 1 to 3 unless specified otherwise, and the Einstein sum
tion convention is adopted. For the same bodyV, we assume two
configurations, one under external loadingTi , and the other unde
Ti8 , as shown in Fig. 1.

Integrating the product of tractionTi and displacementui8 over
S, and using the divergence theorem, we have

E
S
Tiui8dS5E

S
s j i njui8dS5E

V
s i j e i j8 dV,

in which body forces are neglected. Substituting Eq.~1! into the
above, we have

E
S
Tiui8dS5E

V
~s i j

Re i j8 1ci jkl ekle i j8 !dV.

The first term on the right-hand side can be converted to a sur
integral

E
V
s i j

Re i j8 dV5E
S
s i j

Rui8njdS5E
S
Ti

Rui8dS,

whereTi
R is defined as the initial traction on surfaceS given by

Ti
R5s j i

Rnj . (2)

Thus, we have

E
S
~Ti2Ti

R!ui8dS5E
V
ci jkl ekle i j8 dV.

Similarly, integrating the product of tractionTi8 and displacemen
ui over S gives

E
S
~Ti82Ti

R!uidS5E
V
ci jkl ekl8 e i j dV.

From the above two equations and the symmetry propertyci jkl
5ckli j , we obtain Betti’s reciprocal theorem in the followin
form:

E
S
~Ti2Ti

R!ui8dS5E
S
~Ti82Ti

R!uidS. (3)

Note that if the surfaceS is the external surface of the body, th
initial traction Ti

R vanishes, and the regular form of Betti’s reci
rocal theorem is recovered. However, it will be made clear in
next section that the presence ofTi

R in the above equation is
important when fictitious damage surfaces are involved.

Macroscopic Strains and Microscopic Damage
Consider a damaged inhomogeneous solid of volumeV and

surfaceS. Assume the damage in the solid to be ‘‘crack-like,’’ i.e
the damage only occurs on internal surfacesSk in the solid. The
subscriptk is used to index all damage surfaces so thatSk refers to
the kth damage surface. At any point in any of the constitue
Hooke’s law is assumed to hold without being affected by
damage. The macroscopic behavior of the damaged composit
be nonlinear due to contact and/or friction of damage surface
representative cells in the body can be chosen to give statistic

Fig. 1 An elastic body under traction T in „a… and T 8 in „b…
Journal of Applied Mechanics
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meaningful averages of field quantities of interest, the mac
scopic definition of mechanical properties of the composite i
damaged state can be justified. One way to achieve this is to h
representative elements much larger than all physical size
damage surfaces and constituents of the structure, while still s
enough for macroscopic properties to be meaningful in regi
with higher strain gradients, as shown in Fig. 2.

With the above restriction in mind, macroscopic tractionsT̄i ,
stressess̄ i j , displacementsūi , and strainsē i j are assumed to be
well defined over the volumeV. Since the concept of continuum
is assumed on the macroscopic scale, the macroscopic tractioT̄i
can be related to the macroscopic stress tensors̄ i j and surface
normalni through

T̄i5s̄ j i ni . (4)

The macroscopic strain-displacement relations are given by

ē i j 5
1

2
~ ūi , j1ū j ,i !. (5)

For the same solid in the undamaged state, the material is assu
to follow Hooke’s law:

s̄ i j
o 5S̄i jkl

o ēkl
o , (6)

where superscript ‘‘o’’ is used for the field quantities in the un
damaged state,S̄i jkl

o is the elastic compliance tensor of the solid
the undamaged state.

Consider the solid in both the damaged and undamaged
figurations, as shown in Fig. 3. The undamaged configuration
be considered as a damaged solid with fictitious damage surf
recovered or closed by tractions on the damage surfaces. Neg
ing body forces, we obtain the following from Betti’s reciproc
theorem~3!

Fig. 2 A representative volume element in a solid with crack-
like brittle damage occurring on two-dimensional surfaces.
„The damage surfaces can be curved and possibly opened by
the load T. Typical sizes of the damage and constituents are
assumed to be much smaller than the element size. …

Fig. 3 Solid with crack-like damage in „a… damaged configura-
tion with or without friction and sliding, and „b… undamaged
configuration with fictitious damage surfaces recovered or
closed by tractions T o on Sk

À , and ÀTo on Sk
¿
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E
S
~Ti2Ti

R!ui
odS5E

S
~Ti

o2Ti
R!uidS2(

k
E

Sk
2
~Ti

o2Ti
R!@ui #dS,

(7)

whereTi and ui are, respectively, microscopic tractions and d
placements ofdamaged configuration; Ti

o andui
o are, respectively,

microscopic tractions and displacements ofundamaged configu
ration. The summation in the second term on the right-hand s
is taken over all damage surfacesSk

2 , indexed by subscriptk. The
displacement jump vector@ui # on the damage surface is define
by @ui #5ui

12ui
2 . The tractionsTi

o on the fictitious damage sur
face are defined on the same surfaceSk

2 on whichui
2 is defined.

The selection betweenSk
2 andSk

1 is arbitrary. Notice thatfriction
and/orbonding tractionon the damage surfaces are allowed, b
they do not contribute to the above equation due to the absen
displacement jump on the fictitious damage surface in the und
aged configuration.

The left-hand side and the first term on the right-hand side
Eq. ~7! are in the form of work done by tractions. Since the co
cept of continuum is assumed to hold for the damaged config
tion, it is obvious that any work term due to loading has to be a
to be expressed in terms of macroscopic tractions and displ
ments, so that the energy pumped into the system can be
pressed by macroscopic tractions and displacements. Thus
following conditions must be met:

E
S
Tiui

odS5E
S
T̄i ūi

odS, E
S
Ti

ouidS5E
S
T̄i

oūidS,

E
S
Ti

Rui
odS5E

S
T̄i

Rūi
odS and E

S
Ti

RuidS5E
S
T̄i

RūidS.

The self-equilibrium condition of the initial stresss i j
R requires that

the macroscopic initial stresss̄ i j
R vanishes, so the initial traction

T̄i
R5s̄ j i

Rnj vanishes too, or

T̄i
R50.

Substituting these conditions into Eq.~7!, we obtain

E
S
T̄i ūi

odS5E
S
T̄i

oūidS2(
k
E

Sk
2
~Ti

o2Ti
R!@ui #dS.

ReplacingT̄i by s̄ j i nj , and T̄i
o by s̄ j i

o nj , with the aid of the
divergence theorem, the above equation can be rewritten as

E
V
s̄ j i ūi , j

o dV5E
V
s̄ j i

o ūi , jdV2(
k
E

Sk
2
~Ti

o2Ti
R!@ui #dS.

Noticing thats̄ j i ūi , j
o 5s̄ i j ē i j

o , and s̄ j i
o ūi j 5s̄ i j

o ē i j , we can rewrite
the above equation as

E
V
s̄ i j ē i j

o dV5E
V
s̄ i j

o ē i j dV2(
k
E

Sk
2
~Ti

o2Ti
R!@ui #dS.

Since the volumeV is arbitrary, we have

s̄ i j ē i j
o 5s̄ i j

o ē i j 2
1

VD
(

k
E

Sk
2
~Ti

o2Ti
R!@ui #dS,

where volumeVD represents the unit volume that contains a s
ficient number of damage cracks to achieve stable average
field quantities. Substituting Hooke’s law~6! into the above equa
tion, and rearranging the indices, we obtain

s̄ i j
o ~ ē i j 2S̄i jkl

o s̄kl!5
1

VD
(

k
E

Sk
2
~Ti

o2Ti
R!@ui #dS. (8)

The left-hand side of the above equation is determined by
macroscopic stressess̄ i j

o , s̄kl , macroscopic strainsē i j , and un-
530 Õ Vol. 68, JULY 2001
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damaged macroscopic compliancesS̄i jkl
o . The right-hand side is

determined by the microscopic tractionTi
o of theundamaged con-

figurationon the fictitious damage surfaces, and the displacem
jump @ui # on the damage surfaces. Thus, the equation basic
relates the macroscopic and microscopic deformations. Define
damage strain tensorē i j

D by

ē i j
D5 ē i j 2S̄i jkl

o s̄kl , (9)

then Eq.~8! can be rewritten as

s̄ i j
o ē i j

D5
1

VD
(

k
E

Sk
2
~Ti

o2Ti
R!@ui #dS. (10)

Ruling out any nonlinearity in the undamaged configuratio
microscopic stressess i j

o of the linear system can be represent
by the sum of the initial stressess i j

R and linear combinations o
the macroscopic stressess̄ i j

o , or

s i j
o 5s i j

R1hkli j s̄kl
o , (11)

where hkli j are nondimensional stress factors. The compon
hkli j is interpreted as theload-induced microscopic stresscompo-
nent (s i j

o 2s i j
R) caused by a unit macroscopic stress compon

s̄kl
o in theundamaged state. Since (s i j

o 2s i j
R) is symmetric ands̄kl

o

arbitrary, we have

hkli j 5hkl j i . (12)

Sinces̄kl
o is also symmetric, there is no contribution to the righ

hand side of Eq.~11! from the antisymmetric part~w.r.t. k, l! of
hkli j . Without loss of generality, we can restrict ourselves to
symmetric part ofhkli j by observing the following condition:

hkli j 5hlki j . (13)

Using Ti
o5s j i

o nj , Ti
R5s j i

Rnj and Eq. ~11!, with indices rear-
ranged, Eq.~10! can be rewritten as

s̄ i j
o ē i j

D5
s̄ i j

o

VD
(

k
E

Sk
2
hi jkl @ul #nkdS.

Sinces̄ i j
o is arbitrary and symmetric, we have

ē i j
D5

1

VD
(

k
E

Sk
2

1

2
~hi jkl @ul #nk1hjikl @ul #nk!dS.

Considering the symmetry relations~12! and~13!, the above equa-
tion can be rewritten as

ē i j
D5

1

VD
(

k
E

Sk
2

hi jkl

2
~@uk#nl1@ul #nk!dS. (14)

The above equation correlates the macroscopic deformation
scribed by the damage deformation tensorē i j

D , and microscopic
displacement jump@uk# on the damage surfacesSk . From the
deriviation, it is clear that the above equation is valid regardles
the existence of initial stressess i j

R , friction and/or bonding trac-
tion on the damage surface.

Special Cases
For inhomogeneous materials with arbitrarily distributed co

stituents, the determination ofhi jkl through Eq.~11! is far from a
trivial task even though the calculation is done in the undama
configuration. For certain cases of engineering importance,hi jkl
can be determined fairly easily. In this section we will discus
few such cases.

Homogeneous Materials With Crack-Like Damage. For
homogeneous material, Eq.~14! can be greatly simplified and
simple physical interpretation of the damage straine i j

D can be
Transactions of the ASME
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obtained. Since microscopic stresses are equivalent to ma
scopic stresses for undamaged homogeneous materials,

s i j
o 5s̄ i j

o .

Considering Eq.~11! and the above,hi jkl can be written as

hi jkl 5
1

2
~d ikd j l 1d jkd i l !.

Substituting the above into Eq.~14!, we obtain

ē i j
D5

1

VD
(

k
E

Sk
2

1

2
~@ui #nj1@uj #ni !dS.

The right-hand side of the above equation is the volume ave
of the symmetric part of the tensor@ui #nj . Define thedamage
deformation tensorb i j by

b i j 5
1

VD
(

k
E

Sk
2
@uj #nidS, (15)

then, we have

ē i j
D5

1

2
~b i j 1b j i ! for homogeneous materials. (16

This is a well-known result used for calculating the elastic mod
of materials with damage@4,15#. The physical interpretation of the
damage deformation tensorb i j is very simple and described in th
following.

First let us consider the summation of diagonal component

b i i 5b111b221b335
1

VD
(

k
E

Sk
2
@ui #nidS.

Thus,b i i ~or ē i i
D! for homogeneous materials is interpreted as

crack-opening volume ratio, or the volume average of all crac
openings. The componentb11 ~or ē11

D ! is the projected crack-
opening volume ratio, given by the volume average of the pro
jected damage area in thex1-direction (n1dS), times the crack-
opening displacement in thex1-direction (@u1#). This leads to an
interesting result for the special case in which all damage sur
normals are parallel, as depicted in Fig. 4. Since the damage
face normalsn are parallel to thex1-direction, it follows from
Eqs.~15! and ~16! that

e22
D 5e33

D 50.

This is true regardless of external loads, the distribution of da
age locations, size, and existence of friction or contact on dam
surfaces. Similar interpretations exist for the other diagonal co
ponents ofb i j .

The off-diagonal componentb12 is theprojected sliding volume
ratio, given by the volume average of the projected damage
in the x1-direction (n1dS), times the sliding displacement in th
x2-direction (@u2#). It is obvious thatb i j Þb j i in general, but the
damage strainē i j

D is symmetric. This means that different micro

Fig. 4 For homogeneous materials the macroscopic damage
strain component ē11

D is equivalent to the damage deformation
tensor component b11 which is the crack-opening volume ratio
in the x 1-direction. „Note that ē22

D Ä ē33
D Äb22Äb33Ä0 when all

damage surface normals are in the x 1-direction. …
Journal of Applied Mechanics
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scopic mechanisms could give the same macroscopic dam
strains, as depicted in Fig. 5. Interpretations of other off-diago
components ofb i j are similar.

Inhomogeneous Materials With Periodic Structure and
Damage Modes. In inhomogeneous materials with period
structure, very often damage occurs in such a manner that var
damage modesassociated with a specific location, pattern, a
loading can be identified. For example, transverse matrix cra
are observed in cross-ply composites with@0m/90n#s layup under
longitudinal tension. Transverse matrix cracks, fiber matrix d
onding, and also fiber breaks occur in unidirectional ceramic co
posites under longitudinal tension.

In many cases, it is possible to have analytical micromechan
stress analyses for the undamaged composites, and then to
mine the stress factorshkli j from Eq. ~11!. In general, the factors
hkli j depend on the distribution, location of potential damage, a
elastic properties of the constituents of the inhomogeneous m
rial. For periodic structures, very often the undamaged mic
scopic stressess i j

o depend on the damage modes, but not on
location of the potential damage. For example, with parallel fib
in its matrix, an undamaged unidirectional fiber composite can
assumed to have a periodic structure. Theundamagedmicroscopic
stresses at the potential damage surfaces~fiber/matrix interface,
transverse sections in matrix and fibers! depend, through the stres
factor hkli j , on the type of potential damage surface or failu
mode and not on global location, since there is no damage yet
the material has a periodic structure. This allows us to takehkli j
out of the integral sign in Eq.~14!. Grouping the damage surface
according to different damage modes, and renumbering the d
age surfaces so that the notationSkm

2 refers to thekmth damage
surface of themth damage mode, now we can rewrite Eq.~14! as

ē i j
D5(

m
hi jkl

m S 1

2VD
(
km

E
S

km
2

~@uk#nl1@ul #nk!dSD ,

where the summation overkm is taken over all damage surface
for the mth damage mode, and the summation overm is taken
over all damage modes. Note that the Einstein summation con
tion is applied only to italic indices likek and l, but not to noni-
talics like k or m. The above equation can be rewritten as

ē i j
D5(

m
hi jkl

m 1

2
~b lk

m1bkl
m! (17)

whereb i j
m is thedamage deformation tensor for damage modem,

or simply thedamage mode tensor~@17#!, defined by

b i j
m5

1

VD
(
km

E
S

km
2

@uj #nidS. (18)

The physical interpretation of damage deformation tensorb i j
m for

damage modem is similar to b i j described before, except tha
only the contribution of themth damage mode is considered. F
example,b i i

m is the crack-opening volume ratio of damage mo

Fig. 5 Two different microscopic deformation mechanisms
could produce the same macroscopic damage shear strain
component ē12

D

JULY 2001, Vol. 68 Õ 531



532 Õ Vol. 68, JULY 2
Fig. 6 Common damage modes in unidirectional brittle matrix composites
under longitudinal tension: matrix cracking „mode M…, interface debonding Õ
sliding „mode I…, and fiber breakage „mode F…. „The theory does not require
the matrix crack spacing, interface debonding length, or fiber break spacing
to be uniform or periodic. …
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m, the componentb11
m is the projected crack-opening volume rat

of damage modem in thex1-direction, and the off-diagonal com
ponentb12

m is the projected sliding volume ratio of damage mo
m in the x1-direction for sliding in thex2-direction.

For homogeneous materials, the damage strain tensorē i j
D is the

symmetric part of the damage deformation tensorb i j , as shown
in Eq. ~16!. Thus, the interpretation of damage strain tensorē i j

D

directly follows that of damage deformation tensorb i j . This is
not the case for inhomogeneous materials with periodic structu
Considering Eq.~17!, the damage strain tensorē i j

D is the weighted
sum of the symmetric part of damage deformation tensorsb i j

m for
all damage modes. In the next section we will use an exampl
a unidirectional composite under longitudinal loading to dem
strate the nature of the stress factorshi jkl

m , which serve as the
weighted parameters in Eq.~17!.

Unidirectional Composite Material With Crack-Like
Damage

Unidirectional composite materials fall into the category of
homogeneous materials with periodic structure and dam
modes, as described before. The damage of these materia
discussed in detail because of its engineering importance.

General Results. There are three easily identifiable dama
modes in unidirectional composites under longitudinal tensi
matrix cracking ~mode M!, fiber-matrix interface debonding
sliding ~modeI!, and fiber breakage~modeF!, as shown in Fig. 6.
The sequence of damaged modes is immaterial as far as the th
is concerned. They can occur in any order, or simultaneously.
above damage modes are commonly seen in a typical brittle
trix composite, SiC/CAS~Silicon Carbide/Calcium Aluminosili-
001
o

e

res.

of
n-

n-
age
ls is

e
n:

eory
he

ma-

cate!, under unidirectional loading. We will start by determinin
the damage deformation tensorb i j

m for damage modem5M , I,
andF.

Matrix Cracking. For matrix cracking, the displacement jum
vector,@u#5@uz#ez , is parallel to the matrix crack surface norma
n5ez ~see Fig. 6!. From the definition of damage deformatio
tensor, Eq.~18!, the only nonzero component for matrix crackin
is bzz

M , which is the matrix crack-opening volume ratio. Call th
crack density~average number of matrix cracks per unit lengt!
lm , average matrix crack-opening displacementCODm , and fi-
ber volume ratiof, then,bzz

M can be written as

bzz
M5~12 f !lmCODm . (19)

Interface Debonding/Sliding.For interface debonding/sliding
the displacement jump vector is given by@u#5@ur #er1@uz#ez ,
and the debonding crack surface normaln5er ~see Fig. 6!. From
the definition of damage deformation tensor, Eq.~18!, the only
nonzero components for interface debonding/sliding areb rr

I and
b rz

I . Call the average debonding lengthl d and average interface
crack-opening displacementCODi , then, it can be easily shown
that b rr

I which describes the interface crack opening is given

b rr
I 54 f lml dCODi /Rf , (20)

whereRf is the fiber radius. The matrix crack densitylm enters
into the equation simply for the convenience of using 1/lm as the
length scale to calculate the percentage of debonded interfac

The other nonzero componentb f z
I describes the volume averag

of interface sliding. However, there are only two relevant meas
able damage strain components,ē rr

D and ēzz
D , under unidirectional

loading. It is not difficult to see that the stress factorshrrrz
I and

hzzrz
I are zero because of the absence of shear stress~s rz

o f or s rz
om!
Transactions of the ASME
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at the interface of the undamaged composite cylinder under
gitudinal or two-dimensional hydrostatic pressure. Thus, from
~17!, there is no direct contribution to the macroscopic strainse rr

D

and ezz
D from the interface sliding componentb rz

I . The effect of
interface sliding on the macroscopic mechanical behavior is th
fore implied in other microscopic deformation.

Fiber Breakage. For fiber breakage, the displacement jum
vector,@u#5@uz#ez , is parallel to the fiber crack surface norma
n5ez ~see Fig. 6!. From the definition of damage deformatio
tensor, Eq.~18!, the only nonzero component isbzz

F , which is the
crack-opening volume ratio of fiber breaks. Call the fiber bre
densityl f , and average fiber break opening displacementCODf ,
then,bzz

F can be written as

bzz
F 5 f l fCODf . (21)

For the macroscopic deformation, use direction 1 for the fi
direction, 2 for the in-plane transverse direction, and 3 for
out-of-plane transverse direction. Since the selection of stre
s̄kl

o in Eq. ~11! is arbitrary, we can limit ourselves to discuss on
two independent macroscopic stress components,s̄11

o and s̄22
o

(5s̄33
o ). From Eqs.~11! and ~17!, we have

ē11
D 5

szz
om

s̄11
o bzz

M1
s rr

o f

s̄11
o b rr

I 1
szz

o f

s̄11
o bzz

F , (22)

for an arbitrary stress components̄11
o applied to the undamage

composite, as shown in Fig. 7~a!.
In the above equation,szz

om , s rr
o f , andszz

o f are the stress com
ponents induced by the macroscopic stress components̄11

o in the
undamaged composite on the fictitious damage surfaces of m
M, I, and F, respectively. Since the calculation of these str
components involves only the undamaged configuration, var
mechanical models are available. In what follows we use the
sults from the composite cylinder model by Christensen@18# to
determine these components, which can be easily proved to

szz
om

s̄11
o 5

b22

b11b222b12b21
[a11, (23a)

s rr
o f

s̄11
o 5

2b12

2~b11b222b12b21!
[

a12

2
, (23b)

szz
o f

s̄11
o 5

1

f
@12~12 f !a11#[a13, (23c)

where superscriptsf andm refer to fiber and matrix, respectively
and constantsbi j are given by

b11511
f ~n f2nm!

12n fnm
1

f ~11n f !~12nm!

12n fnm
S m f

mm
21D , (24a)

b1252
~12 f !~n f2nm!

12n fnm
, (24b)

Fig. 7 Arbitrary macroscopic stress components s̄11
o in „a…

and s̄22
o Äs̄33

o in „b… applied to the undamaged unidirectional
composite
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b215
f ~n f2nm!

12n fnm
2

f nm~11n f !

2~12n fnm! S m f

mm
21D , (24c)

b22512
~12 f !~n f2nm!

12n fnm
2

~12 f !~11nm!~122n f !

2~12n fnm! S 12
mm

m f
D .

(24d)

For an arbitrary two-dimensional hydrostatic pressures̄22
o

5s̄33
o applied to the undamaged composite~see Fig. 7~b!!, we

have

ē22
D 1 ē33

D 52ē22
D 5

szz
om

s̄22
o bzz

M1
s rr

o f

s̄22
o b rr

I 1
szz

o f

s̄22
o bzz

F . (25)

In the above equation,szz
om , s rr

o f , andszz
o f are the stress compo

nents induced by the macroscopic hydrostatic pressures̄22
o 5s̄33

o

in the undamaged composite on the fictitious damage surface
modeM, I, andF, respectively. Note that the axisymmetry of th
composite cylinder model dictates that strainsē22

D and ē33
D occur

together as the coupling terms of the applied hydrostatic press
It can be easily shown from Lame´’s solution@19# that these com-
ponents are given by

szz
om

s̄22
o 5

22b21

b11b222b12b21
[2a21, (26a)

s rr
o f

s̄22
o 5

b11

b11b222b12b21
[a22, (26b)

szz
o f

s̄22
o 522a21

12 f

f
[2a23. (26c)

Using the following notation commonly used for unidirection
composites, with overbar denoting macroscopic quantities,

ē1
D5 ē11

D , ē2
D5 ē22

D ,

we can rewrite Eqs.~22! and ~25! as

H ē1
D

ē2
DJ 5Fa11 a12 a13

a21 a22 a23
G H ~12 f !lmCODm

2 f lml dCODi /Rf

f l fCODf

J . (27)

The above equations relate the macroscopic damage deform
~described byē1

D and ē2
D! with the microscopic damage deforma

tion of the three damage modes~matrix cracking, interface
debonding/sliding and fiber breaking!. It is worth mentioning that
the stress factorsai j in the above equations are functions of fib
volume ratio and elastic moduli. Models other than the compo
cylinder model might generate slightly different values for the
constants, but the damage strainsē i j

D are always representable a
linear combinations of the components of the damage deforma
tensorb i j

m , as indicated in Eq.~17!. It will be shown in the next
section, for several specific applications, that the physical sign
cance of the above relation lies in the linear relationship betw
the macroscopic damage strainsē i j

D and damage deformation ten
sorb i j

m . The estimates of the deformation tensor components fr
the above equations would be reasonable as long as the s
calculation from the cylinder model is acceptable. The importa
of the relationship is not limited by the selection of the stre
analysis model. If another model were selected the calcula
stress components might be different but the relationship ab
would still be linear.

Simpler representations of constantsai j andbi j are desirable so
that the physical meaning would be clearer. When the differe
of Poisson’s ratios is ignored, orn f5nm[n, simpler forms forai j
andbi j can be obtained:

b11'
f Ef1~12 f !Em

Em
, (28a)
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b12'0, (28b)

b21'2
f n~Ef2Em!

2~12n!Em
, (28c)

b22'
Ef1~122n!@ f Ef1~12 f !Em#

2~12n!Ef
, (28d)

and

a11'
Em

f Ef1~12 f !Em
, (29a)

a12'0, (29b)

a13'
Ef

f Ef1~12 f !Em
, (29c)

a21'
f nEf~Ef2Em!

@ f Ef1~12 f !Em#$Ef1~122n!@ f Ef1~12 f !Em#%
,

(29d)

a22'
2~12n!Ef

Ef1~122n!@ f Ef1~12 f !Em#
, (29e)

a23'2
~12 f !nEf~Ef2Em!

@ f Ef1~12 f !Em#$Ef1~122n!@ f Ef1~12 f !Em#%
.

(29f)

Special Cases. Equations~27! apply to unidirectional com-
posites with all three damage modes present. There are two i
pendent measurable damage strains~ē1

D andē2
D!, but three damage

deformation tensor components. The difficulty can be overcom
many engineering applications for which not all three dama
modes occur at the same time. Several cases are discussed b

Matrix Cracking and Interface Debonding/Sliding.If fiber
breakage does not occur in the process, orCODf50, then the last
one (f l fCODf) of the microscopic deformation terms on th
right-hand side of Eq.~27! can be dropped, and we have

H ē1
D

ē2
DJ 5Fa11 a12

a21 a22
G H ~12 f !lmCODm

2 f lml dCODi /Rf
J , (30)

or, by left-multiplying the inverse of@ai j #, we have

H ~12 f !lmCODm

2 f lml dCODi /Rf
J 5Fb11 b12

b21 b22
G H ē1

D

ē2
DJ , (31)

which states that the microscopic damage represented
lmCODm andlml dCODi can be determined by the readily me
surable macroscopic damage strainsē1

D and ē2
D . This is the same

as the result obtained by the cylinder theory~@1#!.
In general, the coupling constantsa12 anda21 in Eqs.~30! are

not zero. Therefore, matrix crack-opening~CODm , in the longi-
tudinal direction! will result in macroscopic nonlinear transvers
strainē2

D unlessa2150, which can be achieved by letting fiber an
matrix have the same elastic constants~n f5nm andEf5Em!. In-
terface crack-opening~CODi , in the radial direction! will result
in macroscopic nonlinear longitudinal strainē1

D unlessa1250, or
n f5nm .

Fiber Breakage and Interface Debonding/Sliding.If matrix
cracking does not occur in the process, orCODm50, we have to
use another length scale instead of 1/lm to characterize the per
centage of interface debonding. In this case, the average
break spacing 1/l f is more suitable as the length scale. Letti
CODm be zero and replacinglm by l f in Eq. ~27!, we obtain

H ē1
D

ē2
DJ 5Fa12 a13

a22 a23
G H2 f l f l dCODi /Rf

f l fCODf
J . (32)
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With the constantsa13 anda23 previously defined, this is the sam
as the result obtained from the cylinder theory~@1#!.

In general, the coupling constantsa12 and a23 (52(1
2 f )a21/ f ) in Eqs.~32! are not zero. Therefore, fiber break ope
ing ~CODf , in the longitudinal direction! will result in macro-
scopic nonlinear transverse strainē2

D , unlessa2350, which can be
achieved by letting fiber and matrix have the same elastic c
stants~n f5nm andEf5Em!. Interface crack-opening~CODi , in
the radial direction! will result in macroscopic nonlinear longitu
dinal strainē1

D unlessa1250, or n f5nm .

Matrix Cracking Only. If only matrix cracking occurs in the
process, orCODi50 andCODf50, from Eq.~27!, we have

ē1
D5a11~12 f !lmCODm , (33a)

ē2
D5a21~12 f !lmCODm , (33b)

from which one quickly recognizes that

ē2
D

ē1
D 5

a21

a11
52

b21

b22
. (34)

This requires the damage strainsē2
D and ē1

D to be proportional, a
necessary mechanical result for the unidirectional composite w
matrix cracking as the only damage mode present. The r
a21/a11 vanishes only whena2150, which can be achieved by
letting fiber and matrix have the same elastic constants~n f5nm
andEf5Em!.

Matrix Cracking and Nonopening Debonding/Sliding Interfac
If the material has matrix cracking and nonopening interface
bonding and/or sliding, we haveCODi50. Therefore, the effects
are similar to the case with matrix cracking only, and the previo
result ~34! applies. It is interesting that the presence of anot
nonopening damage mechanism has no effect on the proport
relation.

Fiber Breakage Only. If only fiber breakage occurs in the
process, orCODm50 andCODi50, from Eq.~27!, we have

ē1
D5a13f l fCODf , (35a)

ē2
D5a23f l fCODf , (35b)

from which one quickly recognizes that

ē2
D

ē1
D 5

a23

a13
52

~12 f !b21

b11b222b12b212~12 f !b22
. (36)

Again this requires the damage strainsē2
D and ē1

D to be propor-
tional, a necessary mechanical result for the unidirectional co
posite with fiber breakage as the only damage mode present.
ratio a23/a13 vanishes only whena2350, which can be achieved
by letting fiber and matrix have the same elastic constants~n f
5nm andEf5Em!.

Fiber Breakage and Nonopening Debonding/Sliding Interfa
If the material has fiber breakage and nonopening debond
and/or sliding interface, we haveCODi50. Therefore, the effects
are similar to the case with fiber breakage only, and the previ
result ~36! applies. Again the presence of the nonopeni
debonding/sliding interface has no effect on the proportio
relation.

Application to a Brittle Matrix Composite
Equation~27!, or Eq.~30! without fiber breakage, correlates th

macroscopic deformation with the microscopic damage and de
mation of unidirectional composites for specific damage mod
Note that the application of the equation does not require
matrix crack spacing, interface debonding length, or fiber br
spacing to be uniform or periodic, as long as the crack spac
and crack opening are understood to represent average quan
Transactions of the ASME
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The interface bonding condition~friction type, bonding, stick-slip,
or debonding! and residual stress also do not affect the validity
the equation. Therefore, the equation can be very useful in ev
ating the damage development and identifying interface bond
~or debonding! conditions. This requires only macroscopic te
data~stresses and strains!, and constituent properties for the ca
culation ofai j .

To demonstrate how this can be achieved, we will re-exam
the damage development of a unidirectional brittle matrix co
posite, documented by several investigators~@11,20–28#!. The
most well-understood part of the damage is matrix cracking, ty
cally starting from microcracking at various weak sites in t
brittle matrix. With increasing load, the microcracks develop in
longer macrocracks and gradually evolve into a pattern of para
cracks with more or less uniform crack spacing. Interface dam
generally follows the impingement of matrix cracks on the fib
matrix interface, although the lack of direct observation make
difficult to identify its initiation and development. Fiber breaka
usually occurs at the last loading stage prior to failure and can
reasonably separated from matrix cracking and interface dam

Stresses and strains from tensile tests of two different batc
of a ceramic matrix composite~SiC/CAS! are used to calculate th
crack opening volume ratios according to Eq.~30!. For conve-
nience, define the crack-opening volume ratiosbm andb i as

bm5~12 f !lmCODm , (37a)

b i52 f lml dCODi /Rf . (37b)

The constituent properties used in the calculation are:Ef
5188 GPa~27.2 Msi!, Em597.9 GPa~14.2 Msi!, n f50.3, and
nm50.25 ~@20,22,29,30#!. The measured fiber volume ratio isf
50.36. The stresses and strains used in the calculation are t
from results from tensile tests of unidirectional composite c
pons. The calculated results of crack-opening volume ratiosbm
andb i are shown in Figs. 8~a! and 8~b!.

First, the matrix crack-opening volume ratiobm curves for both
batches have almost the same well-defined starting point, w
corresponds to initiation of matrix cracking. In Fig. 8~a!, the bm
and b i curves start at almost the same strain level, and both
crease linearly afterwards. This suggests that the initial ma
cracks develop immediately into a pattern of long parallel cra
accompanied by interface debonding. On the other hand, in
8~b! the delay in initiation of interface debonding volume ratiob i
after matrix crack initiation suggests that smaller matrix cra
initiate without noticeable interface debonding or that the
bonded interface is not open.

Note that if there is no debonding at all (l d50), the interface
crack-opening volume ratiob i would be zero. The existence o
nonzerob i implies not only thedebondingof interface, but also
the openingof such debonded interface during the matrix cra
development stage.

The opening of the interface cracks does not exclude the e
tence of interface sliding stress or compressive normal stres
the interface, because the debonding and sliding of the fi
matrix interface with rough contact would justify their coexisten
~@31#!. A small degree of fiber misalignment in composites a
allows friction to coexist with interface crack opening. Therefo
the existence of interface crack opening does not automatic
preclude interface sliding stress. Since rough debonding sur
and fiber misalignment are common in composites, the coex
ence of interface crack-opening, compressive interface nor
stress, and interface sliding stress is very likely.

Based on the macroscopic stress-strain data, the above obs
tion is reached without assuming a specific failure criterion
interface bonding condition. These results should be taken
account for both the damage observation and mechanical mo
ing. A mechanical model inaccurately conceived to assumea pri-
ori the knowledge of interface bonding condition could lead
erroneous interpretation of the interface behavior and espec
the transverse strain behavior.
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The transverse strain reversal phenomenon occuring du
damage is the direct result of the mechanical interaction betw
fiber and matrix. Physical mechanisms~for example, interface
debonding, interface asperities, surface roughness, or res
stresses! behind the transverse strain reversal contribute a
lumped effect on the macroscopic mechanical behavior, and
not be separated by the current analysis. However, the lum
effect manifests itself in the transverse strains and allows u
calculate the interface crack-opening volume ratio.

Fiber breakage is ignored in the above calculation, becaus
occurs at the last loading stage prior to failure. For the curr
analysis, the debonding lengthl d and matrix crack densitylm
cannot be separated from the microscopic deformationCODm and
CODi . Nonetheless it provides helpful information about t
damage development and can be useful for further mode
efforts.

Summary and Discussion
The correlation between macroscopic mechanical behavior

microscopic damage is derived for elastic solids with tw
dimensional damage. For homogeneous materials, the dam
strains are well known to be the symmetric part of the dam
deformation tensor. For inhomogeneous materials, the ma
scopic and microscopic deformation can still be correlated i
more complex way. For inhomogeneous materials with perio
structure and identifiable damage modes, the damage strain
the weighted sum of the symmetric parts of the damage defor
tion tensors for all damage modes. This is demonstrated for

Fig. 8 Stress-strain curves and calculated crack-opening vol-
ume ratios bm and b i of two batches of unidirectional compos-
ite „SiCÕCAS… under longitudinal tension
JULY 2001, Vol. 68 Õ 535
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directional fiber composites in Eq.~27!, which describes a genera
relationship between measurable macroscopic macroscopic
age deformation,ē i j

D , and the damage deformation tensorb i j
m as-

sociated with specific damage modes, e.g., transverse m
cracking, interfacial debonding, and fiber fractures. When
number of identifiable damage modes is smaller than or equa
that of relevant measurable macroscopic strains, the correla
can be used to detect and characterize the damage and its d
opment from simple macroscopic stress and strain measurem

The proposed approach does not incorporate a specific fa
criterion or a damage evolution law, but as a general framew
can accomodate various failure criteria or failure modes. It c
however, track the damage progress in terms of the damage
formation tensors as shown in Fig. 8. The lack of a specific fail
criterion or damage evolution law is considered as a strengt
well as a weakness of the proposed approach. It is a stre
because the observation can be based on purely theore
grounds and does not rely upon questionable assumptions of
ure mechanisms, evolution laws or unreliable strength/toughn
parameters. The information obtained from this approach can
of great help before a researcher jumps into a specific mecha
model. The obvious weakness is that it is not able to fully pred
the damage progress, and this limits its applicability at this m
ment. Instead of trying to predict the mechanical behavior fo
given undamaged state, this approach is better suited for eva
tion, inversely, of damage progress from the macroscopic
chanical behavior. When multiple failure mechanisms are
volved, a smaller number of macroscopic measurements migh
insufficient to interpret the underlying damage effectively.
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Anisotropic Elastic Materials With
a Parabolic or Hyperbolic
Boundary: A Classical Problem
Revisited
When an anisotropic elastic material is under a two-dimensional deformation that h
hole of given geometryG subjected to a prescribed boundary condition, the problem c
be solved by mappingG to a circle of unit radius. It is important that (i) each point onG
is mapped to the same point for the three Stroh eigenvalues p1 , p2 , p3 and (ii) the
mapping is one-to-one for the region outsideG. In an earlier paper it was shown tha
conditions (i) and (ii) are satisfied whenG is an ellipse. The paper did not address to th
case whenG is an open boundary, such as a parabola or hyperbola that was studie
Lekhnitskii. We examine the mappings employed by Lekhnitskii for a parabola and h
bola, and show that while the mapping for a parabola satisfies conditions (i) and (ii)
mapping for a hyperbola does not satisfy condition (i). Nevertheless, a valid solution
be obtained for the problem with a hyperbolic boundary, although the prescription o
boundary condition is restricted. We generalize Lekhnitskii’s solutions for general an
tropic elastic materials and for more general boundary conditions. Using known ident
and new identities presented here, real form expressions are given for the displac
and hoop stress vector at the parabolic and hyperbolic boundary.
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1 Introduction
When an isotropic elastic material is under a two-dimensio

deformation the solution can be expressed in terms of the com
variable

z5x11 ix2 , (1)

and its complex conjugatez̄. If the material has a hole of a give
geometryG, the curveG is mapped to a circle of unit radius by
conformal mapping

z5w~z!. (2)

The mapping must beone-to-one. Every point outsideG in the
(x1 ,x2)-plane is mapped to only one point in thez-plane, and vice
versa. This condition is satisfied if~@1#!

d

dz
w~z!Þ0 foruzu.1. (3)

If the material is anisotropic, the solution can be expresse
terms of three complex variables~@2,3#!

zk5x11pkx2 ~k51,2,3! (4)

and their complex conjugatesz̄k . The complex constantspk (k
51,2,3) depend on elastic constants only. The imaginary par
pk is positive and nonzero. To map the curveG to a unit circle we
need three mapping functions

zk5wk~zk! ~k51,2,3!. (5)

It is important that
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be accepted until four months after final publication of the paper itself in the AS
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~i! each point onG in the (x1 ,x2)-plane is mapped to thesame
point on the unit circle in thezk-plane for all three map-
ping functionswk(zk).

~ii ! the mapping is one-to-one between the region outsidG
and the region outside the unit circle for eachwk(zk). This
is assured if

d

dzk
wk~zk!Þ0 for uzku.1 ~k51,2,3!. (6)

If the condition~i! is violated, the boundary condition onG cannot
be satisfied for all points onG because each point is mapped
three different points on the unit circle in thezk-plane for k
51,2,3. If the condition~ii ! is violated, a Riemann surface with
branch cut must be introduced in the (x1 ,x2)-plane so that the
mapping is one to one. The region outsideG is no longer a con-
tinuous medium. The stress and the displacement are discon
ous across the branch cut.

When the curveG is a closedcurve, it is shown in~@4#! that
conditions~i! and~ii ! are satisfied ifG is an ellipse. IfG is anopen
curve, Lekhnitskii@5# has employed mapping functions for a p
rabola and a hyperbola. We will show that condition~i! is suffi-
cient, not necessary, for a valid solution. However, when a so
tion exists, the boundary conditions cannot be prescrib
arbitrarily. The problems considered by Lekhnitskii for a parabo
and a hyperbolic boundary are rather specialized in that he lim
the deformation to plane stress or plane strain. Hence the mat
is restricted to monoclinic materials with the symmetry plane
x350. Moreover, the applied loads are also limited.

The purpose of this paper is to consider the Lekhnitskii’s pro
lems for general anisotropic elastic materials and for more gen
loading conditions. We present new identities and give real-fo
expressions for the displacement and hoop stress vector a
parabolic and hyperbolic boundary. We also discuss the map
of parabola and hyperbola for anisotropic elasticity, which has
been discussed in detail in the literature, and show why a solu
for the hyperbolic boundary can be obtained despite the fact th
violates condition~i!.
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2 The Stroh Formalism
In a fixed rectangular coordinate systemxi ( i 51,2,3) letui and

s i j be, respectively, the displacement and stress in an anisotr
elastic material. The equation of equilibrium and the stress-st
law are

s i j , j50, s i j 5Ci jksuk,s (7)

in which the comma denotes differentiation, repeated indices
ply summation, andCi jks are the elastic stiffnesses that are a
sumed to possess the full symmetry. For a two-dimensional de
mation for whichui depends onx1 andx2 only, a solution to~7!
is ~@3,6–8#!

u5aF~z!, f5bF~z!, z5x11px2 , (8)

s i152f i ,2 , s i25f i ,1 , (9)

where F is an arbitrary function ofz, and p and a satisfy the
eigenrelation

$Q1p~R1RT!1p2T%a50. (10)

The superscriptT stands for the transpose,I is the unit matrix, and
Q, R, T are 333 matrices whose elements are

Qik5Ci1k1 , Rik5Ci1k2 , Tik5Ci2k2 . (11)

The three-vectorb in ~8! is related to the three-vectora by

b5~RT1pT!a52~p21Q1R!a (12)

in which the second equality follows from~10!.
There are six eigenvaluesp from ~10! that consist of three pairs

of complex conjugates. Ifp1 ,p2 ,p3 are the eigenvalues with
positive imaginary part, the remaining three eigenvalues are
complex conjugatesp̄1 ,p̄2 ,p̄3 . Let ak ,bk (k51,2,3) be the cor-
responding eigenvectors computed from~10! and ~12!. A general
solution obtained by superposing three solutions of~8! associated
with p1 ,p2 ,p3 with three arbitrary constant multipliersqk (k
51,2,3) is~@8#!

u5Im$A^F~z* !&q%, f5Im$B^F~z* !&q%, (13)

where Im stands for the imaginary part and

A5@a1 ,a2 ,a3#, B5@b1 ,b2 ,b3#, (14)

^F~z* !&5diag@F~z1!,F~z2!,F~z3!#, zk5x11pkx2 . (15)

Let t be the surface traction on a boundaryG. If s is the arc-
length measured alongG such that, when facing the direction o
increasings, the material is on the right-hand side, it can be sho
that ~@3#!

t5
d

ds
f. (16)

Hence

f5constant onG, if G is traction-free. (17)

If f is not a constant, the total tractionf between two pointss2
.s1 on G is

f5E
s1

s2

tds5f~s2!2f~s1!. (18)

When there is a concentrated forcef applied at a point, the value
of f increases byf if ~18! is integrated counterclockwise aroun
the point one full circle.

3 Parabolic Boundary
Consider an anisotropic elastic material that occupies the re

x2<ax1
2, a.0. (19)

The boundaryG is a parabola given by
538 Õ Vol. 68, JULY 2001
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x25ax1
2 on G. (20)

The parabola degenerates to a crack whena5` and to a plane
boundary whena50. Following ~@5#!, let

z5z1apz2 or z
A114apz21

2ap
. (21)

For simplicity, we have suppressed the subscriptk for pk ,zk ,zk
(k51,2,3) in ~21!. It is easily seen from~20! and (21)1 that

z5x1 on G. (22)

Thus the parabolaG is mapped to the real axis~denoted byGz in
Fig. 1! in thez-plane. The region below the parabola is mapped
the lower half-space in thez-plane. Since~22! is independent ofp,
if p1 ,p2 ,p3 are different, each point onG is mapped to the same
point onGz . This satisfies condition~i!.

Let ẑ be the root ofdz/dz50, which is abranchpoint. From
(21)1 we have

ẑ5
21

2ap
5

2 P̄

2app̄
. (23)

The ẑ associated withẑ is obtained from (21)1 as

ẑ5 x̂11px̂25
21

4ap
. (24)

It is the vanishing of the quantity inside the square root in (212 .
The second equality in~24! allows us to compute the branch poin
( x̂1 ,x̂2) in the (x1 ,x2)-plane. It is denoted byẐ in Fig. 1. The
branch cut k is extended fromẐ to infinity in the positive
x2-direction. It is mapped to a horizontal linekz that passes
throughẑ in the z-plane. The right~or left! side of the branch cut
k in the (x1 ,x2)-plane is mapped to the right~or left! of ẑ. They
are denoted by a solid and a dashed line, respectively. It ca
shown that a horizontal line in thez-plane is a parabola in the

Fig. 1 Mapping of a parabola „drawn for Re p Ì 0…; „a… the
„x 1 ,x 2…-plane, „b… the z-plane
Transactions of the ASME
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(x1 ,x2)-plane whose axis of the symmetry is parallel to t
x2-axis and whose apex is on the line that connects the bra
point Ẑ and the originO.

The imaginary part ofp is positive and nonzero so that theẑ
given by ~23! is located outside the half-plane Imz<0. This im-
plies that the branch pointẐ and the branch cutk are outside the
parabolic boundary occupied by the material. Hence the map
for the region below the parabola is one to one. This satis
condition~ii !. It is clear that we cannot consider the region abo
the parabola because there is a branch cut in that region.

Consider the surface Green’s function due to a concentr
force f applied at

x15j, x25aj2, (25)

on the surfaceG. The parabolic surface is otherwise traction-fre
The solution has been obtained by Hu and Zhao@9# as

u5
1

p
Im$A^ ln~z* 2j!&B21%f,

f5
1

p
Im$B^ ln~z* 2j!&B21%f. (26)

On the parabolic surfaceG, z* 5x1 so that

ln~z* 2j!5 ln~x12j! for x1.j,

ln~z* 2j!5 lnux12ju2 ip for x1,j. (27)

Using the identity (A1) presented in the Appendix the displac
ment at the surfaceG can be obtained in a real form as

u~x1!5
21

p
~ ln r !L21f, for x1.j,

u~x1!5
21

p
~ ln r !L21f1SL21f, For x1,j. (28)

In the above,r 5ux12ju andS andL are two of the three Barnett
Lothe tensors. They are real. It should be pointed out that
displacement is unique up to a constant rigid-body translation
rotation. Hence we could subtract1

2SL21f from ~28! so that it has
a symmetric expression

u~x1!5
21

p
~ ln r !L21f2

1

2
SL21f, for x1.j,

u~x1!5
21

p
~ ln r !L21f1

1

2
SL21f, For x1,j. (29)

Equation~29! is independent ofa, indicating that the surface dis
placement is independent of the shape of the parabola. In par
lar, the surface displacement is identical to the half-space wi
plane boundary.

Let th(x1) be thehoop stress vectoron G acting on a surface
perpendicular to the boundaryG. If s is the arclength measure
along the perpendicular line, we obtain from (26)2 and ~16!,

th~x1!5
1

p~x12j!
ImH BK dz*

ds L B21J f. (30)

It can be shown that

d

ds
5cosh

]

]x1
2sinh

]

]x2
5~cosh2p sinh!

d

dz
(31)

where h is the angle the tangent toG makes with thex1-axis.
Inserting (21)2 in ~30! using ~31!, and evaluating the result onG
leads to

th~x1!5
2cosh

p~x12j!
ImH BK p* 2tanh

11p* tanhL B21J f, (32)

h5tan21~2ax1!. (33)
Journal of Applied Mechanics
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The identity~A21! allows us to write~32! in a real form as

th~x1!5
2cos3 h

p~x12j!
$2ax1@N3~h!~N122ax1I !1N1

T~h!N3#

2N3%L
21f, (34)

where Nk , Nk(u) (k51,2,3) are defined in (A4) and (A8). If
m(x1) is the normal vector to the parabolic boundary, it can
shown thatth(x1) and m(x1) are orthogonal to each other. Th
hoop stress vector atx150 is

th~0!5
21

pj
N3L21f. (35)

This is independent ofa, the shape of the parabola.
With the surface Green’s function given by~26!, the solution

for the problem for which the surfaceG is subjected to a distrib-
uted load can be easily obtained by an integration. This was d
in ~@5#! for a monoclinic material. Hu and Zhao@9# also presented
the Green’s function for which the applied forcef is inside the
half-space. Their solution can be easily extended to include a
dislocation.

4 Hyperbolic Boundary
Let the material be bounded by a pair of hyperbolas defined

x2
2

a22
x1

2

b2 51 (36)

wherea, b are real and positive~Fig. 2!. Consider the mapping
~@5#!

z5
1

2 H z1
a2p22b2

z J , z5z1Az22a2p21b2. (37)

If G1, G2 denotes the upper and lower branches of the hyperb
we have

x15bshg5
b

2
~eg2e2g!,

x256achg56
a

2
~eg1e2g!, on G6, (38)

where2`,g,` is a real parameter. In thez-plane they are

z5~b6ap!eg on Gz
6 . (39)

Let

b1ap5r1eic1
, b2ap5r2e2 ic2

, (40)

in which r6.0 andc6 are real. TheGz
6 are radial lines making

an anglec1 and2c2 with the Rez-axis~Fig. 2!. Thus the region
bounded by the hyperbolasG6 is mapped to the wedge regio
bounded by the radial linesGz

6 .
The square root in (37)2 suggests that a branch cut is need

for the mapping to be one to one. The vanishing of the square
gives, using~40!,

ẑ5 x̂11px̂25 i r̂e2 i ĉ, (41)

r̂5Ar1r2, ĉ5
1

2
~c22c1!. (42)

The branch points6( x̂1 ,x̂2) are determined by equating the re
and imaginary parts of (41)2 . They are denoted byẐ and2Ẑ in
Fig. 2. If the line that connectsẐ and2Ẑ is called theY-axis, one
branch cut extends fromẐ to Y5` ~denoted byk1! while the
other branch cut extends from2Ẑ to Y52` ~denoted byk2!.
Insertingẑ of ~41! into (37)2 , or settingdz/dz50 in (37)1 , we
obtain
JULY 2001, Vol. 68 Õ 539
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ẑ5 i r̂e2 i ĉ. (43)

If we denote the line that connectsẑ and2 ẑ as theYz-axis, the
right ~or left! side of the branch cutk1 in the (x1 ,x2)-plane is
mapped to the positiveYz-axis above~or below! ẑ. Likewise, the
right ~or left! of k2 is mapped to the negativeYz-axis below~or
above! 2 ẑ. They are denoted by a solid and a dashed line,
spectively. The points on theY-axis betweenẐ and 2Ẑ are
mapped to a half-circle in thez-plane that passes throughẑ and
2 ẑ with its center at the origin. The half-plane to the right~or
left! of the Y-axis in the (x1 ,x2)-plane is mapped to the right o
the Yz-axis and outside~or inside! the half-circle.

It can be shown that all radial lines and concentric circles w
their center at the origin in thez-plane are confocal hyperbola
and ellipses in the (x1 ,x2)-plane when referred to an oblique co
ordinate system~X, Y!. The corresponding axesXz andYz in the
z-plane are orthogonal to each other~pp. 86–89,~@8#!!.

The branch pointsẑ and 2 ẑ are outside the wedge regio
bounded byGz

6 . Hence the branch pointsẐ and 2Ẑ and the
branch cutsk6 in the (x1 ,x2)-plane are outside the regio
bounded by the hyperbolasG6. Thus the mapping for the regio
inside the hyperbolas is one to one. It satisfies condition~ii !. How-
ever, it does not satisfy condition~i! because~39! depends onp. If
p1 , p2 , p3 are different, each point onG6 maps to three differen
points. It would be a problem to satisfy an arbitrarily prescrib
boundary condition.

What is remarkable about the hyperbolic boundary is that,
though thez given in ~39! is different forp1 , p2 , p3 ,

ln z5 ln~b6ap!1g on G6 (44)

Fig. 2 Mapping of a hyperbola „drawn for Re p Ì 0…; „a… the
„x 1 ,x 2…-plane, „b… the z-plane
540 Õ Vol. 68, JULY 2001
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so that thedifferencein (ln z) for p1 , p2 , p3 is independent ofg.
Hence, consider the solution

u5
1

p
Im$A^ ln z* &B21q%,

f5
1

p
Im$B^ ln z* &B21q%, (45)

whereq is a constant vector. Let

q5g1 ih (46)

in which g and h are the real and imaginary parts ofq. On the
boundaryG6 we have

f5
1

p
Im$B^ ln~b6ap* !&B21%g1

1

p
Re$B^ ln~b6ap* !&B21%h

1
1

p
gh, (47)

where Re stands for the real part. Lets be the arclength measure
alongG6. It can be shown from~38! that

ds56A~dx1!21~dx2!256Ab21@11~a/b!2#x1
2dg. (48)

Hence, the tractiont applied on the hyperbolic surfaceG6 is, by
~47! and ~16!,

t5
6h

pAb21@11~a/b!2#x1
2

on G6. (49)

If f is the total force on a cross sectionx15constant, we have
from ~18!,

f5f~G2!2f~G1!. (50)

Substitution from~47! gives

f52~Gh1Kg!, (51)

G1 iK5
1

p
BK ln

b1ap*
b2ap*

L B21. (52)

The 333 matricesG and K are the real and imaginary parts o
the right side in~52!. In summary, the solution~45! satisfies the
following boundary conditions:
~I! On the hyperbolic surface, the traction is specified by~49! and
~II ! on any cross sectionx15constant, the total forcef is specified
by ~51!. The vectorsg andh are assumed prescribed.

We see that the tractiont on G6 cannot be prescribed arbi
trarily. Its dependence onx1 has to be specified according to~49!.
Also, we can only prescribe thetotal force f applied on any cross
sectionx15constant. The precise distribution of the traction
the cross section cannot be prescribed.

In the rest of the paper we leth50 so that~45! is written as

u5
21

p
Im$A^ ln z* &B21%K21f,

f5
21

p
Im$B^ ln z* &B21%K21f. (53)

The body is subjected to a pair of forcesf and 2f, and the hy-
perbolic surface is traction-free~Fig. 2~a!!. An approximate solu-
tion to this problem was given in~@10#! for an isotropic material
and in ~@11,12#! for an orthotropic material. Lekhnitskii@5# con-
sidered the problem for a plane-strain or plane-stress deforma
Hence the material is limited to monoclinic materials with t
symmetry plane atx350. He also restricted the forcef to be along
the x1-axis. The solution~53! is for a general anisotropic elasti
material and for an arbitrary forcef. In the following we present a
Transactions of the ASME
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real form expression ofK and the displacement and the hoo
stress vector at the hyperbolic boundary for a general anisotr
elastic material.

The matrixK is, from ~52!,

K5
1

p
Im$B^ ln~b1ap* !&B21%2

1

p
Im$B^ ln~b2ap* !&B21%.

(54)

Making use of the identity (A11)2 the real form expression is

K5L ~a,2a!L21, a5tan21~a/b!, (55)

where, using (A9),

L ~u,2u!5L ~u!2L ~2u!5
21

p E
2u

u

N3~v!dv. (56)

The explicit expression ofL (u) for orthotropic materials can be
found in ~@13#!.

The displacement at the hyperbolic boundaryG6 is, from (53)1
and ~39!,

u~x1!5
21

p
Im$A^ ln~b6p* a!&B211gAB21%K21f (57)

or, using~A1!, ~A11!, and~55!,

u~x1!5H 1

p
~ ln d1g!I1S~6a!J @L ~a,2a!#21f. (58)

In the above,

d5Aa21b2, a5tan21~a/b!. (59)

The g in ~58! can be expressed in terms ofx1 in ~38! as

g5 ln@~x1 /b!1A11~x1 /b!2#. (60)

Let th(x1) be thehoop stress vectoron G acting on a surface
perpendicular to the boundaryG. If s is the arclength measure
along the perpendicular line, we obtain from (53)2 and ~16!,

th~x1!5
21

p
ImH BK 1

z*

dz*
ds L B21J K21f. (61)

Inserting (37)2 in ~61! using~31!, and evaluating the result onG6

leads to

th
6~x1!5

cosh

pAb21x1
2

ImH BK p* 2tanh

11p* tanhL B21J K21f, (62)

h56tan21
ax1

bAb21x1
2

. (63)

The identities~A21! and~55! allow us to write~62! in a real form
as

th
6~x1!5

cos3 h

pAb21x1
2 $tanh@N3~h!~N12tanhI !1N1

T~h!N3#

2N3%@L ~a,2a!#21f. (64)

It can be shown thatth
6(x1) is orthogonal toG6. At x150,

th~0!5
21

pb
N3@L ~a,2a!#21f. (65)

When the material is orthotropic withp1 , p2 being purely imagi-
nary and the forcef is along thex1-axis, th(0) has only one
nonzero component. For this special case~65! recovers the resul
obtained in~@5#!.

The tractions i1 ( i 51,2,3) on any cross sectionx15x1
0 is ob-

tained by inserting (53)2 into (9)1 . We have
Journal of Applied Mechanics
p
pic @s i1#5

1

p
ImH BK p*

z* 2z*
L B21J K21f. (66)

If f 1 , f 2 , f 3 are the components of the total forcef it can be
shown that

E
G2

G1

s11~x1
0,x2!x2dx25 f 2x1

0. (67)

The proof requires new identities, and is omitted here. Let (x1
0,x2

0)
be the point of application for the normal forcef 1 at the cross
sectionx15x1

0. Since

E
G2

G1

s i1~x1
0,x2!dx25 f i , (68)

the left side of~67! is f 1x2
0. Hence~67! gives

f 2 / f 15x2
0/x1

0. (69)

The point of application of the shear forcef 2 is immaterial. We
may assume thatf 2 is also applied at (x1

0,x2
0). Equation~69! tells

us that the vector (f 1 , f 2) is along a radial line in the (x1 ,x2)
-plane. It iscollinear with (2 f 1 ,2 f 2) as shown in Fig. 2~a!. The
point of application for the antiplane shearf 3 need not be at
(x1

0,x2
0). It should be noted from~68! that the vanishing off 1 , f 2

or f 3 does not necessarily imply the vanishing ofs11, s21 or s31.

5 Concluding Remarks
We have shown that, for an anisotropic elastic material und

two-dimensional deformation that has a parabolic boundary,
mapping employed by Lekhnitskii satisfies conditions~i! and ~ii !
delineated in the Introduction. If the material has a hyperbo
boundary, the mapping employed by Lekhnitskii satisfies con
tion ~ii ! but not condition~i!. Nevertheless, a valid solution can b
obtained for a special boundary condition. Hence, for an o
boundaryG, condition ~i! is sufficient, not necessary, for a vali
solution. It should be stressed that a valid solution may not ex
When it exists, the boundary condition may not be prescrib
arbitrarily.

Appendix
The following identities are employed in the paper.

AB2152SL212 iL21, (A1)

L522iBBT, (A2)

B^p* &B215~N1
T2N3SL21!2 iN3L21, (A3)

where

N152T21RT, N25T21, N35RT21RT2Q. (A4)

In the aboveS, L , andH ~to appear below! are the three Barnett
Lothe tensors. They are real. Explicit expression of the Barn
Lothe tensors can be found in~@14#!. Let

x15r cosu, x25r sinu, (A5)

n5F cosu
sinu

0
G , m5F2sinu

cosu
0

G , (A6)

Qik~u!5Ci jksnjns , Rik~u!5Ci jksnjms ,

Tik~u!5Ci jksmjms , (A7)

N1~u!52T21~u!RT~u!, N2~u!5T21~u!,

N3~u!5R~u!T21~u!RT~u!2Q~u!. (A8)

The matricesNk(u) reduce toNk whenu50. Consider the inte-
grals
JULY 2001, Vol. 68 Õ 541
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S~u!5
1

p E
0

u

N1~v!dv, H~u!5
1

p E
0

u

N2~v!dv,

L ~u!5
21

p E
0

u

N3~v!dv. (A9)

The tensorsS(u), H(u), L (u) reduce toS, H, L when u5p
~@16#!. It can be shown that~see~7.9–23! in ~@8#!!

2A^ ln z* &BT5@~ ln r !I1pS~u!#~ I2 iS!1 ipH~u!L ,

2B^ ln z* &BT5 i @~ ln r !1pST~u!#L2pL ~u!~ I2 iS!.
(A10)

Making use of~A2!, ~A10! can be written as

A^ ln z* &B2152@~ ln r !I1pS~u!#~ i I1S!L211pH~u!,

B^ ln z* &B215@~ ln r !I1pST~u!#1pL ~u!~ i I1S!L21.
(A11)

We now derive a new identity that can convert~32! and~62! to
a real form. The two equations in~12! can be written in a standar
eigenrelation as

NFa
bG5pFa

bG , (A12)

where the 636 matrix N is ~@15#!

N5FN1 N2

N3 N1
TG . (A13)

Equation~A12! is generalized as

$I1~ tanu!N%Fa
bG5~11p tanu!Fa

bG . (A14)

This can be written as

~11p tanu!21Fa
bG5$I1~ tanu!N%21Fa

bG
5cos2 u$I2~ tanu!N~u!%Fa

bG (A15)

in which the 636 matrix N(u) is

N~u!5FN1~u! N2~u!

N3~u! N1
T~u!

G . (A16)

The second equality in (A15) follows by employing the identity
~7.5–19! in ~@8#!. For p5p1 ,p2 ,p3 (A15) takes the form

FA^~11p* tanu!21&
B^~11p* tanu!21& G

5cos2 uF I2~ tanu!N1~u! 2~ tanu!N2~u!

2~ tanu!N3~u! I2~ tanu!N1
T~u!

G FABG . (A17)

In particular, using (A1) we obtain
542 Õ Vol. 68, JULY 2001
B^~11p* tanu!21&B215cos2 u$tanu@N3~u!S2N1
T~u!L

1 i I #L211I %. (A18)

Equation~A3! can be modified as

B^p* 2m&B215~N1
TL2N3S2 iN3!L212mI , (A19)

wherem is an arbitrary parameter. Observing that the matrices

N3S2N1
TL and N3~u!S2N1

T~u!L (A20)

are symmetric~@16#! ~see ~7.8–10!, and ~6.8–8! in ~@8#!! and
SL21 is skew-symmetric, multiplication of (A19) and (A18) and
taking the imaginary part leads to

ImH BK p* 2m

11p* tanuL B21J 5cos2 u$tanu@N3~u!~N12mI !

1N1
T~u!N3#2N3%L

21. (A21)

It should be noted that~see~7.8-3! in ~@8#!! the matrix

N3~u!N11N1
T~u!N3

is symmetric.
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Flow Past Rotating Cylinders:
Effect of Eccentricity
Computational results are presented for flows past a translating and rotating circ
cylinder. A stabilized finite element method is utilized to solve the incompressible Na
Stokes equations in the primitive variables formulation. To validate the formulation
its implementation certain cases, for which the flow visualization and computati
results have been reported by other researchers, are computed. Results are presen
Re55, 200 and 3800 and rotation rate, (ratio of surface speed of cylinder to
freestream speed of flow), of 5. For all these cases the flow reaches a steady stat
values of lift coefficient observed for these flows exceed the limit on the maximum va
lift coefficient suggested by Goldstein based on intuitive arguments by Prandtl. T
observations are in line with measurements reported, earlier, by other researcher
laboratory experiments. To investigate the stability of the computed steady-state so
receptivity studies involving an eccentrically rotating cylinder are carried out. Compu
tions are presented for flow past a rotating cylinder with wobble; the center of rotatio
the cylinder does not match its geometric center. These computations are also imp
from the point of view that in a real situation it is almost certain that the rotating cylin
will be associated with a certain degree of wobble. In such cases the flow is unstead
reaches a temporally periodic state. However, the mean values of the aerodynamic
ficients and the basic flow structure are still quite comparable to the case without
wobble. In this sense, it is found that the two-dimensional solution is stable to p
two-dimensional disturbances.@DOI: 10.1115/1.1380679#
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1 Introduction
Flow past a spinning and translating cylinder has been a sub

of numerous computational and experimental studies. Interes
this problem arises not only from the point of view of basic flu
mechanics but also from its applications to flow control. Tok
maru and Dimotakis@1,2# have demonstrated, via laboratory e
periments, that a significant control on the structure of the w
can be achieved by subjecting the cylinder to rotary oscillatio
Gad-el-Hak and Bushnel@3# review various techniques that ar
employed for separation control including the moving-surfa
boundary layer control~MSBC! in which rotating cylinder ele-
ments are employed to inject momentum into the already exis
boundary layer.

Flow past an isolated rotating cylinder has been studied
various researchers in the past. The results of Prandtl and
from laboratory experiments have been reported by Goldstein@4#.
These include the effect of the aspect ratio and end plates atta
to the end of a cylinder that lead to an increase in the overall
coefficient. Some of the later work on this flow problem inclu
the development of the near-wake behind an impulsively sta
cylinder via flow visualization by Coutanceau and Menard@5#.
The time evolution of the vortices in the near-wake for short ti
after the impulsive start comes out very clearly from their stu
The highest Reynolds number in their study is less than 1000
the rotation rate varies between 0 and 3.25. The nondimensi
value of the rotation rate corresponds to the ratio of the spee
the surface of the cylinder and the freestream speed of flow. B
and Dennis@6# gave numerical solutions for the viscous flo
equations for small rotation rates 0.5, 1.0, and Re5200 and 500 in
which comparisons with experiments of Coutanceau and Men

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug.
2000; final revision, Nov. 29, 2000. Associate Editor: T. E. Tezduyar. Discussion
the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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@5# have been made. Later, Badr et al.@7# presented computationa
and experimental results for Re51000 and rotation rates betwee
0.5 and 3. Excellent match was obtained between the two ex
at high rotation rates where it is suspected that the experime
results show three-dimensional features. Computational result
the Re5104 flow were also presented.

Tokumaru and Dimotakis@2# measured the lift coefficient act
ing on rotating cylinders from their laboratory experiments. Th
have reported values of lift coefficient that exceed the limit set
Goldstein@4# based on the intuitive arguments given by Prand
According to Prandtl’s arguments, the maximum value of the
coefficient that can be achieved via Magnus effect is 4p ~;12.6!.
For example, for Re53.83103 anda510 Tokumaru and Dimo-
takis @2# report an estimated lift coefficient that is more than
percent larger than this limit. This was observed for a cylind
with a span to diameter ratio of 18.7. Further, the trend of res
that they have reported suggests that the value can be made l
for higher rotation rates and by taking cylinders of larger asp
ratio. They have suggested that perhaps it is the unsteady ef
that weaken Prandtl’s hypothesis and that the three-dimensio
end effects are responsible for lowering the value of lift coe
cient that could be achieved in a purely two-dimensional flo
However, Chew et al.@8# have reported that their two-dimension

7,
on

nt of
ill
E

Fig. 1 Description of the eccentricity „e… of the rotating cylin-
der. The geometric center of the cylinder is at O while its axis of
spin passes through R.
001 by ASME JULY 2001, Vol. 68 Õ 543
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Fig. 2 ReÄ103, aÄ0.5 flow past a rotating cylinder: comparison of the instantaneous streamline
patterns at various time instants from the present computations and those from Badr et al. †8‡
fi

n
l
g

a

y
o
n

w

h

h

s

t

o
t

o-
the
for
al-
the

or
o-
dy

the

by
w

st
ual-
for

the

u-
g
the
de.

s,
let
i-
-

computations are in agreement with Prandtl’s postulate. They
that for Re51000, the estimated mean lift coefficient approach
asymptotic values with increase ina. At a56 they predict a mean
lift coefficient of 9.1. The magnitude of lift generated by a cyli
der for higher rates of rotation is an issue that remains unreso
even to this date. In this sense, the present work assumes si
cance in contributing to the efforts of resolving the issue regard
the limit on maximum lift that is possible via Magnus effect.

The objective of the present work is to investigate flows p
spinning and translating cylinder at high rotation rates and de
mine the correctness of the limit on maximum lift set due
arguments by Prandtl. Stabilized space-time formulations for
compressible flows that have, earlier, been applied to a variet
flow problems are utilized for computations. First, the formulati
and its implementation are validated for flows involving rotati
cylinders by carrying out computations for Re51000 and rotation
rates of 0.5 and 2.0. The results are in excellent agreement
the flow visualizations and computational studies carried out
other researchers, earlier. For rotation rate of 3.0 the results f
present computations match very well with other computed
sults, reported earlier. However, the experimental results s
certain differences as compared to the two-dimensional comp
tions for larger times. This may be attributed to the thre
dimensional nature of the flow. At high rotation rates it is seen t
the lift for purely two-dimensional setup can be very large. T
values of the lift coefficient obtained in the present work exce
the maximum limit based on the arguments of Prandtl. The ob
vations are consistent with the result of Tokumaru and Dimota
@2#. For the Reynolds number considered in the present study
flow achieves a steady state for a rotation rate of 5. The stab
of this steady-state solution, at least to two-dimensional dis
bances, is an issue that needs investigation. The result of
study will play a vital role in resolving the validity~or nonvalid-
ity! of the Prandtl’s limit on maximum lift coefficient.

Computations are carried out to study the receptivity of the fl
for eccentric/wobbly rotation of the cylinder. The center of ro
, JULY 2001
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tion of the cylinder is slightly displaced with respect to the ge
metric center. This introduces an unsteadiness in the flow via
motion of the cylinder. The results are compared with those
noneccentrically rotating cylinder. Computations for various v
ues of eccentricities show that the basic flow structure and
mean value of the lift coefficient do not differ much from that f
the basic solution. This reflects the stability of the purely tw
dimensional flow to two-dimensional disturbances. This stu
also brings out the effect of the eccentricity of the cylinder on
flow and the time histories of the aerodynamic coefficients.

The outline of the rest of the article is as follows. We begin
reviewing the governing equations for incompressible fluid flo
in Section 2. The SUPG~streamline-upward/Petrov-Galerkin! and
PSPG ~pressure-stabilizing/Petrov-Galerkin! stabilization tech-
nique ~@9–11#! is employed to stabilize our computations again
spurious numerical oscillations and to enable us to use eq
order-interpolation velocity-pressure elements. Computations
the eccentrically rotating cylinders have been carried out with
DSD/SST ~deforming-spatial-domain/stabilized-space-time! for-
mulation ~@12,13#!. Section 3 describes the finite element form
lations. In Section 4 computational results for flows involvin
rotating cylinder are presented and discussed. In Section 5
results are summarized and a few concluding remarks are ma

2 The Governing Equations

Let V t,Rnsd and ~0,T! be the spatial and temporal domain
respectively, wherensd is the number of space dimensions, and
G t denote the boundary ofV t . The spatial and temporal coord
nates are denoted byx and t. The Navier-Stokes equations gov
erning incompressible fluid flow are

rS ]u

]t
1u"¹u2fD2¹"s50 on V t for ~0,T!, (1)

¹"u50 on V t for ~0,T!. (2)
Transactions of the ASME
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Herer, u, f, ands are the density, velocity, body force, and th
stress tensor, respectively. The stress tensor is written as the
of its isotropic and deviatoric parts:

s52pI1T, T52m«~u! «~u!5
1

2
~~¹u!1~¹u!T!, (3)

wherep andm are the pressure and viscosity andI is the identity
tensor. Both the Dirichlet and Neumann-type boundary conditi
are accounted for, represented as

Table 1 ReÄ5, 200 and 3800, aÄ5 flow past a rotating cylin-
der: steady-state values of the lift and drag coefficients

Case Re CL CD CL /CD

1 5 19.11 1.054 18.13
2 200 27.28 0.783 34.83
3 3800 25.94 0.709 36.60
Journal of Applied Mechanics
e
sum

ns

u5g on ~G t!g , n"s5h on ~G t!h , (4)

where (G t)g and (G t)h are the complementary subsets of t
boundaryG t andn is its unit normal vector. The initial condition
on the velocity is specified onV t at t50:

u~x,0!5u0 on V0 , (5)

whereu0 is divergence free. The force coefficients are compu
by carrying an integration, that involves the pressure and visc
stresses, around the circumference of the cylinder:

CD5
1

~1/2!r`U`
2 2a

E
Gcyl

~sn!•nxdG (6)

CL5
1

~1/2!r`U`
2 2a

E
Gcyl

~sn!•nydG. (7)
Fig. 3 ReÄ5,200 and 3800, aÄ5.0 flow past a rotating cylinder: streamlines for
the steady-state solution. The potential flow solution is also shown for compari-
son.
JULY 2001, Vol. 68 Õ 545
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Here,nx andny are the Cartesian components of the unit vecton
that is normal to the cylinder boundaryGcyl anda is the radius of
the cylinder.

3 Finite Element Formulation
To accommodate the motion of the cylinder and the deform

tion of the mesh, a formulation that can handle moving bounda
and interfaces is employed. In order to construct the finite elem
function spaces for the space-time method, we partition the t
interval ~0,T! into subintervalsI n5(tn ,tn11), wheretn and tn11
belong to an ordered series of time levels: 05t0,t1,•••,tN
5T. Let Vn5V tn

andGn5G tn
. We define the space-time slabQn

as the domain enclosed by the surfacesVn , Vn11 , and Pn ,
where Pn is the surface described by the boundaryG t as t
traversesI n . As is the case withG t , the surfacePn is decomposed
into (Pn)g and (Pn)h with respect to the type of boundary cond
tion ~Dirichlet or Neumann! being imposed. For each space-tim
slab we define the corresponding finite element function spa
(Su

h)n , (Vu
h)n , (Sp

h)n , and (Vp
h)n . Over the element domain, thi

space is formed by using first-order polynomials in space
time. Globally, the interpolation functions are continuous in sp
but discontinuous in time.

The stabilized space-time formulation for deforming domains
then written as follows: given (uh)n2, find uhP(Su

h)n and ph

P(Sp
h)n such that;whP(Vu

h)n , qhP(Vp
h)n ,

E
Qn

wh
•rS ]uh

]t
1uh

•¹uh2fDdQ1E
Qn

«~wh!:s~ph,uh!dQ

1E
Qn

qh¹"uhdQ1(
e51

nel E
Qn

e
t

1

rFrS ]wh

]t
1uh"¹whD

2¹"s~qh,wh!G•FrS ]uh

]t
1uh"¹uh2fD2¹"s~ph,uh!GdQ

1(
e51

nel E
Qn

e
d¹"whr¹"uhdQ1E

Vn

~wh!n
1
•r~~uh!n

1

2~uh!n
2!dV5E

~Pn!h

wh"hhdP. (8)

This process is applied sequentially to all the space-time s
Q0 ,Q1 ,...Qn21 . In the variational formulation given by Eq.~8!,
the following notation is being used:

~uh!n
65 lim

«→0
u~ tn6«!, (9)

E
Qn

~ ...!dQ5E
I n

E
Vn

~ ...!dVdt, (10)

E
Pn

~ ...!dP5E
I n

E
Gn

~ ...!dGdt. (11)

The computations start with

~uh!0
25u0 , (12)

whereu0 is divergence free.
The variational formulation given by Eq.~8! includes certain

stabilization terms added to the basic Galerkin formulation to
hance its numerical stability. Details on the formulation, includi
the definitions of the coefficientst and d, can be found in the
references@9,12,13#.

4 Numerical Simulations
Flow past a cylinder spinning about its own axis has been s

ied by various researchers in the past. Most of the computat
reported earlier, for this flow problem, have been carried out us
546 Õ Vol. 68, JULY 2001
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the vorticity/stream-function formulations@7,8# or the vorticity/
velocity formulations~@14#!. However, the present effort employ
finite element formulation of the Navier-Stokes equations in
primitive variables. The cylinder resides in a rectangular dom
and a flow velocity corresponding to the rotation rate,a is speci-
fied on the cylinder surface. Freestream value is assigned for
velocity at the upstream boundary while at the downstre
boundary, a Neumann-type boundary condition for the velocity
specified that corresponds to zero viscous stress vector. On
upper and lower boundaries, the component of velocity norma
and the component of stress vector along these boundaries is
scribed zero value. The Reynolds number is defined as
52Ua/n wherea is the radius of cylinder,U the freestream spee
~after an impulsive start! and n is the coefficient of kinematic
viscosity of the fluid. The rotation rate of the cylinder is nond
mensionalized with respect to the freestream speed and is give
a5av/U where v is the angular velocity of the cylinder. th
cylinder spins about an axis that is off-centered and is located
distancee from its geometric center as shown in Fig. 1.

4.1 ReÄ1000, eÄ0, aÄ0.5, 2.0, 3.0. To establish confi-
dence in the formulation and its implementation, the compu
results for various rotation rates are compared with numerical
experimental results, reported earlier. The eccentricity is 0 in th
cases; the cylinder spins about its own axis. Figure 2 shows

Fig. 4 ReÄ5, 200 and 3800, aÄ5.0 flow past a rotating cylin-
der: variation of the x-component of velocity along normals lo-
cated at the uppermost and lowest points on the cylinder. The
potential flow solution is also shown for comparison.
Transactions of the ASME
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Fig. 5 ReÄ5, 200 and 3800, aÄ5.0 flow past a rotating cylinder: vorticity field for
the steady-state solution
h

d

r
u

t

a
b
f
t

fl

e
t

n is

ree
me
is
ca-
s.
rti-
er,

ite

ints
for
eed

the

on-

in. On
f 7

the
on-
his
ill

in
l-
for
results for the computation of Re5103 flow past a cylinder with
a50.5 with an impulsive start. Also shown in the figure are t
computational and experimental results from Badr et al.@7#. The
computations have been carried out with a mesh contain
12,408 nodes and 12,176 quadrilateral elements. All the exte
boundaries are located at eight cylinder diameters from the cy
der center. The time-step for the computations is 0.01. It can
observed from the figure that the present computations repro
all the essential features of the flow and their time evolution. T
instantaneous streamlines, shown in the figure, have been de
from the computed velocity field via a least squares proced
The results for Re51000 anda52, 3 ~not shown here! also result
in excellent agreement.

4.2 ReÄ5, 200 and 3800,eÄ0, aÄ5.0. The next set of
results are for long time behavior of the flow for rotation ratea
55, and various Reynolds numbers. During the entire simula
for Re55 only one clockwise vortex~the startup vortex! is shed
from the rotating cylinder. A set of closed streamlines form arou
the rotating cylinder. In this computation, the finite element me
consists of 12,678 nodes and 12,420 four-noded quadrilatera
ements. The mesh is fine enough to resolve the boundary l
and other flow features, adequately, for this low Reynolds num
The external boundaries are located at 25 cylinder diameters
the center of the cylinder. Computations with a domain with
boundaries located at 20 cylinder diameters from the cylinder
sult in an almost indistinguishable solution. For more details
the effect of placement of lateral boundaries on the computed
past a cylinder at Re5100 the reader may refer to the article b
Behr et al.@15#. The steady-state value of the lift and drag co
ficients from the simulations are listed in Table 1. Note that
echanics
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steady-state lift coefficient obtained from the present simulatio
much larger than the limit set by Goldstein@4# based on intuitive
arguments by Prandtl.

The streamlines for the steady-state solution for all the th
Reynolds numbers are shown in Fig. 3. Also shown in the sa
figure are the streamlines for the potential flow solution. It
interesting to observe the effect of Reynolds number on the lo
tion of the saddle point compared to that for potential flow
While for higher Re the saddle point is located close to the ve
cal line of symmetry passing through the center of the cylind
for Re55, departure of the saddle point from this line is qu
significant. Figure 4 shows the variation of thex component of
velocity along normals located at the uppermost and lowest po
on the cylinder. Also, shown in the same figure are the profiles
the potential flow solution. On the upper surface, the max sp
~nondimensionalized with the freestream speed of the flow! for
the potential flow is 3. For the viscous flow, the speed on
surface of the cylinder is 5. For Re55, close to the cylinder, the
speed decreases monotonically with height while it shows a n
monotonic behavior for higher Reynolds numbers. For Re53800,
the speed first decreases, then increases and decreases aga
the lower surface the potential flow solution predicts a speed o
on the cylinder and it decreases, monotonically, away from
cylinder. For the viscous flow, this value is 5 and again a n
monotonic variation of the speed distribution can be noticed. T
results in an interesting pattern of the vorticity distribution as w
be seen shortly.

The vorticity fields for various Reynolds numbers are shown
Fig. 5. The distribution of the vorticity on the surface of the cy
inder for various Reynolds numbers shows very similar trends
JULY 2001, Vol. 68 Õ 547



548 Õ Vol. 68, JULY 2
Fig. 6 ReÄ200, 3800, aÄ5.0, eÄ0.005 D flow past an eccentrically rotating
cylinder: time-histories of the lift and drag coefficients
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all the three cases. However, its magnitude is larger for hig
Reynolds numbers. Since the cylinder is assigned a rotation in
counterclockwise direction, one might expect the surface vorti
to have the same sign all along the entire surface of the cylin
for the viscous flow solution. However, it is seen from the resu
that it changes sign twice. This suggests that the flow separ
once and then reattaches on the cylinder surface. Notice, from
plot from stream function, that there is a set of closed streaml
near the cylinder. Also, theMagnus effectcauses the pressure o
the lower side of the cylinder to be substantially lower than t
on the upper side. As a result, the fluid particles, close to
cylinder surface, experience a favorable pressure gradient on
windward side and an adverse pressure gradient on the lee
side of the cylinder. These pressure gradients are responsibl
the separation and reattachment of the flow close to the cylin
surface. This observation is consistent with that from Fig. 5 wh
shows that the iso-vorticity contours close to the cylinder app
as spirals. The variation of the vorticity near the lowest and
permost regions close to the cylinder can also be correlated to
variation of thex-component of velocity as shown in Fig. 4. It
expected that for larger Reynolds numbers this effect will be m
stronger and may lead to unsteadiness in the flow.

4.3 ReÄ200, eÄ0.005 D, 0.025 D, 0.05 D,aÄ5.0. It has
been pointed out in the previous section that for purely tw
dimensional flows the high rotation rate of the cylinder (a55)
results in a steady-state flow and very large value of the lift co
ficient. For such flows to exist in real situations, it is essential t
001
her
the
ity
der
lts
ates
the

nes
n
at

the
the
ard
for

der
ich
ear
p-
the

s
ch

o-

ef-
at

they are stable. It is known from work of certain researchers,
example, Tokumaru and Dimotakis@2# that the three-dimensiona
effects result in a reduction of the lift values that can be achie
for two-dimensional flows. However, this issue has not been
dressed yet in the context of a purely two-dimensional envir
ment. Therefore, it is of interest to study the stability of the tw
dimensional flows, to two-dimensional disturbances. One way
investigating the stability of a solution is by introducing a distu
bance in the basic flow and then monitoring its time evolution.
the present work, the stability has been investigated via a re
tivity study. Computations are carried out for an eccentrically
tating cylinder. It is hoped that the periodic forcing of the flow d
to the eccentric/wobbly motion of the cylinder will excite an
possible instabilities associated with the flow. As a result of t
receptivity study, the final solution is expected to be unstea
However, for a basic flow that is stable, it is expected that
time-averaged disturbed flow will not be too different from th
basic solution. The computations are carried out using a sp
time finite element method where the spatial domain is allowed
deform with respect to time. Calculations fore50 with the space-
time formulation yields results that are almost indistinguisha
from those obtained in the previous section. This further add
our confidence in the present results.

Various degrees of eccentricity are considered. In all cases
computations begin with an impulsive start. The initial conditi
for the flow is the potential flow past a stationary cylinder. T
geometric center is located at the rightmost location with resp
Transactions of the ASME
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Fig. 7 ReÄ200, aÄ5.0 flow past an eccentrically rotating cylinder: close-up of
the time histories of the lift and drag coefficients for various values of the
eccentricity
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to the center of rotation. With respect to Fig. 1 the coordinates
R relative toO are ~2e,0!, at the start of computations.

Figure 6 shows the time histories of the lift and drag coe
cients for the simulation withe50.005 D. The aerodynamic co
efficients show an oscillatory behavior. The frequency of osci
tions is the same as that of the rotation of cylinder. It is interest
to note that the time histories of the mean values of the aero
namic coefficients appear quite similar to the ones obtained f
cylinder with e50. Similar observation is also made from th
time histories ofCL andCD for e50.025 D and 0.05 D. A closeup
of the time histories for various values ofe are presented in Fig. 7
In all the cases, the frequency of the time variation of the aero
namic coefficients is same and corresponds to the rotation ra
the cylinder. It can be observed that the amplitude of the unste
force coefficients increase with eccentricity. However, the phas
same for all values ofe. For values ofe larger than 0.005 D,
negative value of drag is observed during a certain part of e
cycle of the cylinder motion. However, the mean drag over
entire cycle is always positive. A summary of the variation of t
aerodynamic coefficients for various values ofe is presented in
Fig. 8. The magnitude of the mean lift coefficient increases withe.
This could, perhaps, be explained by the increased strengt
vortices for larger eccentricities of rotation. The mean drag co
ficient shows a significant reduction for the case even with
lowest value of eccentricity (e50.005 D! and then seems to
change little with any further increase in eccentricity. Howev
the unsteady component of the drag coefficient shows a lin
increase in amplitude with eccentricity. In all the cases the fu
hanics
of
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developed solution achieves a limit cycle and the basic flow str
ture remains the same. This suggests that the basic
dimensional flow is quite stable, at least, to two-dimensio
disturbances.

The vorticity fields at various instants during one cycle of c
inder rotation for the fully developed temporally periodic flow
are shown in Fig. 9. From this figure it can be observed that
eccentric motion of the cylinder causes a vortex to be shed du
each cycle of rotation of the cylinder. The size and strength of
vortex, that is shed, increase with increase in eccentricity of ro
tion. the dynamics of the vortex formation, its release and di
pation is quite clear from the figure fore50.05 D. Somewhere
between the second and third frames, a counterclockwise rota
vortex is shed from the cylinder. It travels around the periphery
the cylinder in the counterclockwise direction and is dissipa
during the next cycle of rotation of the cylinder. These stro
vortices also result in certain weaker induced vortices of oppo
sign. The vortical activity due to the eccentricity of the rotatio
takes place very close to the cylinder, and its effect on the o
flow seems to be insignificant. These computations help us
concluding that the two-dimensional flow past the spinning cyl
der, presented in the previous section, is stable to two-dimensi
disturbances. Therefore, in a purely two-dimensional envir
ment, the solutions presented in the earlier section can exist.
strengthens our point of view that the Prandtl’s limit on the ma
mum lift coefficient generated by a spinning cylinder may n
hold.
JULY 2001, Vol. 68 Õ 549
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Fig. 8 ReÄ200, aÄ5.0 flow past an eccentrically rotating cylinder: summary of
the aerodynamic coefficients for different values of the eccentricity
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4.4 ReÄ3800, eÄ0.005 D,aÄ5.0. To determine the sta
bility of the Re53800 flow in a purely two-dimensional setu
computations are carried out withe50.005 D. Figure 6 shows the
time histories of the aerodynamic coefficients. Also shown in
same figure are the time histories for the computations wite
50. As was observed for Re5200, the time evolution of the mea
value of the aerodynamic coefficients follow the same trend
that for e50. The eccentricity of rotation causes a sinusoid
variation in the temporal data and its frequency content is sam
that of the rotation of cylinder. This shows that the eccentricity
the rotation of cylinder does not cause any significant chang
the original steady solution. This reflects the stability of the tw
dimensional solution, to purely two-dimensional disturbanc
Figure 10 shows the vorticity, pressure and magnitude of veloc
close to the cylinder, at one time instant for the temporally pe
odic solution. On comparing this figure to Fig. 5 it can be o
served that the effect of eccentricity in the rotational motion of
cylinder is restricted to a region very close to it.

To check the dependence of the solution on the spatial
temporal discretization, the solution was projected on a finer m
with 26,830 nodes and 26,500 elements and the computa
continued with a time step of 0.01. The aerodynamic coefficie
for the new solution showed less than 0.1 percent difference in
mean values and less than 1.0 percent in the unsteady value
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5 Concluding Remarks
Flow past a rotating circular cylinder placed in a unifor

stream has been studied numerically. A stabilized finite elem
method is utilized to solve the incompressible Navier-Stok
equations in the primitive variables formulation. Good agreem
with some of the flow visualization and computational resu
from other researchers, reported earlier, is observed. Comp
tions have been carried out for Re55, 200, and 3800 and rotatio
rate,a, of 5. It is seen that for these parameters the flow achie
a steady-state and that the lift for purely two-dimensional se
can be very large. Both the semidiscrete and the space-time
mulations have been utilized to compute the solution fora55.
They result in almost indistinguishable results adding further
the correctness of the present results. The flow close to the c
der, for various Reynolds numbers, is compared to the poten
flow solution. Interesting differences are observed in the vari
solutions. The vorticity distribution along the cylinder surfa
points to mild separation and reattachment of the flow. This
attributed to the adverse and favorable pressure gradients o
flow on the windward and leeward sides of the cylinder. It
expected that for even larger Reynolds numbers, the separa
would become stronger and result in an unsteady flow. The va
of the lift coefficient obtained in the present work exceed t
maximum limit set by Goldstein based on the intuitive argume
Transactions of the ASME
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Fig. 10 ReÄ3800, aÄ5.0, eÄ0.005 D flow past an eccentrically rotating cylinder: vor-
ticity, pressure, and magnitude of velocity fields for the temporally periodic solution
when the geometric center of the cylinder is at its left-most location with respect to
the center of rotation

Fig. 9 ReÄ200, aÄ5.0 flow past an eccentrically rotating cylinder: vorticity field at
four time instants during one period of rotation for the temporally periodic solution.
The frames in the various rows from top to bottom correspond to the time instants
when the geometric center of the cylinder is at its left-most, bottom-most, right-most,
and top-most location, respectively, with respect to the center of rotation. The clock-
wise vorticity is shown in broken lines while the counterclockwise component is
shown in solid lines.
echanics JULY 2001, Vol. 68 Õ 551
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by Prandtl. To investigate the stability of the steady-state solut
computations are carried out for eccentrically rotating cylinder
this set-up the center of rotation of the cylinder does not match
geometric center of the cylinder. The unsteady disturbances in
duced by the motion of the cylinder results in an overall unste
flow. However, the mean values of the aerodynamic coefficie
are still quite comparable to those from the basic solution. In
sense, the two-dimensional solution is stable to purely tw
dimensional disturbances. This implies that, for purely tw
dimensional flows, the mean value of the lift coefficient can e
ceed the maximum limit due to arguments by Prandtl by a v
significant amount. Similar observations have also been mad
other researchers in the past for three-dimensional flows.

It is being suggested that for three-dimensional flows o
should expect lower values for lift coefficient than those predic
by purely two-dimensional simulations. The contributions to t
loss of lift come from centrifugal instabilities along the span
the cylinder and end effects. The present study is also usefu
establishing the effect ofwobblein flows past spinning cylinders
These results are particularly useful in the context of flow con
devices where a slight degree of wobble would be almost
avoidable in real situations.
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Computationally Efficient
Micromechanical Models for
Woven Fabric Composite Elastic
Moduli
This paper presents two newly developed micromechanical models for the analy
plain weave fabric composites. Both models utilize the representative volume ce
proach. The representative unit volume of the woven lamina is divided into subce
homogeneous material. Starting with the average strains in the representative volum
and based on continuity requirements at the subcell interfaces, the strains and stres
the composite fiber yarns and matrix are determined as well as the average stresses
lamina. Equivalent homogenized material properties are also determined. In their fo
lation the developed micromechanical models take into consideration all compone
the three-dimensional strain and stress tensors. The performance of both models
sessed through comparison with available results from other numerical, analytical,
experimental approaches for composite laminae homogenization. The very good acc
together with the simplicity of formulation makes these models attractive for the
element analysis of composite laminates.@DOI: 10.1115/1.1357516#
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1 Introduction
Composite laminae are being more and more extensively

lized in modern shell structures. High specific stiffness, spec
strength, and toughness are among their advantageous prope
which make composite shells the preferred choice in all kinds
aerospace, automotive, and marine vehicles, industrial, civil
other structures. Of the two major types of composite lamin
woven fabric composites have long been recognized as more c
petitive than unidirectional composites. This is partly due to th
ability to provide good reinforcement in all directions within
single layer, to their better impact resistance, better-balan
properties, easier handling and fabrication, and good ability
conform to surfaces with complex curvatures. Along with th
however, their complex architecture makes the analysis of t
behavior much more challenging. Therefore, it is not surpris
that there are substantialy fewer approaches for determining
properties of woven fabric laminae and predicting their behav
than for unidirectional composites. Most of them utilize the re
resentative unit cell approach—the properties and behavior of
entire lamina are considered to be the same as the properties
unit cell. The entire complex geometry of the composite layer
usually be reproduced by using this representative volume
~RVC! as a building block.

Earlier models for the analysis of woven fabric composites
clude the works of Ishikawa and Chou@1–4#, who developed
three different models: the mosaic model, the fiber-undulat
model, and the bridging model. The mosaic model is based on
classical lamination theory and represents the woven composi
an assemblage of asymmetrical cross-ply laminates. Using the
stress~or series model! and iso-strain~or parallel model! assump-
tions, the upper and lower bounds of the elastic moduli can

1To whom author should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 1
2000; final revision, October 24, 2000. Associate Editor: M-J. Pindera. Discussio
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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derived with this model. The fiber-undulation model takes in
account the fiber undulation and continuity. Both the mosaic a
the fiber-undulation models are one-dimensional models.
bridging model was developed for the analysis of satin comp
ites. In this model the regions with straight threads are assume
act as load-carrying bridges between adjacent interlaced regi

Naik and Shembekar@5# developed two-dimensional microme
chanical models using the parallel-series assumptions. These
els are based on the classical lamination theory assuming tha
applicable to each infinitesimal piece of the RVC. The models
capable of describing the RVC geometry in detail, including t
fiber yarn cross sections and the undulated portions, and ca
used to determine the homogenized in-plane stiffness propertie
the RVC.

Karayaka and Kurath@6# used the RVC approach to develop
micromechanical model capable of representing both plain we
and satin weave composite layers. The model is based on
assumption that all in-plane strain and out-of-plane stress com
nents are constant throughout the RVC. It was used in~@6#! to
investigate the behavior of a five-harness satin weave Grap
Epoxy laminate.

Tabiei and Jiang@7# developed a micromechanical mode
which considers the two-dimensional extent of woven fabric lam
nae and is based on nonlinear stress-strain relations. Within
model the RVC is divided into many subcells and an averagin
performed to obtain the effective stress-strain relations. T
model is suitable for implementation into nonlinear finite eleme
codes to enable structural analyses of woven composites.
cently, Tabiei et al.@8# presented a nonlinear constitutive mod
for plain weave composites. The incremental constitutive mo
was developed based on micromechanics. This model cons
material nonlinear behavior of both resin and fill/warp yarns.

A global/local approach to woven metal matrix composit
analysis was developed by Bednarcyk and Pindera@9,10#. The
approach uses a local unidirectional micromechanical mode
represent the fibers and matrix, which constitute the fiber ya
and a three-dimensional global model to simulate the overall
havior of the RVC. This approach is used to predict the respo
of eight-harness satin weave Carbon/Copper composites and
pare the results to experimental data.
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Along with the analytical models of woven fabric composit
there are also some numerical approaches utilizing the finite
ment method. Using a three-dimensional model, Whitcomb@11#
analyzed a RVC of a plain weave composite. Whitcomb used
finite element model to assess the influence of different par
eters on the stiffness properties of the RVC. In their work Chu
and Tamma@12# summarize and compare various homogenizat
methods via finite element analyses.

The aim of the present work is to develop micromechani
models for plain weave composites, which could be incorpora
efficiently into explicit and implicit finite element codes to be ab
to perform structural analysis of composite and sandwich sh
with woven fabric layers. This will enable determination of th
state of stress and strain in the constituent fiber yarns and m
within the finite element analysis, which could be used to perfo
material failure and property degradation checks within the str
tural analysis process. Many of the presently existing analyt
models lack either accuracy or efficiency or both, to be capabl
providing the above features to a finite element analysis. The
nite element models usually have a good accuracy and are ca
of correctly modeling the three-dimensional state of stress
strain in the RVC and its constituents, but involve too many e
ments in discretizing the RVC to be used for composite struct
analysis. The analytical model of Tabiei and Jiang described
~@7#! proved efficient for an implicit finite element analysis, b
the nature of the explicit time integration scheme will make
hard to fit into an explicit finite element analysis code. To a c
tain degree, this also applies to one of the herein presented m
els, namely the single-cell model. However, the other model
scribed here, the four-cell model, solves only a small system
six linear equations, which would make it much more efficient
an explicit finite element analysis.

In what follows two new micromechanical models are form
lated and their performance is checked and compared with re
from other numerical, analytical, and experimental approac
employed in the analysis of plain weave fabric composites.

2 Formulation of the Micromechanical Models
Both models developed and described in this work utilize

RVC approach~see Fig. 1!. In that the authors have tried t
achieve an optimal balance between the two major parts of
formulation: the geometric description of the RVC, and the m
cromechanical representation of the developed model. Thi
something that many existing models lack; a tedious formula
is used to describe the RVC geometry with a very high precis
and at the same time the accuracy of that geometric descrip
cannot be taken advantage of due to overly simplified microm
chanical descriptions. This makes these approaches hard to im
ment in a real world analysis and at the same time the accurac
the acquired results often does not match the solution ef
needed. The geometric description of the RVC in the pres
models is much simpler compared to other approaches~e.g., see
Naik and Shembekar@5#!, which translates into computational e
ficiency and easy implementation. Yet, as the herein prese
results show, their accuracy is very good for different values
the RVC geometric and material parameters. An important con
bution for this accuracy is due to the three-dimensional microm
chanical description of the RVC. Previous micromechanical m
els implement two-dimensional~Naik and Shembekar@5#! and
even one-dimensional~Ishikawa and Chou@1–4#! approaches in
the RVC description, which can significantly affect the soluti
accuracy.

In the present approaches the entire woven fabric lamina ca
constructed by using the RVC, Fig. 1~b!, as a building block.
Assuming that the fiber yarns in both direction~the fill and warp!
have the same structure and properties, the entire RVC, Fig.~b!,
can be constructed by using just one quarter of it, Fig. 1~c!, and
this quarter cell is hereafter referred to as the RVC. In their f
mulation the models described here consider all component
554 Õ Vol. 68, JULY 2001
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the strain and stress tensors, and starting with the strains in
RVC are capable of determining the three-dimensional const
tive matrix of the homogenized RVC and all stress and str
components in the composite constituents. Both models ass
that the RVC is assembled using certain number of subce
which are under homogeneous state of stress and strain. The
lowing assumptions are also used in the models:~a! the matrix is
isotropic and the yarn fiber bundles are transversely isotropic w
principal axis along the yarn axis;~b! the contact between the
constituents is perfect, i.e., displacements and traction are con
ous across the constituent contact interfaces.

Both formulations are developed with the intention to be us
in a finite element composite shell analysis. Therefore, in the f
mulations, the average strains within the RVC are assumed to
available, which is the case in a standard displacement based fi
element analysis. The models are then used to find the strains
stresses in the composite constituents, and the average stres
the entire RVC or the tangent stiffness matrix.

If @C#m and@C#y are the constitutive matrices of the matrix an
yarn in a material local coordinate system then

@C#m53
C11

m C12
m C12

m 0 0 0

C12
m C11

m C12
m 0 0 0

C12
m C12

m C11
m 0 0 0

0 0 0 C44
m 0 0

0 0 0 0 C44
m 0

0 0 0 0 0 C44
m

4 , (1)

where

C11
m 5

Em~12nm!

~11nm!~122nm!
; C12

m 5
Emnm

~11nm!~122nm!
;

C44
m 5Gm5

Em

2~11nm!
(2)

andEm , nm , andGm are the matrix Young’s modulus, Poisson
ratio, and shear modulus, respectively. Both fill and warp ya
are assumed to be of the same fiber material, with constitu
matrix of the yarns

@C#y53
C11

y C12
y C12

y 0 0 0

C12
y C22

y C23
y 0 0 0

C12
y C23

y C22
y 0 0 0

0 0 0 C44
y 0 0

0 0 0 0
C22

y 2C23
y

2
0

0 0 0 0 0 C44
y

4 , (3)

where

Fig. 1 Plain weave architecture, representative volume cell,
and one quarter cell
Transactions of the ASME
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C11
y 5

Ev,L~12ny,TT
2 !

D
; C12

y 5
Ey,Tny,LT~11ny,TT!

D
;

C22
y 5

Ev,T~12ny,LTny,TL!

D
; (4)

C23
y 5

Ey,T~ny,TT1ny,LTny,TL!

D
; C44

y 5Gy,LT ;

D512ny,TT
2 22ny,LTny,TL~11ny,TT!.

Here ny,TL5ny,LT(Ey,T /Ey,L) and Ey,L ,Ey,T ,ny,LT ,ny,TT ,Gy,LT
are the Young’s moduli, Poisson’s ratios, and the shear mod
of the transversely isotropic yarn; subscriptsL and T denote the
direction along the yarn axis and the transverse to it direct
respectively. Note that in the above formulas the commas in
subscripts do not represent differentiation. The above constitu
matrices, Eqs.~1! and~3!, relate the stress and strain tensor co
ponents arranged in vectors as follows:

$s%5usx sy sz sxy syz szxuT;

$«%5u«x «y «z gxy gyz gzxuT, (5)

with g i j 52« i j being the engineering shear strains.
A description of the geometry and mechanics of the mod

follows. Since in the first model we divide the quarter cell in
four subcells in the lamina plane it will be referenced here as ‘‘the
four-cell model,’’ while the second model, which has only on
cell in the lamina plane will be referenced as ‘‘the single-cell
model.’’

2.1 The Four-Cell Model

2.1.1 Geometry of the Model.The geometry of this model is
shown in Fig. 2~a!. To keep the formulation simple, the cros
sections of the fill and warp yarns are assumed rectangular
their undulating form is approximated with only horizontal a
inclined at angleu sections,u being the average undulation angl
This representation makes it possible to divide the RVC into f
subcells, denoted by ‘‘ff,’’ ‘‘fm,’’ ‘‘mm,’’ and ‘‘mf’’ on Fig. 2 ~a!.
Subcell ‘‘ff’’ is further divided into two sub-subcells, Fig. 2~b!,
which represent the horizontal portions of the two yarns. Subc
‘‘fm’’ and ‘‘mf’’ consist of yarn and matrix portions as illustrated
on Fig. 2~c!. Each one of them contains half of the inclined po
tion of the yarns; by putting two such subcells together we get
entire undulated portion of the yarn. Subcell ‘‘mm’’ is entirely o
matrix material.

Let us assume that the RVC has height ofH units and sides of
length one unit each. Then, if both yarns have a rectangular c
section with sidesH/2 andVy , Vy being the overall yarn volume
fraction, the ratio of the volume of the yarns to the volume of t
entire RVC will equalVy . Furthermore, the undulation angle,u,
can also be expressed through the total RVC height,H, and the
yarn volume fraction,Vy from

tanu5
H

4~12Vy!
. (6)

Fig. 2 Geometry of the quarter cell for the four-cell model
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Thus, only two parameters, namelyH andVy , or u andVy are
sufficient to completely define the geometry of the RVC. Furth
more, the dimensions of the sub-subcells are also completely
fined with these two parameters. Note that in the present for
lation this model does not include a layer of matrix materi
which covers the entire RVC. Therefore, the height of the yarn
half the thickness of the entire lamina. If the real lamina to
represented by this model has a matrix layer of significant thi
ness then the model can be modified to include it, which wo
not change the basis of the formulation.

2.1.2 Micromechanics of the Model.Within the subcells
‘‘ff,’’ ‘‘mf,’’ and ‘‘fm’’ the constituent yarn and matrix materials
are first combined to get an equivalent homogeneous materia
each subcell~subcell ‘‘mm’’ is entirely matrix so there is no nee
to homogenize it!. The four subcells are then combined to get
equivalent homogeneous RVC. The homogenization is based
the parallel-series assumptions: For some of the strain compon
the adjacent cells are assumed to work ‘‘in parallel’’ and the c
responding strains are equal; for the rest of the strains, the c
are assumed to work ‘‘in series’’—the corresponding stress co
ponents are equal and the strain components are averaged t
the entire cell resultant strains. Similar assumptions are used
basis for many micromechanical models for unidirectional a
woven composites.

The homogenization of the subcells ‘‘ff’’ and ‘‘mf’’ is de-
scribed in the following.

2.1.2.1 Homogenization of subcell ‘‘ff’’. The subcell ‘‘ff’’ is
shown on Fig. 2~b!. It consists of two homogeneous parts of equ
thickness, top fill and bottom warp. Both of them are of the sa
transversely isotropic material with axis of transverse isotro
along the corresponding yarn axis, which isx for the fill andy for
the warp. So, the fill and warp constitutive matrices will be
follows:

@C#fill 53
C11

y C12
y C12

y 0 0 0

C12
y C22

y C23
y 0 0 0

C12
y C23

y C22
y 0 0 0

0 0 0 C44
y 0 0

0 0 0 0 C55
y 0

0 0 0 0 0 C44
y

4 (7)

and

@C#warp53
C22

y C12
y C23

y 0 0 0

C12
y C11

y C12
y 0 0 0

C23
y C12

y C22
y 0 0 0

0 0 0 C44
y 0 0

0 0 0 0 C44
y 0

0 0 0 0 0 C55
y

4 (8)

with C55
y 5C22

y 2C23
y /2.

Assuming we have available the homogeneous strain te
components,« i j

f f , of the entire subcell ‘‘ff,’’ we will express the
strains and stresses in the fill and warp portions, and the stre
in the entire subcell. From the perfect contact and the para
series assumption we have at the fill-warp interface:

«x
f f5«x

f 5«x
w sz

f f5sz
f5sz

w

«y
f f5«y

f 5«y
w syz

f f 5syz
f 5syz

w (9)

«xy
f f 5«xy

f 5«xy
w szx

f f 5szx
f 5szx

w .

Here a single superscriptf is used to denote that the correspon
ing quantity refers to the fill yarn, andw refers to the warp yarn.
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The rest of the strain and stress tensor components of the su
are assumed volume averages of the strains and stresses
constituent fill and warp parts:

«z
f f5

1
2 ~«z

f1«z
w! sx

f f5
1
2 ~sx

f 1«x
w!

«yz
f f 5

1
2 ~«yz

f 1«yz
w ! sy

f f5
1
2 ~sy

f 1sy
w! (10)

«zx
f f 5

1
2 ~«zx

f 1«zx
w ! sxy

f f 5
1
2 ~sxy

f 1«xy
w !.

Note that the above relations combined with the assumptio
homogeneous strains and stresses within the subcells will resu
violation of the displacement continuity with respect to the s
rounding subcells. Therefore, the values of the strains in the
cell should be treated as subcell average values, satisfying
displacement continuity in an average sense. Using the ab
equations, Eqs.~9! and ~10!, the unknown strain components i
the fill and warp parts can be expressed:

«z
f5«z

f f2
C12

y 2C23
y

2C22
y ~«x

f f2«y
f f ! «z

w5«z
f f1

C12
y 2C23

y

2C22
y ~«x

f f2«y
f f !

«yz
f 5

2C44
y

C44
y 1C55

y «yz
f f «yz

w 5
2C55

y

C44
y 1C55

y «yz
f f (11)

«zx
f 5

2C55
y

C44
y 1C55

y «zx
f f «zx

w 5
2C44

y

C44
y 1C55

y «zx
f f .

So, all strains in the constituents are obtained, and knowing
constitutive matrices of the yarns, we can further express
stresses in the constituent. Also, from Eqs.~9! and~10!, the aver-
age stresses in the entire subcell can be expressed in term o
average strains of the subcell. Thus the elements of the cons
tive matrix of the homogenized subcell can be found,

C11
f f 5C22

f f 5
1

2 FC11
y 1C22

y 2
~C12

y 2C23
y !2

2C22
y G

C12
f f 5

1

2 F2C12
y 1

~C12
y 2C23

y !2

2C22
y G

C13
f f 5C23

f f 5
C12

y 1C23
y

2
(12)

C33
f f 5C22

y

C44
f f 5C44

y

C55
f f 5C66

f f 5
2C44

y C55
y

C44
y 1C55

y .

Finally, the constitutive matrix of subcell ‘‘ff’’ is

@C# f f53
C11

f f C12
f f C13

f f 0 0 0

C12
f f C11

f f C13
f f 0 0 0

C13
f f C13

f f C33
f f 0 0 0

0 0 0 C44
f f 0 0

0 0 0 0 C55
f f 0

0 0 0 0 0 C55
f f

4 . (13)

Thus, the homogenization of subcell ‘‘ff’’ is complete and pr
vided the average strains,« i j

f f , in the subcell are known, all strain
in stresses in the constituents can be determined, as well a
average subcell stresses.

2.1.2.2 Homogenization of subcells ‘‘mf’’ and ‘‘fm’’.Since
subcells ‘‘mf’’ and ‘‘fm’’ have similar geometry, their constitu
tive matrices will be also similar and will be related through
simple coordinate rotation. Therefore, only the derivation of
556 Õ Vol. 68, JULY 2001
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constitutive matrix for subcell ‘‘mf’’ will be shown, and the con
stitutive matrix for subcell ‘‘fm’’ will be derived using the appro
priate transformation.

Subcell ‘‘mf’’ contains matrix and yarn parts of equal volume
If the undulation angle,u, is not zero the material local coordinat
system of the fill yarn part will not coincide with thexyzcoordi-
nate system~see Fig. 2~c!!. However, we can take advantage
the isotropy of the matrix material and homogenize the subce
the yarn local coordinate system, and then transfer the thus
quired constitutive matrix in the globalxyzcoordinate system. Fo
this purpose we need to transfer the subcell average strains
the RVC global to the yarn local coordinate system

~«x
m f!85«x

m f cos2 u1«z
m f sin2 u2gzx

m f cosu sinu

~«y
m f!85«y

m f

~«z
m f!85«x

m f sin2 u1«z
m f cos2 u1gzx

m f cosu sinu
(14)

~gxy
m f!85gxy

m f cosu2gyz
m f sinu

~gxy
m f!85gxy

m f sinu1gyz
m f cosu

~gzx
m f!852«x

m f sinu cosu22«z
m f sinu cosu

1gzx
m f ~cos2 u2sin2 u!.

These values of the strains in the yarn local coordinate system
only be needed if the strains and stresses in the matrix and
parts are needed. If not, the homogenized subcell constitutive
trix constructed below can be directly used to get the sub
average stresses in the RVC global coordinate system.

The yarn local coordinate system,x8y8z8, can be obtained by
rotating the RVC global coordinate system around they-axis at an
angleu. The variables expressed in that coordinate system wil
denoted by a superscript prime. In that coordinate system, sim
relations to Eqs.~9! and ~10! should hold:

~«x
m f!85~«x

f !85~«x
m!8 ~sz

m f!85~sz
f !85~sz

m!8

~«y
m f!85~«y

f !85~«y
m!8 ~syz

m f!85~syz
f !85~syz

m !8 (15)

~«xy
m f!85~«xy

f !85~«xy
m !8 ~szx

m f!85~szx
f !85~szx

m !8

and

~«z
m f!85

1
2 @~«z

f !81~«z
m!8# ~sx

m f!85
1
2 @~sx

f !81~sx
m!8#

~«yz
m f!85

1
2 @~«yz

f !81~«yz
m !8# ~sy

m f!85
1
2 @~sy

f !81~sm
y !8#

(16)

~«zx
m f!85

1
2 @~«zx

f !81~«zx
m !8# ~sxy

m f!85
1
2 @~sxy

f !81~sxy
m !8#.

From these relations we can determine the unknown st
components in the yarn local coordinate system in the matrix
fill parts, which are

~«z
m!85

1

C11
m 1C22

y @2C22
y ~«z

m f!81~C12
y 2C12

m !~«x
m f!8

1~C23
y 2C12

m !~«y
m f!8#

~«z
f !85

1

C11
m 1C22

y @2C11
m ~«z

m f!81~C12
y 2C12

m !~«x
m f!8

2~C23
y 2C12

m !~«y
m f!8#

(17)

~«yz
m !85

2C55
y

C44
m 1C55

y ~«yz
m f!8 ~«yz

f !85
2C44

m

C44
m 1C55

y ~«yz
m f!8.

~«zx
m !85

2C44
y

C44
m 1C44

y ~«zx
m f!8 ~«zx

f !85
2C44

m

C44
m 1C44

y ~«zx
m f!8.
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The constitutive matrix elements of the subcell in thex8 y8 z8
coordinate system are

~C11
m f!85

1

2 FC11
m 1C11

y 2
~C12

y 2C12
m !2

C11
m 1C22

y G
~C12

m f!85
1

2 FC12
m 1C12

y 2
~C12

y 2C12
m !~C23

y 2C12
m !

C11
m 1C22

y G
~C13

m f!85
C12

y C11
m 1C12

mC22
y

C11
m 1C22

y

~C22
m f!5

1

2 FC11
m 1C22

y 2
~C23

y !2~C12
m !2

C11
m 1C22

y G
(18)

~C23
m f!85

C23
y C11

m 1C12
mC22

y

C11
m 1C22

y ~C33
m f!85

2C22
y C11

m

C11
m 1C22

y

~C44
m f!85

1

2
~C44

m 1C44
y !

~C55
m f!85

2C55
y C44

m

C44
m 1C55

y ~C66
m f!85

2C44
y C44

m

C44
m 1C44

y .

Then, the constitutive matrix of subcell ‘‘mf’’ in thex8 y8 z8
coordinate system is

@C#m f8

53
~C11

m f!8 ~C12
m f!8 ~C13

m f!8 0 0 0

~C12
m f!8 ~C22

m f!8 ~C23
m f!8 0 0 0

~C13
m f!8 ~C23

m f!8 ~C33
m f!8 0 0 0

0 0 0 ~C44
m f!8 0 0

0 0 0 0 ~C55
m f!8 0

0 0 0 0 0 ~C66
m f!8

4 .

(19)

By rotating back the local coordinate systemx8 y8 z8 at angleu
we will get the RVC global coordinate system. Transforming t
above constitutive matrix, Eq.~19!, accordingly, will give us the
subcell ‘‘mf’’ constitutive matrix in RVC global coordinate sys
tem, which is

@C#m f53
C11

m f C12
m f C13

m f 0 0 C16
m f

C12
m f C22

m f C23
m f 0 0 C26

m f

C13
m f C23

m f C33
m f 0 0 C36

m f

0 0 0 C44
m f C45

m f 0

0 0 0 C45
m f C55

m f 0

C16
m f C26

m f C26
m f 0 0 C66

m f

4 (20)

where

C11
m f5~C11

m f!8cos4u1~C33
m f!8sin4u12@~C13

m f!8

12~C66
m f!8#sin2u cos2u

C12
m f5~C12

m f!8cos2u1~C23
m f!8sin2u

C13
m f5~C13

m f!8~cos4u1sin4u!1@~C11
m f!8

1~C33
m f!824~C66

m f!8#sin2u cos2u

C16
m f5$@~C13

m f!82~C11
m f!8#cos2u1@~C33

m f!82~C13
m f!8#sin2u

12~C66
m f!8~cos2u2sin2u!%sinu cosu

C22
m f5~C22

m f!8
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C23
m f5~C12

m f!8sin2u1~C23
m f!8cos2u

C26
m f5@~C23

m f!82~C12
m f!8#sinu cosu (21)

C33
m f5~C11

m f!8sin4u1~C33
m f!8cos4u12@~C13

m f!8

12~C66
m f!8#sin2u cos2u

C36
m f5$@~C13

m f!82~C11
m f!8#sin2u1@~C33

m f!82~C13
m f!8#cos2u

22~C66
m f!8~cos2u2sin2u!%sinu cosu

C44
m f5~C44

m f!8cos2u1~C55
m f!8sin2u

C45
m f5@~C55

m f!82~C44
m f!8#sinu cosu

C55
m f5~C44

m f!8sin2u1~C55
m f!8cos2u

C66
m f5@~C11

m f!81~C33
m f!822~C13

m f!8#sin2 u cos2 u

1~C66
m f!8~cos2 u2sin2 u!2.

The constitutive matrix of subcell ‘‘fm’’ can be obtaine
through an appropriate transformation of the above matrix,
~20! and is as follows:

@C# f m53
C22

m f C12
m f C23

m f 0 2C26
m f 0

C12
m f C11

m f C13
m f 0 2C16

m f 0

C23
m f C13

m f C33
m f 0 2C36

m f 0

0 0 0 C44
m f 0 2C45

m f

2C26
m f 2C16

m f 2C36
m f 0 C66

m f 0

0 0 0 2C45
m f 0 C55

m f

4 .

(22)

Thus, each subcell has been homogenized and its equiva
constitutive properties are available. The strains and stresses i
constituents, and the subcell resultant stresses can be determ
provided that the strains of the subcells are available. We
apply a similar parallel-series approach to the entire RVC and t
determine the strains in the subcells. Let us assume that the a
age strains in the RVC,«̄ i j , are available. Then, based on th
parallel-series assumptions, the following relations will hold:
For strains:

Vy«x
f f1~12Vy!«x

m f5 «̄x Vy«x
f m1~12Vy!«x

mm5 «̄x

Vy«y
f f1~12Vy!«y

f m5 «̄y Vy«y
m f1~12Vy!«y

mm5 «̄y

«z
f m5«z

mm5«z
f f5«z

m f5 «̄z (23)
«xy

f m5«xy
mm5«xy

f f 5«xy
m f5 «̄xy

Vy~12Vy!~«yz
f m1«yz

m f!1~12Vy!2«yz
mm1Vy

2«yz
f f 5 «̄yz

Vy~12Vy!~«zx
f m1«zx

m f!1~12Vy!2«zx
mm1Vy

2«zx
f f 5 «̄zx

For stresses:

sx
f m5sx

mm sx
f f5sx

m f

Vysx
f f1~12Vy!sx

f m5Vysx
m f1~12Vy!sx

mm5s̄x

sy
f f5sy

f m sy
m f5sy

mm

Vysy
f f1~12Vy!sy

m f5Vysy
f m1~12Vy!sy

mm5s̄y

Vy~12Vy!~sz
f m1sz

m f!1~12Vy!2sz
mm1Vy

2sz
f f5s̄z (24)

Vy~12Vy!~sxy
f m1sxy

m f!1~12Vy!2sxy
mm1Vy

2sxy
f f 5s̄xy

syz
f m5syz

mm5syz
f f 5syz

m f5s̄yz

szx
f m5szx

mm5szx
f f 5szx

m f5s̄zx
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These relations, Eqs.~23! and~24!, have been derived based o
the assumption that there is a perfect bonding between the
cells, and the assumption of homogeneous strain and stres
each subcell. For example, considering the transverse no
strain component,«z , it is obvious that the above assumption
lead to an equality in its value for all subcells, as expressed in
~23!. The same applies for the in-plane shear strain«xy . Using
these assumptions in the geometric representation of the R
Fig. 2~a!, all of the above relations, Eqs.~23! and ~24!, can be
easily derived. They contain enough information to be able
express the 24 unknown strain components for all subcells. T
will be done by solving a system of 16 linear equations with
unknowns. Note that the«xy and«z strain components are readil
available. Also, some simple manipulations lead to

«yz
mm5

C55
m f«̄yz1VyC45

m f«̄xy

C55
m f1Vy~C44

m 2C55
m f!

«yz
m f5

C44
m «̄yz2~12Vy!C45

m f«̄xy

C55
m f1Vy~C44

m 2C55
m f!

«zx
mm5

C55
m f«̄zx2VyC45

m f«̄xy

C55
m f1Vy~C44

m 2C55
m f!

«zx
f m5

C44
m «̄zx1~12Vy!C45

m f«̄xy

C55
m f1Vy~C44

m 2C55
m f!

.

(25)

This reduces the rank of the system of equations to 12. Furt
more, by using some of the simple relations in the equations
system of linear equations can be reduced to six equations
six unknown—the remaining strain components of the subce
The coefficient matrix of this system is not fully populated, whic
makes it possible to explicitly express the six unknowns. Af
solving this system all strain components in the subcells will
available. Then with the values of these strains all strains
stresses in the fill, warp, and matrix parts of the subcells can
determined, as well as the average stresses in the subcells. T
stress values can be finally used in Eq.~24! to calculate the aver-
age stresses in the homogenized RVC. Thus, the micromecha
description of the RVC will be complete. As already stated th
approach would result in violations of the physical continuity b
tween the adjacent subcells. However, the continuity requirem
are satisfied in an average sense.

2.2 The Single-Cell Model

2.2.1 Geometry of the Model.The geometry of the single-
cell model is shown on Fig. 3. The entire quarter cell is rep
sented by a single cell, which has four layers: two matrix, one
and one warp. The layers will be denoted withmt , f, w, andmb
for the top matrix, fill, warp, and bottom matrix, respectivel
They are separated by inclined planes, defined by appropriate
mensioning and the anglesu1 and u2 ~Fig. 3!. The undulating
form of the yarns is represented by prisms with trapezoidal cr
section, inclined at an angle1u1 or 2u1 ,u1 being the average
undulation angle. Only two parameters are needed to describe
geometry of the entire RVC—the yarn volume fraction,Vy , and
the lamina thickness,Ht . If we assume the in-plane dimensions

Fig. 3 Geometry of the quarter cell for the single-cell model
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the RVC to be of a unit length, then the volume of the entire RV
will be equal toHt . The volume of the two yarns will beH/2
1a ~Fig. 3!. Then

H

2
1a5VyHt b5

Ht2H

2

tanu15
H

4
tanu25

H

4
2a. (26)

If Vy<0.5 we assume thata50. Then

H52VyHt b5HtS 1

2
2VyD

tanu15tanu25
VyHt

2
. (27)

If Vy.0.5 we assume thatb50. Then

H5Ht a5HtS Vy2
1

2D
tanu15

Ht

4
tanu25HtS 3

4
2VyD . (28)

Note that the maximum yarn volume fraction that this mod
can represent is 0.75. Therefore, if it is higher, 0.75 will be used
the geometry description, Eq.~28!, and the actual value is used i
the micromechanical calculations. This is not expected to af
significantly the accuracy of the model. Experiments with valu
higher than 0.75 showed that the homogenized properties f
this model compare very well with the values predicted by
four-cell model.

2.2.2 Micromechanics of the Model.The micromechanic de-
scription of this model is quite straightforward. In addition to th
assumptions listed at the beginning of Section 2 it is also assu
that the strains and stresses of the entire RVC are weighted a
ages of the strains and stresses of the four layers. Thus, fo
average RVC strain components we have

«̄ i j 5
12Vy

2
~« i j

mt1« i j
mb!1

Vy

2
~« i j

f 1« i j
w!. (29)

Assuming that the RVC average strain components,«̄ i j , are
known, the above relation represents six equations for the 24
known strain components« i j

k , wherek5mt , f ,w,mb . In addition
to these six relations we have six continuity and traction con
tions at each interface between the adjacent layers. These a
relations, which together with the above, Eq.~29!, form a system
of 24 equations of 24 unknowns, the strain components in the
layers. The interface relations, however, have to be expressed
coordinate system defined by the orientation of the interfa
Here, we assume that the fibers of the fill and warp yarns lie in
xz andyz-planes, respectively~see Fig. 3!. Therefore, if the inter-
face coordinate system is defined in such a way that one axis
in one of these planes, it will be a principal material axis for th
yarn. Then, the interface coordinate system will be the princi
coordinate system in which the transverse isotropy of the yar
expressed and the constitutive matrix of the yarn in this coordin
system will be that defined in Eqs.~3! and ~4! above. Such coor-
dinate systems are defined for the three layer interfaces. For
ample, at themt- f interface, to define the interface local coord
nate system we first need to rotate the global coordinate sys
about they-axis at an angleu1 and then rotate it about thex-axis
at u2 . Although for the fill-warp interface the localx andy-axes
cannot lie in the globalxzandyz-planes ifu1Þ0, we will assume
that they are close enough to be able to use the principal co
tutive matrices for both layers without having to transfer them
a nonprincipal coordinate system. Simple trigonometric relatio
Transactions of the ASME



-

c

t

V

y

m

u

v
d

s

r-
f a
er
the

ma-
is

he

ed

nd
e

per
wer

dels
nite

rial
VC

e
s.
re
the

ent.

me-

ion
e
rep-
the
would show that the angles between the localx andy-axes and the
corresponding principal axes are negligibly small for any realis
value ofHt .

So, at each of the three layer interfaces we have the follow
relations, which should hold expressed in the local interface co
dinate system:
At interface mt- f :

«
x8

mt5«x8
f «

y8

mt5«y8
f «

x8y8

mt 5«x8y8
f

s
z8

mt5sz8
f s

y8z8

mt 5sy8z8
f s

z8x8

mt 5sz8x8
f (30)

At interface f-w:

«x8
f

5«x8
w «y8

f
5«y8

w «x8y8
f

5«x8y8
w

sz8
f

5sz8
w sy8z8

f
5sy8z8

w sz8x8
f

5sz8x8
w (31)

At interface w-mb :

«x8
w

5«
x8

mb «y8
w

5«
y8

mb «x8y8
w

5«
x8y8

mb

sz8
w

5s
z8

mb sy8z8
w

5s
y8z8

mb sz8x8
w

5s
z8x8

mb (32)

In the above relations, Eqs.~30!–~32!, the local coordinate sys
tem is denoted with a superscript prime. Since the strains in
four layers are the primary unknowns, the stress relations hav
be expressed through the strains by using the corresponding
stitutive relations. Then, these relations have to be transferred
the RVC global coordinate system where the primary unknow
live. The transformation matrices from RVC global to interfa
local coordinate system can be expressed through the angleu1
andu2 as indicated above. Equations~29!–~32! form a system of
24 equations with 24 unknowns, the strains in the four layers
global RVC CS. After solving this system, the stresses in
layers have to be calculated. For that purpose, for the fill and w
layers, the constitutive matrices have to be transformed into R
global coordinates by a simple rotation about they and x-axis,
respectively. Finally, the average stresses in the RVC are ca
lated by volume averaging the stresses in the four layers:

s̄ i j 5
12Vf

2
~s i j

mt1s i j
mb!1

Vf

2
~s i j

f 1s i j
w!. (33)

Thus, all strain and stress components in the four cell layers
in the RVC are determined, provided that the strains of the R
are known.

Compared to the four-cell model the single-cell model has b
different geometric and mechanical description. The geometr
this model would more accurately represent tightly woven co
posites where there is no~or almost no! portion of the thickness
entirely occupied by the matrix. Its micromechanical represen
tion is relatively straightforward but would be more appropria
for implementation in an implicit finite element analysis sche
due to the fact that a system of 24 equations has to be solve
each time iteration step. The four-cell model representation
quires only the solution of a system of six equations, which wo
make it very efficient for an explicit finite element scheme. It w
actually implemented as a separate constitutive model into
nonlinear dynamic explicit finite element code DYNA3D an
used there to model the behavior of sandwich shells with wo
composite facings. Some results from this study can be foun
Chapters 4 and 5 of@13#.

3 Results and Discussion
To test the performance of the two models presented here,

eral RVC’s with different constituent materials, yarn volume fra
tions, and undulation angles are homogenized and the result
compared to other published analytical, numerical, and exp
mental results.
Example 1
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Chung and Tamma@12# used a finite element model to dete
mine the elements of the homogenized constitutive matrix o
plain weave RVC. The RVC consists of epoxy matrix and fib
bundles, which are 65 percent E-glass/epoxy. The values for
material properties of the E-glass/epoxy yarns and the epoxy
trix are presented in Table 1. The overall fiber volume fraction
0.35, but taking into account the 0.65 fiber volume fraction in t
yarns, the yarn volume fraction that has to be used isVy
50.35/0.6550.5385. The average undulation angle determin
approximately from the finite element model shown in@12# is
tan(u)51/6. The results for the RVC properties from upper a
lower bound estimates from@12# and from the present models ar
shown in Table 2. The results from@12# were obtained by using
prescribed displacement boundary conditions to get the up
bound, and prescribed stress boundary conditions to get the lo
bound. As seen from this table, the results of both present mo
are good, the single-cell model being somewhat closer to the fi
results from@12#.

Table 3 presents results for the homogenized RVC mate
constants for the above-described case, and for the same R
geometry with different materials shown in Tabl
1—Timetalb21-S matrix and 65 percent SCS-6/Timetal yarn
The results from@12# were acquired using the described the
strain energy balance method, which gives an upper bound to
elastic constants. As seen, all values have very good agreem
Example 2

Results are compared with the finite element based micro
chanical method of Marrey and Sankar@14#. The yarn is of Glass/
Epoxy with propertiesEL558.61 GPa, ET514.49 GPa, GLT
55.38 GPa,nLT50.250, nTT50.247; the isotropic matrix is of
Epoxy with E53.45 GPa,n50.37. The yarn volume fractionVy
50.26, and from the RVC dimensions, the average undulat
angle was estimated to beu54.2 deg. The results from Referenc
@14# are compared to the present results in Table 4. Some disc
ancies of the values are probably due to the geometry of

Table 1

Table 2

Table 3
JULY 2001, Vol. 68 Õ 559
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RVC—Vy is low and there are entirely matrix layers on both sid
of the lamina, as well as between the fill and warp. Both o
models do not consider a matrix layer between the fill and wa
and in the present formulation of the four-cell model there are a
no matrix layers on the outer sides of the lamina.
Example 3

With this example the performance of the present model
compared to the micromechanical model of Tabiei and Jiang@7#,
Jiang et al.@15#, and the experimental results of Ishikawa et
@16#. The Graphite/Epoxy RVC is described in~@15#! and ~@16#!
and consists of yarns with propertiesEL5137.3 GPa, ET
510.79 GPa,GLT55.394 GPa,nLT50.26,nTT50.46, and isotro-
pic matrix with E54.511 GPa,n50.38. The RVC parameters o
the geometry areVy50.58, andu51.4 deg. As seen from Table
the values of the moduli from the present approach are close to
analytical results from~@15#! and the experimental results from
~@16#!.

4 Conclusions
The micromechanical models developed in this study have r

tively simple formulations, yet they provide very good accura
of the results for the elastic properties for all examined cases.
new models are formulated based on three-dimensional repre
tations, and thus consider all components of the strain and s
tensors. They can be used to determine the strains and stres
the constituent fiber yarns and matrix of a plain weave compos
and to acquire homogenized constitutive properties of the en
composite lamina. The models have been developed to be ea
implement into finite element analysis of laminated shells w

Table 5

Table 4
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composite layers, and will fit well into both explicit and implic
time integration schemes. Their very good accuracy was sh
here through several tests, and together with the simplicity
formulation makes these models attractive for the finite elem
analysis of composite laminates.
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The Elastic Stability of Twisted
Plates
Since Coulomb’s and Saint-Venant’s fundamental work, many researches have stud
effect of twisting on elastic bodies. The work presented here investigates instabilitie
can occur when thin bodies are subject to large twists and extends work by A. E. G
published in 1937. Because large twists are considered, a fully nonlinear plate theo
used. This theory predicts compressive lateral membrane stresses not predicted by G
weakly nonlinear theory. These stresses can significantly alter the twist angle at w
buckling occurs. Two conditions for the opposing twisted end supports are considere
one case the supports are held a fixed distance apart and in the other case the
applied to the supports is held fixed during twist. The buckling modes and critical
angles vary significantly depending on the support condition used.
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Introduction
Scientists and engineers have studied how elastic bodies

spond to twisting moments for centuries. These studies date
to 1784 with Coulomb’s fundamental work on the twisting
circular bars~@1#!. By assuming a more general form of solutio
that introduced the warping function, Saint-Venant was able
determine the stresses, induced by twisting, in prisms of m
shapes~@2#!. Saint-Venant’s solution for rectangular prisms w
the motivation for work by Green@3,4#. In this work Green used a
weakly nonlinear~von Kármán! plate theory and was the first t
investigate instabilities caused by twisting.

Green’s work showed that if the longitudinal force applied
the twisted ends is held constant during twisting, compress
longitudinal stresses will develop in the strip. The phenomena
be explained by noting that twisting stretches material near
edges of the strip more than it does material near the midwi
Thus, if the force on the twisted ends is held constant and
stress near the edges increases with twist, the stress near the
width must decrease with twist. At some critical twist angle, t
midwidth stress will become sufficiently compressive to buc
the strip. The nodal lines of the buckled strip extend from edge
edge, perpendicular to the twist axis.

Crispino and Benson@5# extended the work of Green to ortho
tropic plates. They found that the critical twist angle is sign
cantly altered by the ratio of the Young’s moduli of the plate. T
buckled shape, however, was similar to that obtained by Gree

During experimental studies of the effect of twisting on th
wide elastic sheets, a much different instability was observ
Instead of buckling into a mode with nodal lines perpendicular
the twist axis, the sheets wrinkled into a mode with nodal lin
parallel to the twist axis. This buckled configuration is consiste
with lateral compressive stress. However, all previous work fou
this stress to be zero throughout the plate for all twists.

Mockensturm and Mote@6# used a fully nonlinear plate theor
to study the steady motions of translating, twisted plates. In
analysis, the twisted ends were constrained to be a fixed dist
apart, supported by whatever force necessary. In this case
longitudinal compressive stress found by Green and others
not occur. However, it was found that lateral compressive str

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 1
2000; final revision, Oct. 18, 2000. Associate Editor: S. Kyriakides. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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such as those suggested by experiments, is produced. While s
the magnitude of this compressive stress increases with increa
twist angle and may be sufficient to buckle a thin plate.

In the present study, the elastic stability of twisted plates
reexamined. It is found that, for sufficiently thin plates, the late
compressive stress is large enough to produce buckling obse
in experiments and overlooked by previous authors. The res
for the case when the twisted supports are a fixed distance a
are found to be much different from those when the supports
free to move longitudinally and the force applied to them is h
constant. In the later case the fully nonlinear plate theory pred
both lateral and longitudinal compressive membrane stress
depending on the system parameters, buckling may occur in
lateral or longitudinal direction.

Mathematical Model
Mockensturm and Mote@6# used two nonlinear plate models t

predict steady motions of a uniformly tensioned, axially movin
twisted plate. One model incorporated transverse straining,
the other assumed it to be zero. The stress fields predicted b
two models differed substantially only in regions near the fr
edges of the plate. As the relative thickness of the plate decrea
these regions become smaller. Here, as the plates modeled
supposed thin, the model without transverse strain is extende
analyze the stability of an unbuckled configuration.

Three configurations of the plate are considered: thereference
configuration is flat and uniformly tensioned; theunbuckledcon-
figuration results from twisting opposite ends of the plate;
buckled configuration results from infinitesimal displacemen
about the unbuckled configuration~see Fig. 1!. Bifurcations from
the unbuckled configuration are predicted from the equations g
erning the buckled configuration. In the following~•̂! denotes a
normalized vector. Latin indices take the values 1, 2, and 3; Gr
indices take the values 1 and 2. Summation over all values oc
when an index is repeated.

Let R0 specify the positions of particles in the reference co
figuration. It will prove convenient to associate the particles in
reference configuration with a fixed Cartesian coordinate syst
Then

R05caÊa1c3Ê3 (1)

where$Êi%5$Êi% form a fixed, orthonormal basis and the coord
natesc i are convected and material. Ifuc1u,L/2, uc2u,B/2, and
uc3u,H/2 the body has uniform length~L!, width ~B!, and thick-
ness ~H! as shown in Fig. 1. The reference configuration
mapped byX* (c i) into the unbuckled configuration and b
x* (c i) into the buckled configuration. Let
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R5X* ~c i !5X~ca!1c3Â3~ca! (2)

specify the position of particles in the unbuckled configurati
and

r5x* ~c i !5x~ca!1c3â3~ca! (3)

specify the position of particles in the buckled configuration. T
vectors,Â3 and â3, are the outward unit normals to the surface
S ands, defined byX(ca) andx(ca), respectively. This form of
the deformation assumes unit normals to the surfacecaÊa are
mapped into unit normals to the surfacesS ands. The transverse
strains then vanish. The infinitesimal displacement fieldu(c i)
5x(c i)2X(c i) distinguishes the buckled and unbuckled co
figurations.

The covariant basis onS is given by Aa5X,a5]X/]ca. A
reciprocal, contravariant basis,Aa, to S can then be constructed
such that

Â3•Aa50, Â35Â3, Aab5Aa•Ab , A i
•A j5d j

i ,

Gab
l 5Aa,b•Al, Gab

3 5Bab5Aa,b•Â3,

G3a
b 52Ba

b5Â3,a•Ab, G3i
3 5G33

i 50 (4)

whered j
i is the Kronecker delta, andAab , Bab , andGab

l are the
first and second fundamental forms and Christoffel symbols ofS ,
respectively. Analogous relations, obtained by replacing up
with lower case letters, hold for the buckled configuration.

The covariant derivatives of the components ofV, denoted by a
vertical bar, with respect to the basisA i are then

Vaub5Va,b1Gab
i Vi , V3ub5V3,b1G3b

a Va ,

Vbu35Vb,31Bb
aVa , Vaubg5Vaugb . (5)

Note that this is the covariant derivative with respect to a Euc
ean three-space, not a Riemannian surface, resulting in Eq.~5.4!.

The membrane stretch and bending strain in the buckled c
figuration are given by

c5aab~Êa1 ^ Êb!1Ê3
^ Ê3, l52~bab1bba!~Êa

^ Êb!,
(6)

respectively. Upon linearization about the unbuckled configu
tion c5C1C̃ andl5L1L̃ where

Fig. 1 The initial, X 0„ca
…, unbuckled, X „ca

…, and buckled,
x„ca

…, configurations of the plate
562 Õ Vol. 68, JULY 2001
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C5Aab~Êa
^ Êb!1Ê3

^ Ê3, C̃5~uaub1ubua!~Êa
^ Êb!,

L52~Bab1Bba!~Êa
^ Êb!,

L̃5@~u3ub! ua1Ba
gugub#~Êa

^ Êb1Êb
^ Êa!. (7)

It should be noted that (u3ua) ubÞ(ui uab)u i 53 . In the present case
the second covariant derivative is of thevectorcomponentsu3ua .

The resultant stress tensorsn(c,l)5nabÊa ^ Êb and m(c,l)
5mabÊa ^ Êb are related to the second Piola-Kirchhoff stress te
sor s and decomposed as

n5E
2H/2

H/2

sdc35N1Ñ, m5E
2H/2

H/2

sc3dc35M1M̃ (8)

whereN(C,L) andM (C,L) are the resultant stress tensors in t
unbuckled configuration. The deformation taking the unbuck
configuration to the buckled configuration produces the additio
resultant stressesÑ(C̃,L̃) andM̃ (C̃,L̃). The kinematic constraint
that unit normals to the reference surface remain unit norm
after deformation is enforced by constraint stress

q5qa~Êa ^ Ê31Ê3^ Êa!1q3Ê3^ Ê35Q1Q̃.

The fully nonlinear equations of equilibrium governing th
buckled configuration

@naGaa1qGâ31maGâ3,a# ,G50, @maGaa# ,G2@qaaa1q3â3#50
(9)

provide the equations describing the unbuckled configura
~u50!

@NaGAa1QGÂ31MaGÂ3,a# ,G50,

@MaGAa# ,G2@QaAa1Q3Â3#50 (10)

and, upon linearization about this state, the equations gover
the buckled configuration

$ÑaGAa1NaGu,a1M̃aGÂ3,a1@~M̃abAa! ,bAG#Â3% ,G50
(11)

where, because the plate is thin, terms involvingMaG and QG

have been neglected. These equations are derived in detail
the referential balance laws of finite elasticity in Mockensturm@7#
and are based on the work of Naghdi@8,9#.

If there exists a strain energy function,w~c,l!, the stress result-
ants are

N52
]w~C,L!

]C
, Ñ5K1@C̃#1K2@L̃#,

M52
]w~C,L!

]L
, M̃5K2@C̃#1K3@L̃# (12)

where

K152F ]2w

]c]cG
E

, K252F ]2w

]c]lG
E

, K352F ]2w

]l]lG
E

(13)

are fourth-order tensors, and@ "#E denotes quantities evaluated
the unbuckled configuration.

Although solutions can be obtained for any, nonlinear, isotro
material ~@7#!, here attention is focused on the Saint-Vena
Kirchhoff material,

w~c,l!5
kH2

24 H n
~l"I !2

4
1~12n!

l"l

4 J
1

K

2 H n
~c"I23!2

4
1~12n!

~c2I !•~c2I !

4 J (14)

whereK5EH/(12n2), E, andn are material constants.
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After deformation the twisted ends of the plate (c156L/2)
must pass through the lines

S 6
l1L

2 D Ê11z cosS 6
t

2D Ê21z sinS 6
t

2D Ê3 (15)

where zP$2`,`%,l1 is the nominal~untwisted! stretch in the
plate, andt/2 is the angle between each support and the horiz
tal. The total twist in the plate is thent. Additionally, it is assumed
the plate is free to slide laterally along the supports and t
provide no bending moment,

N2112G3b
2 Mb150, M1150. (16)

Correspondingly, for the buckled configuration

Ñ2112G3b
2 M̃b150, M̃1150, ū150, ū350. (17)

The boundary conditions on the traction-free lateral edgesc2

56B/2) are

Na212G3b
a Mb250, ~MabAa! ,b•A21M ,1

1250, M2250, and

Ña212G3b
a M̃b250, ~M̃abAa! ,b•A21M̃ ,1

1250, M̃2250
(18)

for the unbuckled and buckled configurations, respectively.

Unbuckled Solutions. The fully nonlinear equations of equi
librium are solved by assuming a solution of the plate midsurfa

X̄~x,y!

B
5l1xÊ11 f ~y!cos~ax!Ê21 f ~y!sin~ax!Ê3 (19)

where$x,y%5$c1,c2%/B, a5tB/L, and f (y) governs the latera
stretch in the twisted plate. Under this assumption

@Aab#5Fl1
21a2f 2 0

0 ~ f 8!2G , B@Bab#5
l1a f8

Al1
21a2f 2 F0 1

1 0G ,
B@Gab

1 #5
a2f f 8

l1
21a2f 2 F0 1

1 0G , B@Gab
2 #5

1

f 8 F2a2f 0

0 f 9
G
(20)

where a prime denotes differentiation with respect toy. Resolved
onto the basesA i , the three, nonlinear, partial differential equ
tions of equilibrium~10! reduce to a single, nonlinear, ordina
differential equation

N,2
221N11G11

2 1N22G22
2 22~M ,2

121M12G12
1 !B1

2

2M12~B1,2
2 1G22

2 B1
21G11

1 B2
1!50 (21)

where with Eq.~14!, e5(l1
221)/2, and«5H/B

N11

K
5

2e1a2f 21n~ f 8221!

2
,

N22

K
5

f 82211n~2e1a2f 2!

2
,

M12

KB2 5
«2~n21!l1a f8

12Al1
21a2f 2

(22)

and all other components of the resultant stress tensors are 0
boundary conditions are identically satisfied except for Eq.~18.1!
with index a52. The dimensionless, longitudinal support force

T5E
21/2

1/2 K

2EH F«2l1
2~12n!a2f 82

3~l1
21a2f 2!2 12e2n1a2f 21n f 82Gdy.

(23)

Equation~21! is solved using a perturbation method. The d
mensionless twist,a, is assumed small,« and e are assumed o
ordera2, and f (y)5y1( I 51

` a2I f (2I )(y).

Fixed Support Separation.If the supports are a fixed distanc
apart, the strain,e, is prescribed. In this case~illustrated in Fig. 2!,
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T which equalse in the reference configuration, increases w
increasing twist~see Figs. 3 and 4!.

In the present analysis, it is assumed that the plate is first e
gated by an amounte, and then twisted. One could also assum
that the plate was first twisted and then strained. For an infinit
mal, linear theory these two assumptions give identical resu
For the nonlinear analysis done here, the twist then stretch
can be obtained from the results presented by replacing ‘‘a’’ with
l1a.

To zeroth order in ‘‘a’’ the equations of equilibrium~21! are
identically satisfied. Higher order equations, forf (2) and f (4) ,

f ~2!91ny50, f ~2!8 ~61/2!1n~e11/8!50

f ~4!91
y3

6
~2n223!2ey50,

f ~4!8S 6
1

2D1
n2

24 S 12e223e2
1

16D50 (24)

are readily solved. While even higher order solutions are ea
obtained, results to fourth order in ‘‘a’’ agree well with numerical
results at least toa50.5 ~@6#!.

Fig. 2 Illustration of the difference between the case with fixed
support separation and the case with fixed support force

Fig. 3 Dependence of critical twist on longitudinal mode num-
ber and aspect ratio for an initially untensioned plate and fixed
support separation. Insets show lateral mode shapes for vari-
ous aspect ratios.
JULY 2001, Vol. 68 Õ 563
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Fixed Support Force. Alternatively, one may consider th
case in which the supports are free to slide longitudinally~in the
Ê1-direction! and the longitudinal force applied to the supports
held constant during twist. This situation is illustrated in Fig.
and is the case considered by previous authors~@3–5#!. Substitut-
ing the expansion forf (y) into Eq.~23!, expanding in series abou
a50, and solving fore gives

e5T2a2H 1

24
12nF f ~2!S 1

2D1a2f ~4!S 1

2D G
12a2E

0

1/2

y f ~2!1
n

2
~ f ~2!8 !2dyJ (25)

where the fact thatf (y) is an odd function has been used.
Again, to zeroth order in ‘‘a’’ the equations of equilibrium~21!

are identically satisfied and higher order equations, governingf (2)
and f (4) ,

f ~2!91ny50,

f ~2!8S 6
1

2D1nH T~12n2!1
1

12
2nF f ~2!S 2

1

2D2 f ~2!S 1

2D G J 50

f ~4!91
y

2 F 1

12
22T1y2S 2

3
n221D G50,

f ~4!8S 6
1

2D1n2F 1

480
2

n2

1440
2

T

12
1

T2

2
~12n2!

1 f ~4!S 2
1

2D2 f ~4!S 1

2D G50 (26)

are readily solved.

Bifurcations. Once the unbuckled configuration has be
found, bifurcations from this state can be sought. The thr
coupled, linear partial differential equations governing sm
perturbation from the unbuckled configuration are obtain
from Eq. ~11! by substituting the series approximationf (y)
5y1a2f (2)(y)1a4f (4)(y) determined above and taking the d
product with A i . The resulting equations are expanding
series—to fourth order—abouta50. As these equations are ho
mogeneous, a trivial solution~u50! always exists. However for
certain combinations of parameters, nontrivial solutions exist.

Fig. 4 Dependence of critical twist on longitudinal mode num-
ber and aspect ratio for a plate initially strained 0.5 percent and
fixed support separation. Insets show lateral mode shapes for
various aspect ratios.
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find these nontrivial solutions, all parameters but the dimensi
less twist,a, are assumed fixed. The smallest ‘‘a’’ at which a
nontrivial solution exists is called the critical twist,acr .

The equations governing the buckled configuration can be
duced further, and the boundary condition along the suppo
edges satisfied, by assuming a separable solution of the form

ū1~x,y!5AA11U1~y!sin@ap~x2f/2!#

ū2~x,y!5AA22U2~y!cos@ap~x2f/2!#

ū3~x,y!5U3~y!sin@ap~x2f/2!# (27)

wheref51/h5L/B, a5nh, andn is an integer.
Inserting Eq.~27! into Eq. ~11! and Eq.~18! removes the de-

pendence onx from the equations and yields three, coupled, line
ordinary differential equations forUi . These equations are fourt
order in U3 and second order inU1 and U2 . When written in
first-order form they become

S (
I 50

2

yI@PI # D @S#8~y!5S (
l 50

4

yI@QI # D @S#~y! (28)

where the 838 matrices,@PI # and@QI #, are independent ofy ~but
functions of ‘‘a’’ and the other system parameters! and

@S#5@U1 U2 U3 U18 U28 U38 U39 U3-#T. (29)

Solutions even inU2 andU3 and odd inU1 are independent of
those odd inU2 andU3 and even inU1 . Thus, solutions can be
found in the rangeyP(0,1/2) instead ofyP(21/2,1/2). As a trial
solution for Eq.~28! assume

@S#~y!5H @ I #1(
I 51

`

yI@AI #J @S#~0! (30)

where

@S#~0!5@B1 0 B2 0 B3 0 B4 0# or

@S#~0!5@0 B1 0 B2 0 B3 0 B4#. (31)

Substituting Eq.~30! into Eq. ~28! and equating like power ofy
yields the following recursive relations for@AI #,

@AI #5
1

I
@P0#21H (

N50

I 21

~@QI 2N21#2N@PI 2N# !@AN#J . (32)

Substituting Eq.~32! into Eq. ~30! and using the boundary cond
tions at the free edge, Eq.~18!, yields an eigenvalue problem fo
‘‘ a.’’

Results
The twisted support conditions significantly alter the stress s

in the unbuckled configuration and, thus, change the state w
bifurcations occur. For both support conditions, twisting genera
compressive stress in the plate. When the supports have a
separation, the longitudinal membrane stress is always positiv
twisting only stretches the plate in this direction. However, t
lateral membrane stress, which is zero in the untwisted state
come increasingly compressive with increasing twist~@6#!. For the
fixed support case, the lateral membrane stress causes the pl
buckle.

When the supports are free to move in the longitudinal direct
and the longitudinal force applied to them remains constant du
twisting, both longitudinal and lateral membrane stresses may
compressive. In this case, increasing twist again causes increa
longitudinal membrane stress near the free edges of the p
However, because the total longitudinal traction acting on the s
ported edges remains constant, the longitudinal stress nea
midwidth must decrease with increasing twist. Thus, depend
Transactions of the ASME
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on the initial tension in the plate~i.e., force on the supports!, the
longitudinal membrane stress may be compressive near the
midwidth.

In the following results, unless otherwise stated,n50.3, «
51023, h51, andT or e50.

Fixed Support Separation. When the supports have a fixe
separation, the lateral membrane stress,N22, is the cause of buck-
ling in a twisted plate. As this membrane stress decreases
increasing twist, there will be some critical value of twist th
causes the plate to buckle. This critical twist is dependent on
material properties, geometry, and initial stress of the plate. P
vious analyses using weakly nonlinear plate theories~@3–5#! pre-
dict the lateral membrane stress is zero for all twists and, thus
not predict this instability.

If the thickness, initial tension and material properties of t
plate are held fixed at the values assumed previously, the dim
sionless critical twistacr increases monotonically with increasin
a5nh ~see Fig. 3!. The longitudinal mode number,n, is thus
always one as this will produce the lowestacr . While acr in-
creases withh, the twistangle, t5a/h, that causes bucklingde-
creaseswith h.

Sincen51 the longitudinal dependence of the buckling mo
is always a half sine. However, the lateral dependence varies
nificantly with aspect ratio as shown inset in Fig. 3. For so
aspect ratios, the buckling mode is an even function ofy. For
other aspect ratios, it is odd iny. These regions are divided in Fig
3 by dashed lines. Ash increases, the lateral profile becom
increasingly oscillatory. Ash increases, the buckled region als
becomes more localized near the midwidth.

If an initial stretch~tension! is applied to the plate and then it i
twisted, the critical twist angles do not increase for all plate
ometries as one might expect. This can be established by com
ing Figs. 3 and 4. In the first case~Fig. 3!, as noted above, ther
is no initial strain in the plate before it is twisted. In the seco
case~Fig. 4!, the plate is initially strained 0.5 percent and th
twisted. Again,acr(tcr) increases~decreases! monotonically with
a, and buckling always occurs withn51. While the longitudinal
mode profile does not change with initial strain, the lateral profi
do, as shown inset in Fig. 4. Also illustrated by the insets
Figs. 3 and 4, increasing the initial strain in the plate causes
lateral buckling profile to become more spatially oscillatory fo
given h.

The dimensionless plate thickness alters the critical twist an
significantly. As shown in the right~e5one percent! and left (e
50) panels of Fig. 5, withn51/3,acr decreases from 0.825 whe
«51022 to 0.129 when«51024 and from 0.807 when«51022

to 0.121 when«51024, respectively. For the square plate illu
trated in this figure, the initial strain has little effect on the critic
twist angle. For a plate with«51024, the critical twist angle
initially increases from 0.129 ate50 to 0.148 ate50.1 percent
and then decreases with further increases of initial strain. F
plate with «51022, the critical twist angle decreases contin
ously with increasing initial strain.

The aspect ratio also influences howacr depends on the initia
plate strain. As seen in Figs. 5 and 6, for a square plate w
«51023, acr initially increases from 0.324 ate50 to 0.332 at
e50.3 percent and then decreases to 0.323 ate5one percent.
However, when the width is greater than three times the len
the critical twist increases monotonically as the initial strain
crease from 0 to one percent. For a plate withh51/2, acr de-
creases monotonically ase increase from 0 to one percent. How
ever, this monotonic behavior does not remain for all narrow
plates. The nonmonotonic behavior reappears for a plate
h51/9 as the wrinkling mode changes from even to odd and b
to even as the tension increases.

Fixed Support Force. When the supports are allowed t
move longitudinally to keep the force applied to them const
during twisting, behavior much different from the fixed suppo
Journal of Applied Mechanics
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separation case is observed. Here, both lateral and longitud
compressive stress can develop and the plate may buckle in e
a lateral (n51) or longitudinal (n.1) mode. In this case, direc
comparisons can be made to the weakly nonlinear results of G
@4#. In the following discussion the applied, nondimensional su
port force is given as a percentage. This is done for easier c
parison with the case when the rollers are a fixed distance ap
Noting Eq. ~25!, one can think ofT as the strain induced by the
applied force before twisting.

The possibility that the fundamental buckling mode occurs w
the longitudinal mode number greater than one is illustrated by
nonmonotonic behavior of the curves in Fig. 7. For the case w
the supports are free of any applied force (T50), the critical twist
increases monotonically witha. Thus, in this case the plate al
ways buckles in the first longitudinal mode; a result also obtain
by Green@3#. However, as noted in Green@4#, when a force is
applied to the supports and held fixed during twist, the critic
twist does not necessarily increase monotonically witha. Thus,
for a givenh, the minimumacr may occur withn.1. For ex-
ample, for a plate withh51/10 and T50.01 percent, acr
(50.05874) occurs withn539. For a square plate withT
50.01 percent, the fundamental buckling mode occurs withn
54 andacr50.05875. WhenT50.1 percent the possibility of a
buckling mode withn.1 remains. Whenh51/10, the plate buck-
les in the first longitudinal mode (n51) andacr50.1533; how-
ever, whenh51/8, n553 andacr50.1641, and whenh51, n
57 andacr50.167. As the initial stretch in the plate increase
acr again becomes a monotonically increasing function ofa and
the plate buckles in the first longitudinal mode. There is also
decrease in critical twist with an increase in applied tension fr

Fig. 5 Critical twist as a function of initial strain and thickness
for a square plate and fixed support separation

Fig. 6 Critical twist as a function of initial strain for various
aspect ratios and fixed support separation
JULY 2001, Vol. 68 Õ 565
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0.1 percent to 1 percent for plates withh,1/3.25, a phenomena
also seen in the case when the rollers have a fixed separatio

As the tension increases, a transition occurs from longitud
buckling (n.1) to lateral buckling (n51) as seen in the fixed
support separation case. Previous analyses~@4,5#! predict that the
critical twist angle increases monotonically with increasing te
sion. The weakly nonlinear theory used in these studies only
dicted the possibility of longitudinal compressive stress. By
creasing the support force, it was predicted that ever greater tw
would be necessary to produce an instability. Here, the fully n
linear theory also predicts compressive lateral stress. Figu
illustrates how, for large support forces, it is the lateral membr
stress that causes the instability. Shown for three values oa
5nh is the critical twist as a function ofT. For T below 0.2
percent the critical twist increases with tension as predicted
viously. The dotted line represents the twist at which, for a giv
T, the minimum longitudinal membrane stress~at the midwidth! is
zero. To the right of this curve, the longitudinal membrane str
is positive everywhere in the plate. Previous analyses predict
critical twist to always be above this curve, in the region whe
compressive longitudinal stress exists. Here, the critical tw
curves cross this line, illustrating that a different instabil
mechanism~lateral compressive stress! is at work.

Fig. 7 Dependence of critical twist on longitudinal mode num-
ber and aspect ratio for a plates with various fixed support
forces

Fig. 8 Dependence of critical twist on fixed support force for
aÄ1Õ2,1,2
566 Õ Vol. 68, JULY 2001
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When the force applied to the supports remains zero as
plate is twisted,n51 and the dimensionless parameteracr /«
becomes nearly independent of plate thickness as the thick
decreases. As shown in Fig. 9, as the plate gets narrower the v
of « at which acr /« becomes independent of« decreases. For
h.1/2, acr /« is constant for«,1/100. For a plate withh51/10,
acr /« is nearly independent of« for «,1/10,000. As the plate
thickness increases,acr /« decreases~but acr increases! for all
aspect ratios.

Summary
Using a fully nonlinear plate theory, the elastic stability of

plate twisted out-of-plane by opposing end supports is stud
Two support configurations are investigated and compared
the first case the end supports are held a fixed distance apart a
plate is twisted. Because the plate is stretched during twist,
force applied to the supports and the longitudinal membr
stress increase with twist. If the plate is not initially in com
pression, the longitudinal membrane stress will always be p
tive. However, the fully nonlinear plate theory predicts a co
pressive lateral membrane stress that increases~in magnitude!
with twist. Thus, buckling can occur for this support configur
tion. In this case, buckling always occurs in the first longitudin
mode. In the second support configuration, studied by previ
authors, the force applied to the supports is held constant du
twist. The end supports move closer together in this case. H
both compressive lateral and longitudinal membrane stresses
develop and the plate may buckle in fundamentally differe
modes. In some cases the mode is spatially oscillatory in the
gitudinal direction and in other cases the mode is spatially os
latory in the lateral direction. Previous investigations, usi
weakly nonlinear plate theories, do not predict the occurrence
the second type of mode and can significantly overpredict
critical twist angle.
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The Phenomenon of Steady-State
String Motion
The paper examines the phenomenon of steady-state motion for a string traveling
constant velocity along an invariant curve under gravity in a viscous medium. This t
nically important phenomenon has been known in the literature for about 120 years
may be applied in high-speed turbines, the textile industry, etc. The conditions fo
phenomenon’s existence are found. Concepts of two critical string velocities as w
sub, super, and hypercritical domains are introduced. The analytical solutions for
nonlinear differential equations and arbitrary constants for the general boundary co
tions are found. The theoretical results are very close to the experimental ones.
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1 Introduction
The paper examines the technically important phenomenon

steady-state string traveling with constant velocity along an
variant curve~mode! under gravity in a viscous medium. Th
phenomenon is illustrated schematically in Fig. 1. The str
comes out from outlet device 2~outlet!, moves along invariant
mode 1 or 4, and enters into inlet device 3~inlet!. One sees the
string frozen in space, because the motion along the mode i
visible. The string in fact moves only along itself and its veloc
at every point is constant and directed to the mode tangent.
phenomenon may be applied in high-speed turbines cool
thread coiling in the textile industry, design of easily unroll
mobile radio antennas, etc.

This problem has a long research history and still no comp
solution. In the last century Aitkin@1# and Radinger@2# wrote
about the string ‘‘rigidity’’ that in their opinion is produced by th
centrifugal forces. Smith and Weathezchon@3# and Burge@4# ex-
amined the phenomenon’s heat exchange for practical use in h
speed turbine cooling. Voevodin@5# had carried out numerou
experiments with different textile cords elevation up to the hei
of 30 m.

Kurkin and Lebedev@6# showed experimentally in a vacuum
chamber that the phenomenon ceases to exist when the air
moved. A heavy metallic cord was also elevated due to its s
cially heightened aerodynamic resistance. These experim
showed that a dominant reason for the phenomenon’s existen
the friction of string-on-air.

Svetlicky and Gabruk@7#, Cohen and Epstein@8#, and Norden-
holz and O’Reilly @9# examined the kinematical conditions o
steady-state string motion. Svetlicky and Miroshnik@10#, Kurkin
and Miroshnik@11#, Healey and Papadopoulos@12#, and Schagerl
et al. @13# analyzed different particular cases of string travelin
Perkins and Mote@14,15# analyzed the vibration and stability con
ditions of traveling cables while neglecting the resistance of
medium.

The purposes of this paper are to present analytical solution
the above boundary value problem for different domains of str
traveling when considering the resistance of the medium and c
pare these solutions with the experiment results. The analyse
low and given discussion of the results provide the explanation
the phenomenon’s existence.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 2
2000; final revision, November 18, 2000. Editor: N. C. Perkins. Discussion on
paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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2 The Differential Equations
We assume that a homogeneous, inextensible, ideally flex

string without bending and torsional stiffness travels with a co
stant velocity along an invariant mode having lengthL. Gravity
and resistance of the medium~drag force! load the string. The
drag force is assumed as constant, always directed along the m
tangently opposite to the traveling velocity. The differential equ
tions of the steady-state plane motion may be derived~@7#! from
‘‘equilibrium’’ of string element shown in Fig. 2. The equation
derivation in general form is given in the Appendix. These eq
tions in projections onto Cartesian coordinatesX, Y in nondimen-
sional form are

d

ds S p*
dx

dsD2
dx

ds
50;

d

ds S p*
dy

dsD2
dy

ds
2n50;

S dx

dsD
2

1S dy

dsD
2

51, (1)

where the nondimensional variablesx, y, s, p* , n are equal to

x5
X

L
; y5

Y

L
; s5

S

L
; p* 5

P*

mmL
; n5

g

m
;

P* 5P2mV2 is the fictitious string tension;P is the real tension;
V is the traveling velocity; andm is the drag force of the string
unit mass~acceleration!. The drag force that depends on the stri
geometry and material, medium viscosity, etc.,~@6#! increases
monotonically with the traveling velocity;g is the gravity accel-
eration;m is the string linear mass; andS is the arc~Euler! coor-
dinate along the mode.

The fictitious tensionP* may have any sign, however, the re
tensionP is assumed to be positive.

3 Equations’ Analytical Solution
Integrating the first of Eq.~1! gives

p*
dx

ds
2x5C1 . (2)

Substitution ofp* from Eq.~2! into the second Eq.~1! in terms
of

d

ds
5

dx

ds

d

dx
; ds56dxA11S dy

dxD
2

(3)

yields ~while considering the sign plus ofds!

3,
the
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E
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d

dx F ~C11x!
dy

dxG2
dy

dx
2nA11S dy

dxD
2

50. (4)

Separating variables and integration of Eq.~4! leads to

dy

dx
52

1

2 F uC11xun

C2
2

C2

uC11xunG . (5)

Additional integration gives

Fig. 1 Schematic illustration of the phenomenon

Fig. 2 Three kinds of steady-state string motion
Journal of Applied Mechanics
y5
1

2 F uC11xu11n

C2~11n!
2

C2uC11xu12n

12n G1C3 . (6)

The valuesp* ands are found from Eqs.~3!–~6! after manipu-
lations:

p* 52
1

2 F uC11xu11n

C2
1C2uC11xu12nG , (7)

s5
1

2 F uC11xu11n

C2~11n!
1

C2uC11xu12n

12n G1C4 , (8)

whereC1 ,C2 ,C3 ,C4 are arbitrary constants.
Equation~7! has a singular point atx52C1 , where the ‘‘ten-

sion’’ p* either vanishes or is infinite regardless of the bound
conditions. At this point the tangent to the string mode is alwa
perpendicular to theX-axis (dy/dx5`). Evidently, the solutions
~6!–~8! exist at the singularity only for the casen,1.

We name the minimum velocity for which the solution exists
the singularity as the first critical velocity. This velocityV1cr is
found from

m~V1cr!5g ~n51!. (9)

Substituting Eq.~5! into

r5

F11S dy

dxD
2G3/2

d2y

dx2

(10)

allows one to find the radius of curvaturer

r56
uC11xu112n1C2

4uC11xu122n12C2
2uC11xu

4nC2
2 . (11)

Investigation of Eq.~11! shows that the curvature radius ca
either vanish or become infinite at the singularity. We name
minimum velocity for which the curvature radius vanishes at
singularity as the second critical velocity. This velocityV2cr is
found from

m~V2cr!52g ~n50.5!. (12)

Thus, there are three domains of the string motion:

• subcritical, when 0,V,V1cr, 0,n,1, n.1, m,g,
• supercritical, when V1cr,V,V2cr, 1,n,2, 0.5,n,1,

g,m,2g, and
• hypercritical, whenV.V2cr , n.2, n,0.5, m.2g,

where the parametern51/n.

4 Subcritical String Motion
First we examine the string having a traveling velocity smal

than the first critical one~in subcritical domain!. In this case as it
follows from the abovementioned domain the string mode can
contain the singularity.

When the origin of Cartesian coordinates is located at the o
let, the boundary conditions are

y~0!50; y~a!5b; s~0!50; s~a!51, (13)

wherea5A/L, b5B/L, A, B are the horizontal and vertical dis
tances between the outlet and the inlet.

Substitution of Eqs.~6! and~8! into Eq. ~13! and manipulation
give the equation of the constantC1

@ uC11au11n2uC1u11n#@ uC11au12n2uC1u12n#5

5~12b2!~12n2!. (14)

After numerical finding ofC1 from ~14!, the constantsC2 , C3 ,
andC4 are calculated as follows:
JULY 2001, Vol. 68 Õ 569
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C25
~12b!~12n!

uC11au12n2uC1u12n ; (15)

C352
1

2 F uC1u11n

C2~11n!
2

C2uC1u12n

12n G ; (16)

C452
1

2 F uC1u11n

C2~11n!
1

C2uC1u12n

12n G . (17)

The influence of traveling velocities’ on string modes in t
subcritical domain is presented in Fig. 3. The modes are shown
a50.2,b50. The analysis shows that the modes do not practic
differ from the catenary~motionless equilibrium mode! starting
from n,0.2.

The plots of the nondimensional tensionp* versus nondimen-
sional arc coordinates for the modes of Fig. 3 are presented
Fig. 4. The analysis shows that the ‘‘tension’’ tends to the one
the catenary, when the traveling velocity vanishes~i.e., the param-
eterv approaches 0!.

5 Super and Hypercritical String Motions
Now we examine the string having the traveling veloc

greater than the first critical one~i.e. super and hypercritical do
mains!. In this case the mode with the singularity, for which t
‘‘tension’’ vanishes, may exist. The continuous ‘‘tension’’ which
positive at the inlet becomes negative at the outlet.

The singular point divides the mode into two parts. In a gene
case the arbitrary constantsC1 , C2 , C3 , C4 in Eq. ~5!–~8! may
be different for each part. The arbitrary constants of the first m
part, which is located between the outlet and singularity, are
tered by subscripts ‘‘8’’ and the ones of the second part—by su
scripts ‘‘9.’’ Using the continuity conditions at the singularity, on
can obtain

C185C195C1 ; C385C395C3 ; C485C495C4 ; C28ÞC29 .
(18)

The derivativedx/dy is always infinite at the singularity re
gardless of the boundary conditions, therefore, the differing c

Fig. 3 The theoretical string modes for subcritical velocities
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stantsC18 , C29 satisfy the derivative continuous condition. Thu
there are four boundary conditions~13! for determining of five
constantsC1 , C28 , C29 , C3 , C4 . The deficient boundary condition
can be found when considering the string equilibrium in the ou
vicinity ~on its both sides!. One can prove that due to the negati
‘‘tension’’ the outlet cannot ‘‘break’’ the string direction. Conse
quently, the deficient conditions is

dy

dx
~0!5tana (19)

wherea is the known starting angle between the axisX and string
outlet tangent. This angle is determined by the given direction
the outlet. Experiments also confirm the strong influence of
starting angle on the string mode.

Substitution of Eq.~5!, ~6!, and ~8! into the boundary condi-
tions ~13! and ~19! permits to find five arbitrary constantsC1 ,
C28 , C29 , C3 , C4

C1

5
~12b2!~12n2!2a2

2a2~11b!~11n!tanS p

4
2

a

2 D2~12b!~12n!cotS p

4
2

a

2 D ;

(20)

C2852uC1u9tanS p

4
2

a

2 D ; (21)

C295
C28uC1u12n1~12b!~12n!

uC11au12n ; (22)

C352
1

2 F uC1u11n

C28~11n!
2

C28uC1u12n

12n G ; (23)

C452
1

2 F uC1u11n

C28~11n!
1

C28uC1u12n

12n G . (24)

There are four solutions for the examined problem satisfy
the given boundary conditions due to signs ‘‘6’’ in Eq. ~3! and
two possible values~roots! of C28 ~in the process of Eq.~21!
derivation!. These solutions are shown schematically in Fig.
Modes 1, 2 correspond to the plus sign in Eq.~3! while modes 3,
4 correspond to the minus sign. Modes 2, 4 have mutually in
secting parts and are not of practical interest. Mode 3 can be b
by setting the starting angle 180 deg greater than in mode 1.

Fig. 4 The theoretical string tension for subcritical velocities
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Thus, only the plus sign in Eq.~3! and defined valueC28 ~Eq.
~21!! are considered in the paper. Corresponding string mode
similar to the experimentally observed one. This mode having
singularity at positivex, may exist, if the constantC1 is negative,
thereby leading to the inequality

~12b2!~12n2!2a2

2a2~11b!~11n!tanS p

4
2

a

2 D2~12b!~12n!cotS p

4
2

a

2 D,0.

(25)

Thus, the motion with the velocity greater than the first critic
one exists if its parametersn, a, b, and a satisfy the inequality
~25!.

The string modes in Fig. 6 correspond to velocities, which
slightly greater than the first critical one. The modes with velo

Fig. 5 The four possible solutions satisfying the given bound-
ary conditions

Fig. 6 The theoretical string modes „aÄ45 deg … for small su-
per critical velocities
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ties which are considerably greater than the first critical veloc
are presented in Fig. 7. All the modes in Figs. 6 and 7 have
starting anglea545 deg and parametersa50.2, b50.

Outlet and inlet can be assumed coinciding (a5b50), when
the distance between them is considerably greater than the le
L. The influence of the starting angle on the modes having c
stant velocity (m521 m/sec2) is shown in Fig. 8 for this case.

The string modes are experimentally determined using the
perimental apparatus illustrated in Fig. 9. The closed cylindri
woven textile cord 1 which has weight/length 4.5 g/m, length 7m,
and diameter 4 mm wraps around flanged pulley 2 with the dia
eter 0.2 m. A surgical groove in the pulley perimeter increases
pulley-cord friction. The cord is pressed to the pulley by pin
rollers 3 and 4. The location of rollers 3 and 4 can be changed
then fixed along the pulley’s circumference. The pulley attach
to a DC motor moves the cord. The experiments were carried
with velocities up to 30 m/sec, which were measured with a s
boscope. A simple camera photographed the cord modes.

The comparison between theoretical and experimental mo
~the theoretical ones are dotted! is presented in Figs. 10 and 11
The modes with constant velocityV519.6 m/sec (m
528.2 m/sec2) and different starting angles are presented in F
10. The modes with constant starting anglea545 deg and differ-
ent velocities are shown in Fig. 11. The theoretical plots of ‘‘te
sion’’ p* versus coordinates, corresponding to the modes of Fig
10, and 11, are shown in Figs. 12 and 13 accordingly.

The ‘‘equilibrium’’ of free string part is considered in Fig. 1
for which the weight mgL and drag force mm of unit mass and end
~outlet, inlet! ‘‘tension’’ forces P1* , P2* load the string. The equi-
librium of moments with respect to the intersection point O of t
end forces’ directions gives

gLD5mV, (26)

whereV is the corresponding area of the mode;d is the distance
between the center of gravity of the mode’s area and point of
forces’ intersection.

Fig. 7 The theoretical string modes „aÄ45 deg … for large su-
per and hyper critical velocities
JULY 2001, Vol. 68 Õ 571
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Equation~26! enables to find the drag force accelerationm from
Eq. ~26! when the experimental string mode is known.

6 Discussion of Results
As shown above there are three kinds of string modes~Fig. 2!:

• falling mode 3 without the singularity~in the subcritical do-
main!;

• roundish mode 2 with the singularity when the radius of c
vature at the singularity is infinite~in the supercritical do-
main!; and

• extended, sharp at the top mode 1 with the singularity wh
the radius of curvature at the singularity vanishes~in the hy-
percritical domain!.

The boundary conditions for the subcritical motion are the sa
as for the motionless string equilibrium because there is no sin
larity. The singularity leads to an additional boundary condition
the outlet. The modes strongly depend on the solution behavio

Fig. 8 The theoretical string modes „mÄ21 mÕsec2
… for differ-

ent starting angles

Fig. 9 The schematic diagram of experimental apparatus
572 Õ Vol. 68, JULY 2001
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the singularity. The supercritical motion may occur only if th
solution exists at the singularity. The conditions for existence
the solution are derived for unlimited string length. Howev
string stability and strength, motor power, etc, limit the leng
This issue is a separate subject for investigation that is not c
sidered in the paper.

The analogy between the steady-state motion and equilibriu
also interesting. The equilibrium equations of any mode part m
be written ~as though the string does not travel! when changing
the real tensionP to the fictitious oneP* 5P2mV2.

The phenomenon’s existence may be explained while consi
ing the momentum ‘‘equilibrium’’ of the string part which is
shown in Fig. 14. The string does not ‘‘fall’’ under the weigh
influence because the moment of the drag force balances the
ment of the weight. One should pay attention to the paradox
negative value of the ‘‘tension’’p1* in the equilibrium, despite the
fact that the real tensionP1 is always positive.

Fig. 10 The theoretical and experimental modes „m
Ä28.3 mÕsec2

… for different start angles

Fig. 11 The theoretical and experimental modes „aÄ45 deg …
for different velocities
Transactions of the ASME
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Figures 3, 6, and 7 show the string elevation starting from
catenary, as the longitudinal velocity increases. The tens
changes along with velocity as shown in Fig. 5. The modes
tension that correspond to small traveling velocity are close to
ones of the catenary. Figure 8 shows strong dependence of m
on the starting angle.

Theoretical modes agree well with experimental ones. T
agreement may be explained by minimum of assumptions tha
made at the transition from the real string to its mathemat
model. The experiments also show that the string ‘‘falls’’ when t
condition~25! is not satisfied. This may occur, for example, if th
starting angle or the distance between the outlet and inle
changed.

Fig. 12 The theoretical string tension for the modes of Fig. 9

Fig. 13 The theoretical string tension for the modes of Fig. 10
Journal of Applied Mechanics
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Appendix

Derivation of Differential Equations of Steady-State String
Motion. We write planar dynamic equations for an element
homogeneous, ideally flexible string without bending and t
sional stiffness. The string travels with a constant velocity alo
an invariant mode

m
]V̄

]t
5

]Q̄

]S
2q̄ (27)

whereV̄5Vē1 is the string velocity vector having the moduleV
and directed along the tangent to the mode unit vectorē1 ; Q̄
5Tē1 is the cross-section string force vector which is direct
along the unit vectorē1 ; T is the string tension;q̄ is the vector of
distributed linear external force acting on string;m is the string
linear mass;t is the time; andS is the arc coordinate along th
string mode.

Performing differentiation with respect to coordinateS when
taking into consideration that]S/]t5V5const gives

]V̄

]t
5

]V̄

]S

]S

]t
5V2

]ē1

]S
. (28)

Substitution of Eq.~28! into Eq. ~27! in terms of

]Q̄

]S
5

]~Tē1!

]S
5

]T

]S
ē11T

]ē1

]S
, (29)

while using total derivatives instead of partial ones~the string
mode does not depend on time! and manipulations lead to

~T2mV2!
dē1

dS
1

d~T2mV2!

dS
ē11q̄50. (30)

Applying of variableT* 5T2mV2 gives

]T̄*

]S
1q̄50 (31)

whereT̄* 5T* ē1 .
Equation~31! is almost identical to the equation of the strin

equilibrium with difference in use of fictitious tensionT* instead
of the real oneT. This allows one to apply Eq.~31! as equilibrium
equation for an arbitrary string part.

Fig. 14 The explanation of the phenomenon’s existence
JULY 2001, Vol. 68 Õ 573
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We obtain the equations in projections onto Cartesian coo
natesX, Y using Eq.~31! and relations for ‘‘tension’’ projections
TX* andTY*

TX* 5T*
dX

dS
; TY* 5T*

dY

dS
. (32)

The third equation necessary for solution is the relation betw
the cosines

d

dSS T*
dX

dSD1qX50;

d

dSS T*
dY

dSD1qY50; (33)

S dX

dSD 2

1S dY

dSD 2

51

where qX and qY are the projections of the distributed extern
force.
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A New Look at an Old Problem:
Newton’s Cradle
In this paper we consider the most basic multi-impact system, the so-called ‘‘New
Cradle.’’ The task of developing an analytical method to predict the post impact veloc
of the balls in the cradle has baffled investigators in the field of impact research for m
years. The impulse-based rigid-body body as well as the alternative compliance-b
time-base approaches have failed to produce valid solutions to this problem. Here
present a new method that produces energetically consistent solutions to the problem
method is based on the traditional impulse-momentum-based rigid-body approach. W
however, resolve the nonuniqueness difficulty in the rigid-body approach by introduc
new constant called the Impulse Transmission Ratio. Finally, we verify our metho
conducting a set of experiments and comparing the theoretical predictions with th
perimental outcomes.@DOI: 10.1115/1.1344902#
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1 Introduction
Multi-impact problems pose many difficulties and unanswe

questions~@1#!. The simplest of these problems, the linear chain
the ‘‘Newton’s Cradle,’’ represents the most basic problem of t
type. This classical problem involves a collision problem whe
one ball strikes one end of a linear chain of stationary balls
contact with each other. The system represents the simplest o
multibody impact problems that one may consider. Yet, it enc
sulates the difficulties that are present in more complex syste
Many investigators attempted to develop analytical solutions
produce post-impact velocities in this class of problems. The
remains, however, that the methods that have been proposed
sess deficiencies and inconsistencies that are yet to be resol

One approach to the solution of the problem has been the
sideration of sequential impacts and use of impulse-momen
rules and coefficients of restitution. Johnson@2# introduced the
notion of sequential impacts. The method was based on a suc
sion of simple impacts that occur one at a time. Han and Gilm
@3# proposed a solution algorithm that accommodated mult
impacts, but their methods resulted in multiple sets of feas
post-impact velocities that were valid for the same initial con
tions. Brogliato@4# also considered the three-ball impact proble
The conclusion drawn by this author was that the rigid-body ru
did not possess sufficient information to yield a unique po
impact solution. He proceeded by stating that the only way
solve the rigid-body indeterminacy was to add compliance to
bodies in contact.

The second approach is the compliance-based method tha
troduce linear springs between consecutive balls in the chain.
approach results in a set of second-order linear differential eq
tions that can be cast as functions of the ratios of the sp
constants. One of the earliest studies of this type was present
Smith @5#. Walkiewicz and Newby@6# considered the possibl
solutions of the three-ball chain that simultaneously satisfied
mentum and energy equations. They showed that there were
nitely many solutions that fit this description. Newby@7# studied
the three-ball impacts by placing linear springs to model the c
tacts. He used the spring stiffness ratio as a parameter, and

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept.
1999; final revision, Apr. 16, 2000. Associate Editor: N. C. Perkins. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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lyzed its effect on the velocity outcomes. He demonstrated th
was not always possible to determine the values of the neces
stiffness ratio that yielded a specific velocity outcome. Hinch a
Saint-Jean@8# studied the case of a very long rectilinear array
balls. The compliance-based methods are significantly more d
cult to apply than the impulse-momentum-based ones. To the
of our knowledge, the investigators that applied these meth
never included damping in their analysis, and have always
sumed perfectly elastic collisions. In addition, complexity of su
methods makes it very difficult to experimentally estimate t
model parameters, specifically for chains with large number
balls.

Cholet@9# uses the methods of convex analysis that is inspi
by an adaptation of Moreau’s sweeping process~@10,11#! to ana-
lyze the multiple impacts in a three-ball cradle. This work rep
sents the most advanced up to date and produces unique an
ergetically consistent results. The only drawback of the appro
is that the solution is formulated in terms of three parameters
do not have obvious physical meanings. For example, with
method, it becomes very difficult to identify the parameter valu
that lead to purely elastic impacts. In addition, the post-imp
velocities are nonlinear functions of the parameters. Thus,
may encounter difficulties in estimating the parameter values fr
experiments. Often, there is not a one to one correspondence
tween a particular post-impact velocity set and parameter set.
may obtain the same outcome for different set of parameters.
believe that, a solution method that is based on physically me
ingful parameters such as the coefficient of restitution will
more effective in dealing with the multiple impact problem
hand.

The objective of the present article is to develop an impul
momentum-based method to determine the post impact veloc
of the general N-Ball chain. The method should produce uniq
and energetically consistent solutions. The predicted outco
should be physically consistent and experimentally verifiable~ex-
perimental verification of the previous methods is almost non
istent!. For this purpose we present a new methodology that u
the energetic coefficient of restitution~@12#!. We propose a new
constant, that we call the ‘‘Impulse Correlation Ratio.’’ We te
our method by conducting a set of experiments, and compa
the theoretical outcomes with the experimental ones.

2 Three-Ball Chain

2.1 Problem Description. Consider the three balls that ar
depicted in Fig. 1. BallB1 strikes the other two balls~with initial
velocities ofv2

2 andv3
2! that are in contact at timet5t2 with a

5,
on

tment
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he
001 by ASME JULY 2001, Vol. 68 Õ 575
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velocity of v1
2 subject tov1

2>v2
2>v3

2 . The collision causes the
two normal impulsest2 andt3 as shown in the figure. The prob
lem at hand is to determine the post impact velocitiesv1

1 , v2
1 ,

andv3
1 . For this purpose one can write the conservation of lin

momentum equations for the three balls, this yields

m1Dv152Dt2 (1)

m2Dv25Dt22Dt3 (2)

m3Dv35Dt3 (3)

whereDv i andDt i are the changes in velocities and impulses
a result of the collision. Here, we have three equations in term
the three post-impact velocities and the two changes that occ
normal impulses. Additional assumptions are needed to obtain
two additional equations that are necessary to solve the prob
One can use coefficients of restitution between pairs of ball
resolve this problem. Since the balls can be treated as parti
the kinematic coefficient of restitutione2

k betweenB1 andB2 can
be used to obtain one additional velocity relationship:

v1
12v2

152e2
k~v1

22v2
2! (4)

where the superscript ‘‘1’’ denotes the quantity at the end of th
collision. One encounters problems in applying the restitution
betweenB2 andB3 because two assumptions regarding their c

Fig. 1 Impulses
s
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tact situation at the instant of collision yield different solution
Accordingly, Han and Gilmore@3# report the following solutions
for three equal mass balls ande51, v1

251, v2
250, andv3

250:

v1
152

1
3 v2

15v3
15

2
3 (5)

v1
15v2

150 v3
151. (6)

The former solution is obtained by assuming thatB2 andB3 are in
contact whenB1 strikes and they can be treated as a single m
(v2

15v3
1). The second solution, on the other hand, is obtained

assuming thatB2 andB3 are not in contact whenB1 strikes, which
leads to the impulse conditiont350. Having two equally possible
solutions poses a serious difficulty in accepting this approach
valid way of solving this problem.

2.2 Impulse Correlation Ratio. We now consider the com-
pliant model that is presented in Fig. 2, which is the exam
considered in Brogliato@4#. For simplicity, we will choosem1

5m25m35v1
251 and v2

25v3
250. When all the balls are in

contact, their displacements can be obtained as follows:

q15
t

3
2

k~2g2g1!sin~Akg1t !

~kg1!3/2~g12g2!
1

k~2g2g2!sin~Akg2t !

~kg2!3/2~g12g2!
(7)

q25
t

3
1

k~g2g1!sin~Akg1t !

~kg1!3/2~g12g2!
2

k~g2g2!sin~Akg2t !

~kg2!3/2~g12g2!
(8)

q35
t

3
1

kg sin~Akg1t !

~kg1!3/2~g12g2!
2

kg sin~Akg2t !

~kg2!3/2~g12g2!
(9)

whereg1511g1A12g1g2 andg2511g2A12g1g2. The
left and right impulses acting onB2 can be written as follows:

Fig. 2 The compliant, three-ball chain
Dt25E
0

t

k~q22q1!dt5
~3g22g1!g2

2 sin2~
1
2 Akg1t !2~3g22g2!g1

2 sin2~
1
2 Akg2t !

1
2 g1

2g2
2~g12g2!

(10)

Dt35E
0

t

kg~q32q2!dt5
@12cos~Akg1t !#gg22@12cos~Akg2t !#gg1

g1g2~g12g2!
. (11)
uch

ther
Now, we investigate the relationship betweenDt2 andDt3 . First
we form the following linear relationship between the impulse

d5a2Dt21Dt3 . (12)

Substituting Eqs.~10! and ~11! into ~12! and simplifying we ob-
tain

d5
2@3a2g1~g22a2!g1#

g1
2~g12g2!

sin2S 1

2
Akg1t D

2
2@3a2g1~g22a2!g2#

g2
2~g12g2!

sin2S 1

2
Akg2t D . (13)
:
Considering the first extreme case when the first spring is m
stiffer than the second (g!1) in Eq. ~13! yields

d1'2
~a21g!@12cos~Aakt!#

2g
50 for a252g. (14)

Thus, the impulses can be related asDt35gDt2 when the first
spring is much stiffer than the second. Next, we consider the o
extreme,g@1 in Eq. ~13! yields
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Fig. 3 Velocity-impulse graphs
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d2'2
2g~112a2!sin ~A3k/8t !

3g
50 for a2521/2.

(15)

Once again we have a proportional relationship in the form
Dt351/2Dt2 .

Based on the two extreme trends that we have shown, we f
the following hypothesis that we assume is valid for triplets
balls:

Consider a linear sequence of three balls: Bi 21 , Bi , and Bi 11 ,
where Bi 21 impacts Bi while it is in contact with Bi 11 . Then,
the impulses that develop subsequent to the impact betwee
pair Bi 21-Bi and the pair Bi-Bi 11 are proportional, and related
through a constanta i>0. This constant, we term as the Impuls
Correlation Ratio, depends on the specific sequence, mass,
material properties of the three adjacent balls.

We can apply this hypothesis to establish a relationship
tween the normal impulses whenBi establishes contact and in
tiates a collision withBi 11 during the impact ofBi 21 and Bi .
This relationship is given by

Dt i 115a i ,i 11Dt i . (16)

This relationship should be understood in the context of
impact direction, as in this chapter we assume that the imp
propagates in the increasing direction of ball indices. Adapta
of these definitions to cases with reverse impact direction
matter of reversing the indexing.

In the next subsection we use the momentum-based appr
and the Impulse Correlation Ratio, to formulate an energetic
consistent solution to obtain the post-impact velocities.

2.3 The Solution Method. Solving Eqs.~1!, ~2!, ~3!, and
~16! for the velocity changesDv1 , Dv2 , in terms ofDt2 and
Dv2 , Dv3 in terms ofDt3 yields

Dv152
1

m1
Dt2 (17)

Dv25
12a2,3

m2
Dt25

12a2,3

a2,3m2
Dt3 (18)

Dv35
1

m3
Dt3 . (19)

Figures 3~a! and 3~b! depict the velocity-impulse diagrams for th
collisions between the ballsB1 ,B2 and B2 ,B3 , respectively. In
this study we use the energetic coefficient of restitution~@12#! to
determine the terminal impulse for each collision. According
for the first diagram we have~see Fig. 3~a!!
hanics
of

rm
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e
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be-
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e

ly,

v15v1
22

1

m1
t2 (20)

v25v1
21

12a2,3

m2
t2 . (21)

Now, settingv25v1 and solving for the maximum compressio
impulset2

c , results in the following expression:

t2
c5

m1m2~v1
22v2

2!

~12a2,3!m11m2
. (22)

Next, we compute the work done during the compression
restitution phases and use the definition of the energetic co
cient of restitution to get the following equation:

e2
2E

0

t2
c

~v12v2!dt21E
t2

c

t 2
f

~v12v2!dt250 (23)

where e2 is the coefficient of restitution betweenB1 and B2 .
Solving Eq.~23! for t 2

f yields

t 2
f 5

~11e2!m1m2~v1
22v2

2!

~12a2,3!m11m2
. (24)

Moving on to the second diagram~see Fig. 3~b!! where we have

v25H v2
21

12a2,3

a2,3m2
t3 if 0<t3<a2,3t 2

f

v2* 2
t32a2,3t 2

f

m2
if t3>a2,3t 2

f

(25)

where

v2* 5v2
21

~12a2,3!~11e2!m1~v1
22v2

2!

~12a2,3!m11m2
. (26)

Note that, whent3>a2,3t 2
f , the impact betweenB1 and B2 is

over. Thus, only the right impulset3 acts on the ballB2

(2m2(v22v2* )5t32a2,3t 2
f ). This leads to the second part o

the expression given forv2 in Eq. ~25!. Finally the expression for
v3 can be written as follows:

v35v3
21

1

m3
t3 . (27)

Once again, we compute the maximum compression impu
betweenB2 andB3 by settingv35v2 , which yields
JULY 2001, Vol. 68 Õ 577



t3
c5

$~v1
22v2

2!~11e2!m11~v2
22v3

2!@m1~12a2,3!1m2#%m2m3

@~12a2,3!m11m2#~m21m3!
. (28)
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Now, set up the energy equation as

e3
2E

0

t3
c

~v22v3!dt31E
t3

c

t 3
f

~v22v3!dt350 (29)

wheree3 is the coefficient of restitution betweenB2 andB3 . It is
important to note that using different definitions of the coefficie
E

g
r
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nt

of restitution would lead to different outcomes. Although we a
dealing with particle collisions, simultaneous impacts lead to
two segment configuration ofv2 in the velocity impulse diagram
~see Fig. 3~b!!. Thus, one has to use the energetic definition of
coefficient of restitution to get energetically consistent resu
Now, solving Eq.~29! for t 3

f yields
t 3
f 5$~v1

22v2
2!~11e2!m11~v2

22v3
2!@m1~12a2,3!1m2#%m2m3

3

11e3A12a2,3S m2

m3
11D F11

~v2
22v3

2!

~v1
22v2

2!

~12a2,3!m11m2

~11e2!m1
G22

@~12a2,3!m11m2#~m21m3!
. (30)
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The post-impact velocities can now be computed as follows:

v1
15v1

22
1

m1
t 2

f (31)

v2
15v2* 2

t 3
f 2a2,3t 2

f

m2
(32)

v3
15v3

21
1

m3
t 3

f . (33)

We note that the positiveness of the inside of the radical in
~30! can be used to establish an upper bound on the correla
ratio a2,3. If we considera2,3<1, and impose the two underlyin
conditionsv1

22v2
2>0 andv2

22v3
2>0, we can write the uppe

limit of the correlation ratio as follows:

0<a2,3<
m3

m21m3
. (34)

Figure 4 depicts the three post-impact velocities form15m2

5m35e25e35v1
251 as a2,3 is varied in its limiting interval 0

<a2,3<0.5. We note that the two outcomes that are produced
the solution method of Han and Gilmore@3# corresponds to the
q.
tion

by

two limiting values of the Impulse Correlation Ratio. Our meth
exposes a spectrum of solutions that bridge the gap between
two limiting outcomes. The lower bound corresponds to sequ
tial impacts while the upper limit represents simultaneous time
compression at two contacts. By specifying the value of the
pulse Correlation Ratio, one can obtain a unique solution for
problem. The question of the validity of the ratio as a mater
constant remains to be answered. In the latter part of this sec
we will present the results of an experimental study that addre
this issue.

2.4 Multiple Impacts. To explain the multiple impacts tha
may arise during the present problem, we consider a specific
ample that leads to the velocity impulse diagrams that are depi
in Fig. 5. The example corresponds to a three-ball case with in
velocities ofv1

251 m/s,v2
250.8 m/s, andv3

250 m/s. At the on-
set of the collision, we have the ballB2 having simultaneous
impacts withB1 and B3 . The first B1-B2 collision takes place
during the impulse intervals 0<t2<t 2,1

f (0<t3<t3,1*
5a2,3t 2,1

f ). Meanwhile, the firstB2-B3 collision takes place dur-
ing the impulse intervals 0<t2<t2,1* (0<t3<t 3,1

f ). When the
B1-B2 impact ends, the velocity ofB2 continues to decrease a
result of the continuing collision betweenB2 and B3 during the
Fig. 4 Effect of a on the post impact velocities
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Fig. 5 Multiple impacts on the velocity-impulse diagram
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intervalt3,1* <t3<t3,2* . The decrease inv2 during this interval can
be observed as the sudden change in the velocity on the dia
that corresponds tot2 . This is true because during this intervalB1

and B2 do not interact, and thus the impulset2 between these
balls remains constant. Subsequently, the slowdown in the ve
ity v2 initiates a backward impact betweenB1 and B2 when v2

5v15v1,1
1 at t35t3,2* . During the next intervalt 2,1

f <t2<t2,1*

(t3,2* <t3<t 3,1
f ) we have simultaneous collisions betweenB1-B2

and B2-B3 . Next, the firstB2-B3 collision ends att25t2,1* (t3

5t 3,1
f ). But, when this collision ends the velocity ofB2 continues

to increase as a result of the collisions betweenB1 andB2 . Once
again, the increase in this velocity can be observed as the ve
jump att35t 3,1

f on thet3 diagram. Subsequently, the increase
v2 leads to a forward collision betweenB2 and B3 at v25v3

5v3,1
1 and t25t2,2* . Then, we have simultaneousB1-B2 ,B2-B3

impacts during the impulse intervalt2,2* <t2<t 2,2
f (t 3,1

f <t3

<t3,3* ). Finally, theB2-B3 collision continues during the interva
t3,3* <t3<t 3,2

f , which is also reflected as the sudden jump inv2

on the t2 diagram. The overall process ends att25t 2,2
f (t3

5t 3,2
f ) sincev2,4

1 ,v1,2
1 .

Now, using the Impulse Correlation Ratio according to the ru
that were enumerated in Section 2.2 along with Eqs.~1!, ~2!, and
~3! we may express the velocities as follows:

v15H v1
22t2 /m1 if 0>t2,t 2,2

f

v1,2
1 if t2>t 2,2

f (35)

v25

¦

v2
21~12a2,3!

t2

m2
if 0<t2,t 2,1

f

v1,1
1 1S 12

1

a3,2
D t22t 2,1

f

m2

if t 2,1
f <t2<t2,1*

v2,2
1 1

t22t2,1*

m2

if t2,1* <t2<t2,2*

v3,1
1 1

t22t2,2*

m2

if t2,2* <t2,t 2,2
f

v2,4
1 if t2>t 2,2

f

(36)
can
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v25

¦

v2
21S 1

a2,3
21D t3

m2
if 0<t3<t3,1*

v2,1
1 2

t32t3,1*

m2

if t3,1* <t3<t3,2*

v1,1
1 1~a3,221!

t32t3,2*

m2

if t3,2* <t3,t 3,1
f

v3,1
1 1S 1

a2,3
21D t32t 3,1

f

m2

if t 3,1
f <t3,t3,3*

v2,3
1 2

t32t3,3*

m2

if t3,3* <t3,t 3,2
f

v2,4
1 if t3>t 3,2

f

(37)

v35H v3
21t3 /m3 if 0<t3,t 3,2

f

v3,2
1 if t3>t 3,2

f . (38)

The specific computation of final impulses is carried out us
the energetic definition of the coefficient of restitution. The r
spective final impulses and velocities can be found by sequent
solving the following equations fort 2,1

f ,t 3,1
f ,t 2,2

f ,t 3,2
f :

e2
2E

0

t2,1
c

~v12v2!dt21E
t2,1

c

t 2,1
f

~v12v2!dt250 (39)

e3
2E

0

t3,1
c

~v22v3!dt31E
t3,1

c

t 3,1
f

~v22v3!dt350 (40)

e2
2E

t 2,1
f

t2,2
c

~v12v2!dt21E
t2,2

c

t 2,2
f

~v12v2!dt250 (41)

e3
2E

t 3,1
f

t3,2
c

~v22v3!dt31E
t3,2

c

t 3,2
f

~v22v3!dt350 (42)

where t2,1
c , t2,2

c , t3,1
c , and t3,2

c are the maximum compressio
impulses as shown in Fig. 5. It should be obvious from this
ample that one may have to go through a complex set of com
tations in order to solve even this simple example. For this p
pose, we have written a computer program using the softw
package Mathematica that automatically performs the comp
tions required to compute the final impulses, the maximum co
pression impulses, etc.

2.5. Post-Impact Bouncing Patterns of a Three-Ball Cradle
Having developed our solution method, now we study the eff
of various parameters on the possible bouncing patterns that
JULY 2001, Vol. 68 Õ 579
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be exhibited by the three-ball case. Here, we letv2
25v3

250, and
useda2,35a3,25a250.15,e25e350.5 in order to obtain the re
gions in Fig. 6. Yet, we should point out that the regions would
qualitatively preserved if one chooses to use different value
impulse correlation ratio and coefficients of restitution.

Now, we divide the post-impact patterns according to occ
rence of multiple collisions. Multiple collisions exist if we have
least one back impact betweenB2 and B1 . This occurs ifv1

1

5v2 during theB2-B3 impact. The impulse condition that woul
lead to this situation can be obtained by settingv1

15v2 and solv-
ing for t3 , which yields

t3,1* 5
m2~a2m11e2~m11m2!!v1

2

~12a2!m11m2
. (43)

Multiple impacts take place only whena2t 2,1
f <t3,1* <t 3,1

f , which
leads to the following condition:

r 1<
~11e2!~11e3A12a2~11r 2!!

e2~11r 2!
2S 11

a2

e2
D (44)

where r 15m2 /m1 and r 25m2 /m3 . Thus, we may divide the
r 1–r 2 plane into two regions that are below and above the upp
most curve shown in Fig. 6. The region above this curve is
distinct collision area, while in the lower region we have at le
one back impact. We may continue in the same fashion to ob
the boundary for the region where we have at least one forw
impact betweenB2 andB3 as a result of the back impact betwee
B2 and B1 . We obtain a condition for the forward impact in
similar manner to the one we obtained Eq.~44!. This results in the
dashed curve that is situated below the topmost curve. Then

Fig. 6 Bouncing pattern regions on the r 1 – r 2 plane
580 Õ Vol. 68, JULY 2001
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can continue in the same manner to obtain further alterna
boundaries that lead to more pairs of back and forward impac

We may also partition ther 1–r 2 plane into three regions tha
correspond to post-impact velocity directions. Each of these
gions corresponds to a unique post-impact bouncing pattern~see
Fig. 6!. The expression for the line that separates regionsI and II
in the distinct-collision region can be obtained by settingv1

1 in
Eq. ~31! equal to zero and solving forr 1 as

r 15
12a2

e2
. (45)

The line that separates regionsI and III in the distinct-collision
region can be obtained by settingv2

1 in Eq. ~32! equal to zero and
solving for r 2 as

r 25e3A12a21~
1
2 a2e3!22

1
2 a2e3

2. (46)

We may obtain similar partitioning in the multiple collision
zones by setting respective velocity pairs equal to one another
obtaining conditions.

Figure 6 depicts all possible solutions and demonstrates
consistency and uniqueness of the solutions that are obtaine
the method proposed in this chapter. One particularly interes
region of the parameter plane is the lower left corner where
have a dense set of multiple collisions. This region correspond
configurations where the middle ball (B2) is significantly lighter
than the other two balls. Figure 7 depicts the impulse veloc
diagrams of a three-ball cradle withv1

251 m/s, e25e351, a2
50.15, andr 15r 250.01. The post-impact velocities compute
for this case arev1

1520.003 m/s, v2
150.348 m/s, andv3

1

50.999 m/s. In this example, we have a very small central b
and two very large peripheral balls. If we have neglected
central ball then the resulting post-impact velocities of the la
balls would have been 0 and 1 m/s, respectively. The presenc
the central ball does not effect this outcome, yet it introduc
several microcollisions that transmit the momentum from the
cident large ball to the other. As the central ball becomes sma
we may expect more multiple collisions to arise, which is why w
see a dense region of separator curves in the lower left of Fig

3 A General Solution Method for the N-Ball Case
The system under consideration consists ofN balls of given

massesmi . The lastN-1 balls are arranged in a chain such that
consecutive pairs of balls are in contact. One ball strikes one
of the chain with a nonzero pre-impact velocity ofv1

2 , while the
other balls are in contact with~v i

2>v i 11
2 for i 52,N!. As in the

previous section, our objective is to determine the post-imp
velocitiesv i

1 of the balls.
Fig. 7 Velocity-impulse diagram of a small center-ball example
Transactions of the ASME



Journal of Applied Mec
Fig. 8 Intermittent collisions
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3.1 Generalization of the Three-Ball Approach toN-Balls
We start by writing the conservation of momentum equations
a ball Bi , which yields the followingN equations:

miDv i5Dt i2Dt i 11 for i 51,N (47)

with

Dt15DtN1150 (48)

where,Dv i andDt i are the changes in velocities and impulses
a result of the collision. The Impulse Correlation Ratios for ea
ball Bi can be used to obtain additionalN– 2 equations in the
following form:

Dt i5H a i 21,iDt i 21 for i PIf#$1,...,mf%

a i 11,iD i 11 for i PIb#$1,...,mb%
(49)

whereIf andIb are index sets that represent the triplets of ba
undergoing simultaneous collisions in the direction of increas
and decreasing ball indices, respectively. Solving forDv i yields
solutions of the form

Dv152
1

m1
Dt2 (50)

Dv i5H 12a i 21,i

mi
Dt i5

12a i 21,i

a i 21,imi
Dt i 11 for i PIf#$1,...,mf%

a i 11,i21

a i 11,imi
Dt i5

a i 11,i21

mi
Dt i 11 for i PIb#$1,...,mb%

(51)

DvN5
1

mN
DtN . (52)

The next step in solving the impact problem is to proceed as
have done for the three-ball case. That is, the velocities shoul
tracked on the impulse diagrams. The points where the balls
and reestablish contact should be calculated and the related
pulse expressions should be adjusted properly. As we have m
tioned in the three-ball case, this is a very complex procedure
we have developed a Mathematica package that will automatic
set up the calculations forN number of balls.
hanics
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Finally, a symbolic analysis of the velocity outcomes similar
the three-ball case yields the following bounds on the Impu
Correlation Ratios for theN-ball case:

0<a i 21,i<
mi 11

mi 111mi~12a i ,i 11!
(53)

for i 52,N21 with aN21,N50.

3.2 Intermittent Collisions. There is a special situation tha
may arise during collisions for chains withN>4. Figure 8 depicts
a 4-ball collision with m15m25m35m45e25e35e451, a2
5a350.1, and initial velocities ofv151, v250.5, v35v4
50 m/s. At the onset of the impact we have simultaneous co
sions at all three contact points. The firstB1-B2 collision takes
place during the impulse intervals 0<t2<t 2,1

f (0<t3<t3,1* ).
Meanwhile, the firstB2-B3 andB3-B4 collisions occur during 0
<t3<t 3,1

f (0<t4<t4,1* ) and 0<t4<t 4,1
f , respectively. Yet, the

continuingB2-B3 impact leads to a secondB1-B2 collision that
causes the slope change att3,2* on thet3 diagram. The special cas
arises when theB2-B3 impact ends att 3,1

f . At this point, we
encounter an unusual case on thet3 diagram~see Fig. 8~a!!. We
observe an upward vertical jump inv2 due to the continuing sec
ond B1-B2 collision and downward jump inv3 caused by the
ongoingB3-B4 impact. The problem that is encountered here is
determine the point where we have the onset of the secondB2-B3
impact. If we continue theB1-B2 andB3-B4 collisions by ignor-
ing the possible contact betweenB2-B3 we obtain the shaded
region that is shown in Fig. 8~a!. The onset of the secondB2-B3
collision will be somewhere in the shaded region where the t
velocities overlap. When this situation arises, we assume tha
two balls meet in the midpoint of the overlap region. This assum
tion leads to the final diagrams that are depicted in Fig. 8~b!.

4 Experiments

4.1 The Experimental Setup. The objective of the presen
study was to analyze multiple impacts in a multibody system
the nonfrictional case. For this purpose the classical collision
periment known as Newton’s Cradle was set up~see Fig. 9!. Vari-
ous chains with three to six balls of different masses and mate
were arranged by suspending each ball from a frame using
JULY 2001, Vol. 68 Õ 581
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threads. The strings are attached to the frame through slid
guides to ensure properly aligned balls before impact. Pro
alignment of the mass centers ensured the elimination of the
tation of the balls and tangential forces at the points of impact
chain of central impacts was generated by releasing the first
in the chain from a predetermined elevation.

The experimental data was captured by using a high-sp
video system capable of 1000 frames per second. Retro-reflec
markers were used to mark the mass center of each ball.
relative positions of the balls before and after the impact w
determined with respect to a fixed marker, used as reference.
acquired video images were transferred to a personal comp
where a specialized program was used to digitize the mark
positions. The digitized positions were used to compute the dr
ping height of the first ball and the maximum post impact heig
attained by each ball. Finally, the pre-impact velocity of the fi
ball and post-impact velocities of all balls were computed fro
the calculated heights. The experiments were conducted u
three types of balls, designated as A, B, C, and D. The masse

Fig. 9 The experimental set-up

Table 1 Coefficients of restitution

Ball Type A B C D

A 0.97 0.53 0.31 0.94
B 0.53 0.36 0.28 0.38
C 0.31 0.28 0.27 0.3
D 0.94 0.38 0.3 0.85
582 Õ Vol. 68, JULY 2001
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the A, B, and C balls were 45, 53, 53, and 166 grams, resp
tively. An initial set of experiments with pairs of balls were con
ducted to determine the coefficients of restitution that are p
sented in Table 1.

4.2 Experimental Verification of the Impulse Correlation
Ratio. The hypothesis of the Impulse Correlation Ratio is bas
on the fact that it is a constant which depends on the material
geometric properties of triplet of balls in contact. To check th
hypothesis, we first determined the Impulse Correlation Ratios
all possible combinations of the three balls arranged in triple
For this purpose, 27 experiments were conducted. Each exp
ment involved a chain of three balls. The analytical algorithm a
the coefficients of restitution in Table 1 were used to compute
impulse correlation ratios that produced the best fit to the exp
mentally acquired post-impact velocities. The resulting impu
correlation ratios are listed in Table 2.

Now, to test the hypothesis, we conducted ten sets of exp
ments: five with four-ball, three with five-ball, and two with six
ball sequences. Each set of experiments included four individ
experiments with four incident velocities of the first ball. The dro
height of the first ball was adjusted such that we would ha
approximately 0.5, 1.0, 1.5, and 2.0 m/s pre-impact velocitiesv1

2 .
Next, we used the proposed analytical procedure and the exp
mental values listed in Tables 1 and 2 to compute the post imp
velocities.

Figures 10, 11, and 12 depict the experimental results. T
figures depict the results of eight sets of experiments conduc

Fig. 10 Velocity predictions in four ball experiments
4

Table 2 Experimental impulse correlation ratios

Sequence ICR Sequence ICR Sequence ICR Sequence ICR

AAA 0.167 AAB 0.232 AAC 0.218 AAD 0.131
BAA 0.374 BAB 0.296 BAC 0.088 BAD 0.050
CAA 0.495 CAB 0.499 CAC 0.400 CAD 0.129
DAA 0.215 DAB 0.090 DAC 0.101 DAD 0.782
ABA 0.127 ABB 0.104 ABC 0.111 ABD 0.600
BBA 0.340 BBB 0.310 BBC 0.216 BBD 0.390
CBA 0.435 CBB 0.455 CBC 0.342 CBD 0.390
DBA 0.416 DBB 0.710 DBC 0.755 DBD 0.730
ACA 0.262 ACB 0.268 ACC 0.216 ACD 0.664
BCA 0.389 BCB 0.408 BCC 0.319 BCD 0.731
CCA 0.462 CCB 0.414 CCC 0.338 CCD 0.74
DCA 0.430 DCB 0.449 DCC 0.441 DCD 0.744
ADA 0.101 ADB 0.055 ADC 0.001 ADD 0.329
BDA 0.041 BDB 0.046 BDC 0.001 BDD 0.446
CDA 0.196 CDB 0.171 CDC 0.122 CDD 0.495
DDA 0.056 DDB 0.058 DDC 0.001 DDD 0.080
Transactions of the ASME
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with a specific sequence of balls as shown on individual grap
The results clearly demonstrate that the theoretical outcomes
in agreement with the experimental results.

5 Discussion and Conclusion
In this paper we develop a new method that produces a un

and energetically consistent solution to theN-Ball linear chain
problem. The method is based on the impulse-momentum m
ods, the energetic coefficient of restitution, and the Impulse C
relation Ratio that is introduced the first time in this paper.

Fig. 11 Velocity predictions in sequences with the heavy balls

Fig. 12 Velocity predictions in five and six ball experiments
Journal of Applied Mechanics
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Multi-impact problems pose many difficulties and unanswe
questions. The simplest of these problems, the linear chain or
Newton’s Cradle, represents the simplest and the most basic p
lem of this type. The dynamic problem is simple because one o
has to deal with motion of particles, yet it includes the difficulti
that are encountered in more complex systems. The solution o
multi-impact problem has been confounded by the lack of su
cient means in the rigid-body impact theory to resolve the co
sions of stationary bodies that are in contact. This shortcom
manifested itself as the nonuniqueness of solutions obtained u
the theory.

Here, we amended the rigid-body theory by introducing t
Impulse Correlation Ratio. This constant serves as a mechanis
coordinate the force transmission through the chain. Effective
of the energetic coefficient of restitution leads to energetica
consistent results. Moreover, the method is the only one we kn
of that captures the commonly observed grouping of balls thro
the proposed back-propagation process.

Finally, we conducted a set of experiments to verify the p
posed theoretical methods and procedures. We have shown
the Impulse Transmission Ratio can be measured with rela
ease. We have also demonstrated that the predictions of
method produces excellent agreement with the experimen
measured outcomes.
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Dynamic Crack Analysis Under
Coupled Thermoelastic
Assumption
A boundary element method using Laplace transform in time domain is developed f
analysis of fracture mechanic under coupled thermoelastic assumption. The tran
coupled thermoelastic field is solved without need for domain discretization. The sin
behavior of the temperature and displacement fields in the vicinity of the crack t
modeled by quarter-point elements. Thermal dynamic stress intensity factors for m
are evaluated from computed nodal values, using the well-known displacement and
tion formulas. The accuracy of the method is investigated through comparison o
results with the available data in literature. The conditions where the inertia term p
an important role is discussed and variations of the dynamic stress intensity fact
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1 Introduction
In many practical engineering applications, severe ther

shock is the dominating load on the structure. When this type
load is applied into a structure in the presence of a crack,
results may be catastrophic. In these cases, where the ord
magnitude of the thermomechanical coupling parameter is sig
cant, the coupling with energy equation must be taken into
count. The initiation of rapid crack growth, the path and speed
the propagation, crack branching, and arrest are of particula
terest in dynamic fracture mechanics. They are controlled by
dynamic stress intensity factors.

Just now there is no report on the evaluation of the dyna
stress intensity factor for thermal shock problems with
coupled thermoelastic assumption with the inertia term. The p
vious works are limited to evaluation of the stress intensity fac
and/or the thermal shock stress intensity factor for transien
coupled thermoelasticity problems where the inertia term is
nored.

In the classical study of thermoelastic crack problems, the
oretical solutions are available only for very few problems
which cracks are contained in infinite media under special ther
loading conditions, such as in the work of Sih@1# and Kassir and
Bergman@2#. For cracked bodies of finite dimensions, exact so
tions are impossible to obtain. Wilson and Yu@3# employed the
finite element method to deal with these problems. The metho
combined with the modifiedJ-integral theory proposed by Wilso
and Yu @3#. The other prevailing methods employed by Nied@4#
and Chen and Weng@5# is based on the concept of principle s
perposition. That is, in the absence of a crack, the thermal loa
is replaced by a traction force, which is equivalent to the inter
force at the prospective crack face. Lee and Sim@6# solved the
problem of a surface cracked infinite strip under sudden cond
tive cooling and evaluated the mode I thermal shock stress in
sity factor using Bueckner’s weight function method. Rizk@7#
analyzed the same problem with heating instead of cooling, un
which crack closure occurs. Raveenda et al.@8# used a sub

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Oct.
1999; final revision, Sept. 19, 2000. Associate Editor: A. K. Mal. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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region technique to solve thermally loaded crack problems usin
boundary only formulation. Portela et al.@9# presented a formula-
tion called the dual boundary element method which facilitates
analysis of arbitrary crack problems in a single region. T
method was later extended to steady-state and uncoupled tran
thermoelasticity problems by Pasad et al.@10,11# Chen and Weng
@5# developed a general finite element model dealing with
coupled transient thermoelastic problems of fracture in an ed
cracked plate, without considering the inertia term. Katsar
et al. @12# used a boundary-only element method to comp
shock stress intensity factors for a surface cracked infinite s
and a finite edge cracked plate. They considered uncoupled q
static thermoelasticity.

This paper presents a boundary element formulation for
crack analysis under the coupled thermoelastic assumption
isotropic and homogeneous material in two-dimensional pla
strain geometry with an initial edge crack on its boundary is c
sidered. The body is exposed to a thermal shock on its boun
and the resulting thermal stress waves are investigated throug
coupled thermoelastic equations. Due to the short time interva
the imposed thermal shock, the Laplace transforms method is
ployed to model the time variable in the boundary element form
lation. The discretized forms of the equations are obtained by
approximation of boundary variations by quadratic elements,
the quarter-point singular element is used at the crack tip.
present approach is used to evaluate the thermal dynamic s
intensity factor at the first opening crack mode. An infinite st
with a crack on its surface under sudden cooling is conside
The thermal dynamic stress intensity factor is computed fr
crack-opening displacement of a quarter-point element, consi
ing the one-point and two-point displacement formulas. For th
mal shock loading the time-dependent thermal dynamic stress
tensity factor is obtained using the Durbin method. The results
compared with the available quasi-static results.

Governing Equations
A homogeneous isotropic thermoelastic solid is considered

the absence of body forces and heat generation, the gover
equations for the dynamic coupled thermoelasticity in dimensi
less form may be written as

m

l12m
ui , j j 1

l1m

l12m
uj ,i j 2Ti2üi50 (1)

7,
the
nt of
ill
E
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T,i i 2Ṫ2
T0g2

rce~l12m!
u̇ j , j50 (2)

where a dot indicates time differentiation and the subscripti after
a comma refers to partial differentiation with respect toxi( i
51,2), andl, m, ui , r, T, T0 , k, g, andce are Lame’s constant
the components of displacement vector, mass density, abs
temperature, reference temperature, thermal conductivity, st
temperature modulus, and specific heat at constant strain, re
tively. The dimensionless variables are defined as

x̂5
x

a
; t̂5

tC1

a
ŝ i j 5

s i j

gT0 (3)

ûi5
~l12m!ui

a•g•T0
; T5

T2T0

T0
.

Here, a5k/rceC1 is the dimensionless unit length andC1
5A(l12m)/r is the velocity of the longitudinal wave stres
propagation. Thehat is dropped from the terms of Eqs.~1! and~2!
for convenience. Transfering Eqs.~1! and ~2! into the Laplace
domain with respect to time yields

m

l12m
ui , j j 1

l1m

l12m
uj ,i j 2T,i2s2ui50 (4)

T,i i 2sT2
T0g2

rce~l12m!
suj , j50. (5)

Equations~4! and ~5! are rewritten in matrix form as

Li j U j50. (6)

The boundary conditions are assumed to be as follows:

ui5ūi on Gu

t i5 t̄ i5s i j nj on Gt (7)

T5T̄ on GT

q5q̄n5qini on Gq

where ū, t̄ i , T̄, and q̄ are the specified displacement, tractio
temperature, and heat flux vector on the boundary, respective

In order to drive the boundary integral problem, the followin
weak formulation of the differential equation set~6! for the fun-
damental solution tensorVik* is considered,

E
V

~Li j U j !Vik* dV50. (8)

After integrating the byparts over the domain and taking a limit
procedure approaching the internal source point to the boun
point, the following boundary integral equation is obtained:

Ck jUk~y,s!5E
G
ta~x,s!Va j* ~x,y,s!2Ua~x,s!Sa j* ~x,y,s!dG~x!

1E
G
T,n~x,s!V3 j ,n* ~x,y,s!

2T~x,s!V3 j ,n* ~x,y,s!dG~x! (9)

whereUa5ua(a51,2) andU35T andCk j denote the shape co
efficient tensor. The kernelSa j* in ~9! is defined by

Sa j* 5F S l

l12m
Vk j ,k* 1

T0g2

rce~l12m!
sV3 j* D dab

1
m

l12m
~Va j ,b* 1Vb j ,a* !Gnb . (10)
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The detailed mathematical formulations may be found
Hosseini-Tehrani and Eslami@13#. In order to solve numerically
the boundary element integral Eq.~9!, the standard boundary el
ement procedure may be applied. When transformed nume
solutions are specified, transient solutions may be obtained u
an appropriate numerical inversion technique. In this pape
method presented by Durbin@14# is adopted for the numerica
inversion in the time domain.

Evaluation of the Thermal Dynamic Stress Intensity
Factor

The stress intensity factor may be determined either from no
traction or from the crack-opening displacement defined by K
ninen and Popelar@15#:

KI5tA
2A2p l

(11)
KII 5tA

1A2p l

whereKI andKII are mode I and mode II stress intensity facto
respectively;tA refers to traction at node A in Fig. 1~the crack
tip!, while superscripts 2 and 1 indicate the opening and shea
mode, respectively. The length of the singular element at the c
tip is represented byl.

From the crack-opening displacement shown in Fig. 1, con
ering two-point displacement on each edge of the crack, the st
intensity factors are given by Blandford et al.@16# as follows:

KI5
m

a11
A2p

l
@4~vB2vD!1vE2vC#

(12)

KII5
m

a11
A2p

l
@4~uB2uD!1uE2uC#

where a5324n for the plane-strain and~32n!/~11n! for the
plane stress condition. The points B, C, D, and E are shown
Fig. 1, whereAC5 l andAB5 l /4.

For symmetric crackvB52vD andvC52vE , and the expres-
sion for KI is simplified to

KI5
2m

a11
A2p

l
~4vB2vC! (13)

KII 50. (14)

A different formula is obtained ifvB at r 5 l /4 is considered. This
formula is @17#

KI5
m

a11
A2p

l
vB (15)

KII 50. (16)

To evaluateKI , the quarter-point singular element at the crack
is used.

Fig. 1 Element geometries for stress intensity factor
computations
JULY 2001, Vol. 68 Õ 585
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Results and Discussion
Structures covered with coatings and lining may be subjecte

the severe loading conditions. The load might be applied in
form of mechanical and/or thermal shocks. If the period of sho
duration is small enough compared to the first natural frequen
then the solution is found through the coupled field. Consider
infinite strip shown in Fig. 2, initially subjected to a uniform tem
peratureu0 with an edge crack perpendicular to its top surfa
The strip is rapidly cooled by conduction at its upper surfacex2
50, whereas the bottom surfacex25W is insulated. This is a
mode I crack-opening problem. The crack edges are assume
be thermally insulated. Due to the symmetry about thex2-axis,
only half of the strip is discretized.

To solve the problem by the boundary element method
proper length-to-width ratio must be defined. Different length-
width ratios have different effects on the maximum stress int
sity factor. Katsareas and Anifantis@12# showed that the ratios o
L/W>1 have a minor effect on the maximum stress intens
factor around the crack tip. Therefore, to select a minimum
reliable solution domain and consequently a minimum numbe
boundary elements,L/W51 is selected. The boundary eleme
model is presented in Fig. 2~b!, for a crack depth ofa*5.05 and
L/W51, wherea* 5a/W. KI* is defined as the dimensionles
thermal dynamic stress intensity factor, which for a plain-str
condition is KI* 5KI(12v)/@EAW(u02ue)#. Where E is the
modulus of elasticity andt* 5Kt/rcW2 is the dimensionless time
known as the Fourier number.

In all preceding computations the thermal dynamic stress in
sity factors are obtained using the one-point displacement
mula, and the crack-element length to crack-depth ratiol /a is
considered 0.3. The justification for this choice is illustrated
Fig. 3. Many investigators such as Boley and Winer@18# and
Jadeja and Loo@19# indicated that the effect of the inertia term
becomes more significant only when parameterB1 , the ratio of
the characteristic thermal time (L2rce /k) to the characteristic me
chanical time~proportional to the natural period of vibration o
the structure!, becomes small. This is the condition correspond
to the very thin structures. For comparison purposes,B1 is con-
sidered in the order of 107, therefore the effect of inertia term i
negligible. Figure 4 shows the variation of the stress intensityKI*
versus t* . The calculations are carried out for a quarter-po
crack-tip element using the uncoupled theory of thermoelastic
In Fig. 4 the variation ofKI* versus time derived by the analytica
method obtained by Lee and Sim@6# the boundary elemen
method~@2#!, and the method described in the present work

Fig. 2 „a… Cracked strip initially at u0 , under sudden cooling
ue , „b… boundary conditions
586 Õ Vol. 68, JULY 2001
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compared. The analytical solution of Lee and Sim@6# and the
boundary element method solution used by Katsareas and An
tis @12# are obtained ignoring the inertia term. The analysis of
present work with the assumedB1 has good agreement with th
analytical and boundary element method results. To study the
fect of thermomechanical coupling, the variation ofKI* versus the
dimensionless time for different coupling parameters are show
Fig. 5. As the coupling parameter is increased, the peak valu
KI* increases. As it is shown in Fig. 6 when the coupling para
eter is increased the temperature gradient rises, consequentl
crack opening that is a result of the temperature gradient
creases. The increase of the coupling parameter, however, ca
the peak value ofKI* to occur at larger time. This is the sam
result obtained by Chen and Weng@5#. They considered coupled
thermoelastic equations without consideration of the inertia te

Figures 4 and 5 are the plots ofKI* versus time, but the time
scale is selected large enough to compare the results with
known data~t* 51 is of the order of 10 sec!. To see the effect of
the inertia term, however, the time scale must be selected sm
To observed the effect of the inertia term,t* 51 must be in the
order of 10211 sec, which is equivalent to 400 timest̂51.

Fig. 3 Effect of crack-element length to crack-depth ratio l Õa
on accuracy of computed K I* peak value

Fig. 4 Comparison of the dimensionless thermal dynamic
stress intensity factor K I* versus dimensionless time t * , with
analytical and numerical quasi-static results
Transactions of the ASME
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Fig. 5 Comparison of the dimensionless thermal dynamic
stress intensity factor K I* versus dimensionless time t * , with
analytical and numerical quasi-static results for different cou-
pling parameters

Fig. 6 Temperature distribution for different coupling param-
eters at different dimensionless times

Fig. 7 Variation of the dimensionless thermal dynamic stress
intensity factor K I* versus dimensionless time t * , for coupled
and uncoupled models
Journal of Applied Mechanics
In Fig. 7 KI* is increased instantaneously after the applicat
of sudden cooling. At timet* 50.0025, the thermoelastic wave
front reaches the tip of the crack. This cold shock produces ten
stress in thex2-direction and due to the effect of the Poisson
ratio, compressive stress is produced in thex1-direction. This phe-
nomena results in the crack opening and thusKI* increases by
time, as shown in Fig. 7.

When the thermoelastic wavefront passes through the crack
a compressive stress is produced in thex2-direction and the tensile
stress in thex1-direction. This phenomenon results in the cra
closure and thusKI* decreases by time. This decrease is shown
Fig. 7 following t* 50.0025 to aboutt* 50.0035. From t*
50.0035 theKI* value is increased with a slower rate compared
the initial increase. As time is advanced, the thermoelastic wa
are reflected from the boundaries and cause fluctuations in theKI*
value versus time.

The KI* -curve for the coupled case ofC50.6 is shown in Fig.
7. This curve is below theKI* -curve for the uncoupled case. Th
result is justified with Fig. 5 for the small values of time.

Conclusions
A boundary element method and Laplace transform in the t

domain are developed for the analysis of fractured planar bo
subjected to thermal shock-type loads. The transient coupled t
moelasticity are solved without domain discretization. The sin
lar behavior of the temperature and displacement fields, in
vicinity of the crack tip, is modeled by quarter-point elemen
Thermal dynamic stress intensity factors for mode I are evalua
from computed nodal values, using the well-known displacem
and traction formulas. The accuracy of the method is investiga
through comparison of present results with other analytical
computational works. The important features of this study are
follows:

1 The fracture analysis due to thermal shock with the cons
eration of the thermomechanical coupling term through
coupled thermoelasticity equations shows that as the coupling
rameter is increased the peak value ofKI* increases and occurs a
larger time.

2 Treatment of the time domain in this paper is through
Laplace transform method. This is an essential concept to re
tically evaluate the field variables under the coupled thermoela
filed assumptions.

3 The appropriate time scale in which the effect of the iner
term is observed is considered and the importance of the ine
term is shown. When the inertia term is considered, higher va
for KI* is achieved. The maximum value ofKI* is about double
compared to the case where the inertia term is ignored.
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Hysteretic Friction for the
Transient Rolling Contact Problem
of Linear Viscoelasticity
The problem of a smooth rigid indentor under variable loading moving across a
coelastic half-space in one direction with variable speed is considered. The moti
assumed to be frictionless and the standard linear model is adopted to describ
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1 Introduction

The problem of a rigid regular-shaped indentor moving acros
viscoelastic half-space has been addressed by a number of au
over the last four decades. The pioneering experimental wor
Tabor@1# on the phenomenon of rolling friction within the elast
range~i.e., no plastic flow! lead to the conclusion that resistan
to rolling is a bulk effect due primarily to elastic hysteresis; and
the work of Hunter@2# and Morland@3#, modeling the effect in the
linear viscoelastic context. Golden@4,5# and Golden and Graham
@6,7#, developed a general methodology for problems of this k
based on a decomposition of hereditary integrals. The trans
case is discussed in Golden and Graham@8#, while Fan et al.@9#
solve the two-indentor steady-state problem. Inertial effects
included in Golden and Graham@10# for the one-indentor case.

In this paper we consider a uniformly infinite cylindrical inde
tor of large radius rolling in one direction across the surface o
viscoelastic half-space, the response of which is modeled as
of a standard linear solid. In the contact region, the indentor sh
can be approximated as parabolic for small indentation as requ
by the linear theory. Thus, we are also modeling a parabolic
cylindrical indentor moving on a frictionless viscoelastic ha
space. This is a plane-strain configuration. There is no depend
on thez-coordinate, taken to be along the axis of the cylinder

We adopt the noninertial approximation. This configurati
provides a framework for theoretical analysis of the phenome
of hysteretic friction allowing at the same time for substant
mathematical simplifications. An integral equation is derived
gether with subsidiary conditions and an algorithm for their n
merical solution is developed. Alternately accelerating and de
erating periodic and aperiodic motions are considered and
results compared with those for the steady-state solution kn
from Golden and Graham@6#. The model developed and the re
sults obtained are of potential significance in assessing the e
of material hysteresis on the startup and slowdown of mov
machinery; and also in evaluating the effect of vibrations on h
teretic friction losses.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, O
tober 3, 1997; final revision, September 27, 2000. Associate Editor: J. T. Jen
Discussion on the paper should be addressed to the Editor, Professor Lew
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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2 Formulation of the Problem
Consider a smooth rigid indentor on a viscoelastic half-spac

shown in Fig. 1 under total loadW(t).
The indentor, initially at rest, starts moving across the ha

space in the negative direction of thex-axis at timet0 , taken to be
zero for convenience, with speedV(t). The region of contact
between the indentor and the surface underneath isC(t)
5@a(t),b(t)#. The indentor is of circular cross section and
radiusR is large compared with the length of the contact interv
C(t). The boundary conditions for the vertical displaceme
u(x,t) and pressurep(x,t) are

u~x,t !5H d~ t !2
~x2x0~ t !!2

2R
, xPC~ t !,

unknown, x¹C~ t !,

(1)

p~x,t !5H unknown, xPC~ t !,

0, x¹C~ t !,
(2)

wherex0(t) is the coordinate of the point of deepest indentatio
d(t) the vertical displacement atx0(t), while x and t are current
space and time coordinates, respectively.

Starting from the viscoelastic Kolosov-Muskhelishvili equ
tions as described by Muskhelishvili@11# and Golden and Graham
@6#, these boundary conditions can be reduced to the follow
relations obeyed by the complex potentialf(z,t), where z5x
1 iy is a complex variable:

H f1~x,t !2f2~x,t !50, x¹C~ t !,

f1~x,t !2f2~x,t !5 iv~x,t !, xPC~ t !.
(3)

Here the limits taken from above and below thex-axis are

f1~x,t !5 lim
Jz→01

f~z,t !;f2~x,t !5 lim
Jz→01

f~ z̄,t !, (4)

and the overbar denotes complex conjugate. The functionv(x,t)
is given by

v~x,t !5E
2`

t

dt8l ~ t2t8!u8~x,t8!, (5)

whereu8(x,t)5]u(x,t)/]x, l (t) is a causal function determine
from

l̂ ~v!5
m̂~v!

12n
, (6)
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for a material with unique Poisson’s ration, where ‘‘̂ ’’ denotes
Fourier transform andm̂ is the complex modulus of the materia
This latter quantity is the Fourier transform of the singular v
coelastic shear modulusm(t). For a standard linear solid

l ~ t !5 l 0d~ t !1 l 1e2atH~ t !, (7)

where l 0 ,l 1 are experimentally determined constants,d(t) the
Dirac delta function,a the inverse relaxation decay time, an
H(t) the Heaviside step function. The nonvanishing resultan
external forces acting on the half-space implies that absolute~as
opposed to relative! displacements cannot be calculated. In p
ticular, d(t) in ~1! is indeterminate.

The quantityv(x,t) is not known. If, however, we proceed as
it were known, then Eqs.~3! constitute a Hilbert problem for
f(z,t), and the solution without singularities at the ends of t
contact interval is found by Muskhelishvili@11# and Golden and
Graham@6# to be

f~z,t !5
X~z,t !

2p E
C~ t !

dx8
v~x8,t !

~x82z!X1~x8,t !
, (8)

where

X~z,t !5@z2a~ t !#1/2@z2b~ t !#1/2;X1~z,t !5 lim
Jz→01

X~z,t !.

(9)

From the second of~3! it follows that for anyx¹C(t)

v~x,t !56
n~x,t !

p E
a~ t !

b~ t !

dx8
v~x8,t !

~x82x!m~x8,t !
. (10)

Here

m~x,t !5@b~ t !2x#1/2@x2a~ t !#1/2,
(11)

n~x,t !5ux2a~ t !u1/2ux2b~ t !u1/2,

and ‘‘2’’ corresponds tox.b(t) and ‘‘1’’ to x,a(t).
Equation ~10! allows one to expressv(x,t) outside C(t) in

terms of its values insideC(t). This fact plays an important role
in the derivation of the integral Eq.~17! below.

3 The Fundamental Integral Equation and Subsidiary
Conditions

Let t1(x) be the time when the pointx first enters the contac
interval C(t)5@a(t),b(t)#. in other words,x5a(t1(x)). Then,
from Eq. ~5! for any xPC(t):

v~x,t !5E
2`

t1~x!

dt8l ~ t2t8!u8~x,t8!1E
t1~x!

t

dt8l ~ t2t8!u8~x,t8!.

(12)

Fig. 1 Schematic representation of the problem: C„t …
Ä†a„t …,b „t …‡—contact interval, O—center of the cylinder,
R—radius of the cylinder, x 0„t …—point of deepest indentation
of the half-space, x—current point coordinate, u „x ,t …—vertical
displacement at x , d „t …—maximum displacement, V„t …—
indentor speed, W„t …—total load
590 Õ Vol. 68, JULY 2001
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Inverting the convolution in Eq.~5!, we obtain

u8~x,t !5E
2`

t

dt8k~ t2t8!v~x,t8!, (13)

wherek(t) satisfies

E
2`

t

dt8l ~ t2t8!k~ t8!5E
2`

t

dt8k~ t2t8!l ~ t8!5d~ t !. (14)

Substituting from Eq.~13! into the first term of Eq.~12! and
interchanging the order of integration over an infinite triangu
region allows us to rewrite the above-mentioned equation as

v~x,t !5E
t1~x!

t

dt8l ~ t2t8!u8~x,t8!1E
2`

t1~x!

dt8T1~ t,t8;x!v~x,t8!,

(15)

where

T1~ t,t8;x!5E
t8

t1~x!

dt9l ~ t2t9!k~ t92t8!. (16)

The first integral in Eq.~15! is evaluated over the period of tim
whenu8(x,t) is known, because for eacht8 betweent1(x) and t
the point x lies inside C(t). The second integral contains th
values ofv(x,t8) for x¹C(t8). Substituting for these from Eq
~10!, we obtain the main integral equation

v~x,t !5E
2`

t1~x!

dt8E
a~ t8!

b~ t8!
dx8K~x,x8;t,t8!v~x8,t8!1I ~x,t !,

xPC~ t ! (17)

where

K~x,x8;t,t8!5
n~x,t8!T1~ t,t8;x!

pm~x8,t8!~x82x!
, (18)

I ~x,t !5E
t1~x!

t

dt8l ~ t2t8!u8~x,t8!. (19)

The two subsidiary conditions have the form given by Gold
and Graham@6#

E
a~ t !

b~ t !

dx8
v~x8,t !

m~x8,t !
50 (20)

E
a~ t !

b~ t !

dx8
x8v~x8,t !

m~x8,t !
52W~ t !, (21)

where Eq.~20! is a condition necessary for a suitably smoo
solution to exist andW(t) in Eq. ~21! is the normal load acting
upon the indentor.

4 Standard Linear Solid
For the case of a standard linear solidk(t) in Eq. ~13! has the

form

k~ t !5k0d~ t !1k1e2btH~ t !. (22)

Herek0 , k1 andb are related tol 0 , l 1 anda as follows:

k05
1

l 0
, k152

l 1

l 0
2 , b5a2

k1

k0
. (23)

It is assumed that the system is in equilibrium up to timet
50. Equation~17! can be given for a standard linear solid b
employing Eqs.~7!, ~22!, and~23!. The result, after carrying ou
all relevant integration, yields fora(t)<x<b(t)
Transactions of the ASME
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v~x,t !5 l 1e2at1~a2b!t1~x!H 2
1

aR
~x1Ax22a0

2!

1
k0

p E
0

t1~x!

dt8n~x,t8!ebt8

3E
a~ t8!

b~ t8!
dx8

v~x8,t8!

m~x8,t8!~x82x!J 1I ~x,t !, (24)

where

I ~x,t !52
1

R H S l 01
l 1

a D ~x2x0~ t !!

2
l 1

a
e2a~ t2t1~x!!~x2x0~ t1~x!!!

1e2at1~x!E
t1~x!

t

dt8eat8V~ t8!J . (25)

and wherea0 is the semi-contact length for an indentor at rest
is easy to observe that for the limiting case of an indentor at
~x0(t)[0, t1(x)52`! Eq. ~24! reduces to

v~x,0!5I ~x,0!52
1

R S l 01
l 1

a D x0 (26)

Therefore, Eqs.~17! and ~20! are satisfied identically, while Eq
~21! gives the elastic solution for the constant~initial! load ~cf.
Golden and Graham@6#!:

W~0!5
pa0

2

2R S l 01
l 1

a D . (27)

Following the procedure outlined by Muskhelishvili@11#, we
obtain an expression for the pressure inside the contact inte
C(t),

p~x,t !52
m~x,t !

p E
a~ t !

b~ t ! dx8v~x8,t !

~x82x!m~x8,t !
. (28)

Hysteretic frictional effects~see, e.g., Golden and Graham@6#,
Rabotnov@12#; also Moore@13# for a phenomenological discus
sion! result in a force resisting the motion of the indentor in t
horizontal direction. The coefficient of hysteretic friction is give
by

f h5
1

W E
a~ t !

b~ t !

dx p~x,t !u8~x,t !. (29)

5 Numerical Algorithm

5.1 General Algorithm. The general Eq.~17! and the sub-
sidiary conditions~20!, ~21! present a system of three equations
three unknowns:a(t), b(t), andv(x,t). Traditional methods of
solving such systems, e.g.,@14,15#, cannot handle the unknow
contact interval boundaries at an arbitrary timet. Moreover, the
dependency of the upper limit of time integration on the sp
variablex provides yet another obstacle, which renders any al
native method known to the authors, e.g., the finite elem
method, the Nystro¨m method or collocation methods inapplicabl
A comprehensive survey of numerical techniques applicable
problems similar to the one under consideration, together wi
justification for the suggested algorithm can be found in Cher
@16#.

We begin with the initial solution given by Eq.~27!, which
yields

a05A 2RW~0!

pS l 01
l 1

a D . (30)
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Using Eq.~26! and noticing the symmetry of the initial contac
interval, we obtain the starting point for the iterative procedu
v (0)5v(x,0).

To construct an algorithm allowing us to evaluatev (k)(x,t), we
must discretize both the spatial and the temporal domain. At
5t050, when the motion has started, we use a uniform spa
grid. During each iteration we use an unequally spaced mes
explained below, but then revert to equal spacing. The temp
grid is naturally chosen to be adaptive to accommodate the cha
in the indentor velocity.

The discretization procedure for the spatial domain is illustra
in Fig. 2. Suppose that we have computedv ( i )5v(xj ,t i), where
(xj

( i ) ,t i) are the mesh points such thata(t i)5x0
( i )

,x1
( i ) , . . . ,xn21

( i ) ,xn
( i )5b(t i) and@a(t i),b(t i)#5C(t i) is the con-

tact interval att i . In determining a new temporal mesh poi
t i 115t i1Dt i , we require that the size of the time stepDt i be
small in the following sense. We wish to retain all the ‘‘old
mesh pointsxj

( i ) that are in the interior of the ‘‘new’’ contac
interval C(t i 11), specifically, we require thata(t i 11),a(t i)
5x0

( i ) ; xn21
( i ) ,b(t i 11),b(t i). This allows us to computev ( i 11) at

the pointsxj
( i ) , j 50,1,2, . . . ,n21, since for such points the itera

tion scheme is explicit in the sense that the expression forv ( i 11)

at these interior points depends only on previously compu
quantities. This point is discussed further in Section 5.2. W
chooseDt i so as to satisfy

Dt i,D
2 minj 50,n21uxj 112xj u

V~ t i 21!1V~ t i 211Dt i 21!
, (31)

whereD is a constant determined by trial and error andDt i 21 is
the previous time step.

We takeDt0 to be 0.01 andD50.3. These values delivered
reasonable balance between accuracy and computation time
now computev(xj

( i 11) ,t i 11) at all xj
( i 11)PC(t i), i.e., at the

‘‘old’’ mesh points that coincide with the ‘‘new’’ ones using Eq
~24! and~25! ~or ~26!, which is applicable to the initial step!. We
evaluate the spatial integrals using interpolated values forv(x,t)
in the combination of modified Clenshaw-Curtis and Gau
Kronrod formulas used in an IMSL routine DQDAWS. For th
temporal integral in Eq.~24!, which involves multiple evaluation
of spatial integrals, we employ the trapezoid formula modified
described in Section 5.2.

Next we computev(a(0)(t i 11),t i 11) andv(b(0)(t i 11),t i 11) by
extrapolation, respectively carried out over the known values
v(xj ,t i 11), j 50,1,2, . . . ,n21 for some initial approximation
a(0)(t i 11),b(0)(t i 11) to a(t i 11),b(t i 11). These estimates are ob
tained by adding2V(t i)Dt i to a(t i) andb(t i). Now construct a
cost function

f ~a,b!5H E
a

b

dx8
v~x8,t !

m~x8,t !J 2

1H E
a

b

dx8
x8v~x8,t !

m~x8,t !
1W~ t !J 2

.

(32)

Fig. 2 Schematic representation of the discretization proce-
dure for the spatial domain
JULY 2001, Vol. 68 Õ 591
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Clearly, a, and b satisfying the subsidiary conditions~20!, ~21!
will deliver a minimum tof (a,b). This is an iterative procedure
At each iterationk, v(a(k)(t i 11),t i 11) andv(b(k)(t i 11),t i 11) are
re-evaluated using cubic spline extrapolation, respectively. De
the minimizing values ofa andb asa( i 11) andb( i 11) and com-
pute v(a( i 11),t i 11),v(b( i 11),t i 11) using the integral Eq.~24!.
These two new values together withv(xj

( i 11) ,t i 11), j
50,1,2, . . . ,n21, form the numerical solution of Eq.~17! with
subsidiary conditions~20!, ~21!. Note here, that@a( i 11),x0

( i 11)#
and @xn21

( i 11) ,b( i 11)# differ in length from @xl
( i 11) ,xl 11

( i 11)# for l
50,1,2, . . . ,n22. These (n12) points are now replaced by (n
11) equally spaced points as indicated in Fig. 2.

Sincev(x,t) is infinitely smooth insideC(t), the error arising
from approximatingv(x,t i 11) by a cubic spline isO(h4) for all
interior points~de Boor@17#!. Thus, for a sufficiently large num
ber of spatial mesh points inside the contact interval, we can
pect the error in estimatingv(a( i 11),t i 11) and v(b( i 11),t i 11) to
be negligible.

Further description of the algorithm can be found in Cher
@16#.

5.2 Treatment of Integral Singularities. The integrand in
Eq. ~17! possesses integrable singularities atx85a(t8), x8
5b(t8) that can be handled, e.g., by employing Gaussian-t
quadrature formulas. Another singularity occurs whent8 in the
time integral becomes equal tot1(x). In this case a(t8)
5a(t1(x))5x and the inner integrand becomes undefined atx8
5a(t8). Nevertheless,

lim
t8→t1~x!

n~x,t8!E
a~ t8!

b~ t8!
dx8

v~x8,t8!

m~x8,t8!~x82x!
5E, (33)

whereE is finite and so no non-integrable singularity arises. Ho
ever, in choosing an appropriate quadrature formula to eval
the temporal integral in Eq.~24!, it is desirable to avoid handling
the values ofv(x,t) at t5t1(x). To this end, we apply the trap
ezoid formula for tP@0,t i # and the rectangle formula fort
P@ t i ,t1(x)# as follows:

E
0

t1~x!

dt8 f ~x,t8!'(
k51

i
f ~x,tk!1 f ~x,tk21!

2
~ tk2tk21!

1 f ~x,t i !~ t1~x!2t i !, (34)

where

f ~x,t !5n~x,t !ebtE
a~ t !

b~ t !

dx8
v~x8,t !

m~x8,t !~x82x!
. (35)

A consequence of this is that the iterative expression
v(ai 11 ,t i 11) does not containv(ai 11 ,t i 11), but only previously
computed values. This is true in any case for a point in the inte
of the contact interval. Thus, as noted earlier, the iteration sch
is entirely explicit, in contrast with one which would emerge fro
a standard Fredholm-type equation, e.g., Atkinson@14# and Davis
and Rabinowitz@18#. For a fine temporal mesh a reduction
accuracy in the quadrature formula due to the correction given
Eq. ~34! is outweighed by a substantial gain in the computatio
speed.

To evaluatep(xj
( i ) ,t i) using Eq.~28! and the known values o

v(xj
( i ) ,t i) we have to eliminate a first-order singularity in the i

tegrand. Utilizing the Kantorovich method~Davis and Rabinowitz
@18#! and bearing in mind the differentiability ofv(x,t), we ob-
tain
592 Õ Vol. 68, JULY 2001
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p~x,t !52
m~x,t !

p H E
a~ t !

b~ t ! dx8@v~x8,t !2v~x,t !#

m~x8,t !~x82x!

1v~x,t !E
a~ t !

b~ t ! dx8

m~x8,t !~x82x!J . (36)

However, the second term in Eq.~36! is equal to zero, whereas

lim
x8→x

v~x8,t !2v~x,t !

x82x
5v8~x,t ! (37)

andp(xj
( i ) ,t i) can thus be numerically evaluated for any (xj

( i ) ,t i)
without difficulty. Thereupon the hysteretic friction can be com
puted from Eq.~29!.

6 Results and Discussion
The computational realization of the algorithm described

Section 5 was carried out on a networked SUN SPARC 20 wo
station with available 163 Mb RAM and two 150 MHz CPU. Th
program required 18–20 Mb of operating memory and a sin
computational run at the given level of discretization extend
from 25 to 72 hours of CPU time, depending on the chosen p
tern of speed/loading variation. Such a substantial difference
CPU time can be explained bearing in mind that for high spe
loading amplitude, smaller time steps are required, which lead
substantial increase in the computation time.

For the discretization of the spatial domain we choseNX551
mesh points, whereas the time domain had up toNT53000 mesh
points. The results presented below pertain to a viscoelastic
terial with G1 /G051/4. Computational experiments with highe
viscoelasticities~G1 /G051/2 andG1 /G051! did not reveal any
qualitative difference from the case under consideration. We a
chose the dimensionless combinationRa /V0512.5a51.25 and
R510, whereV0 is a characteristic speed for each case.

On the graphs below the subindexT corresponds to the tran
sient solution andScorresponds to the steady-state solution. W
this means, is the following: A steady-state solution assume
velocity constant over all time. The current velocityV(t) is as-
signed as this constant velocity. The quantitiesCT andCS are the
normalized lengths of the transient and steady-state contact i
vals, respectively, computed asCS(t)5(bS(t)2aS(t))/(2R),
CT(t)5(bT(t)2aT(t))/(2R), hS and hT are the indentor tip
shifts: hT(t)52(aT(t)1bT(t)22x0(t))/(bT(t)2aT(t)), hS(t)
52(aS(t)1bS(t))/(bS(t)2aS(t)), where x0(t) is the current
position of the indentor tip. Transient and steady-state coefficie
of hysteretic frictionf HT

and f HS
are computed with the help o

Eq. ~29!. The normalized speed isVN(t)5V(t)/(KaR), where
K510 for the graphs containingCS and CT , hS and hT , while
K5100 for the graphs containingf HS

and f HT
. The different scal-

ing of V for the different graphs is done in order to convenien
fit the plot of velocity on the graph. The loadW(t) is taken to be
unity when constant, while the pressure coefficientp(x,t) lies
between 0 and 1. In our subsequent discussion we shall ass
that all quantities have been normalized as described above.

6.1 Constant Acceleration. As our first example we choos
V5t for t>0 andV50 for t,0. The length of the contact inter
val and the shift of the indentor tip are each plotted against tim
Fig. 3. The hysteretic friction and the speed of the indentor
shown in Fig. 4.

The contact interval width eventually tends to a stable va
which corresponds to the ‘‘high speed’’ elastic limit as describ
in Golden and Graham@6#. The hysteretic friction, however, in
creases to its maximum value and then deceases steadily ten
to zero. Observing the curve in Fig. 4, we can see a time de
between the steady-state peak of the hysteretic friction and
transient counterpart. Initially, the transient hysteretic friction
less than the steady-state value, but becomes larger soon afte
time corresponding to the peak in the steady-state value. Foll
Transactions of the ASME
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ing the peak in the transient value of the hysteretic friction,
difference between it and its steady-state counterpart steadily
clines to zero, as do both quantities at large speeds. Observe
the history of the indentor tip shift mimics the history of th
hysteretic friction here and in all cases described below. This i
expression of the fact that hysteretic friction is related to the
even pressure distribution insideC(t) and the indentor tip shift is
a measure of such asymmetry.

6.2 Acceleration Followed by Deceleration. We now con-
sider the case of an indentor accelerating smoothly from rest
prescribed speedV1 and then, after a period of constant veloci
motion, decelerating to the speedV2 ~which is substantially less
thanV1!. As an example we consider

V~ t !5

¦

sin t, 0<t,
p

2

1,
p

2
<t,7

110.9 sin~ t1p27!, 7<t,71
p

2

0.1, t.71
p

2
.

(38)

Fig. 3 Constantly accelerating indentor: VÄt . History of con-
tact interval width C, indentor tip shift h and speed V.

Fig. 4 Constantly accelerating indentor: VÄt . History of hys-
teretic friction f H and speed V. The solid lines indicate the tran-
sient solution and the broken lines indicate the steady-state
solution. The dotted line indicates the speed.
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The results are presented in Figs. 5 and 6. We can observe
characteristic trough in the length of the contact interval after
initial period of acceleration. Thereupon, for the constant sp
motion the lengths of the contact interval for the transient and
steady-state case merge and for the deceleration phase the
sient contact interval width lags behind the steady-state c
catching up to the latter shortly after the speed has become
stant. The behavior of the hysteretic friction is a mirror image
that of the contact interval width in that for those periods of tim
when the transient contact interval width exceeds its steady-s
counterpart, the transient hysteretic friction is smaller than
steady-state one. It is also interesting to notice that, even thoug
the beginning of the deceleration period the transient hyster
friction is slightly smaller than the steady-state one, by the end
this period it is larger. We also observe~Fig. 7! that the pressure
distribution at the end of the simulation period is very close to
initial pressure distribution.

Fig. 5 Alternately accelerating and decelerating indentor with
V„t … varying as described by „38…. History of contact interval
width C, indentor tip shift h and speed V. The solid lines indi-
cate the transient solution and the broken lines indicate the
steady-state solution. The dotted line indicates the speed.

Fig. 6 Alternately accelerating and decelerating indentor with
V„t … varying as described by „38…. History of hysteretic friction
f H and speed V. The solid lines indicate the transient solution
and the broken lines indicate the steady-state solution. The
dotted line indicates the speed.
JULY 2001, Vol. 68 Õ 593
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6.3 Periodically Varying Speed and Load. For the case of
a periodically varying speed, we consider

V~ t !5A1B sin t, (39)

whereA.B.0. Three combinations ofA andB were considered:
A51.0, B50.9, A51.0, B50.25 and A50.5, B50.25. The
graphs for the first set of values are presented. These are the
interesting results that were obtained.

Consider the case of a relatively high average speed with p
odic variations of large amplitude about this value:A51, B
50.9 ~see Figs. 8 and 9!.

The width of the transient contact interval follows its stead
state counterpart, but with a delay. The steady-state hyste
friction qualitatively follows the velocity, but the neighborhood
the peak is ‘‘inverted,’’ i.e., the friction decreases as the norm
ized speedV/100aR increases to values above 0.01. This is in li
with the fact that for the steady-state problem the hysteretic f
tion reaches its peak at medium velocities and decreases as
deviates to either side of these values Hunter@2#, Golden and
Graham@6#, Fan et al.@9#, and Golden and Graham@8#.

The transient hysteretic friction, however, presents a totally
ferent picture. After a sharp increase corresponding to the ac
erating indentor, it starts to decrease after the normalized sp
V/100aR becomes greater than 0.01. The rate of decrease s

Fig. 7 History of pressure distribution for an alternately accel-
erating and decelerating indentor

Fig. 8 Periodically accelerating indentor: V„t …Ä1¿0.9 sin „t….
History of contact interval width C, indentor tip shift h and
speed V.
594 Õ Vol. 68, JULY 2001
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down shortly after the speed reaches its maximum. The hyste
friction attempts to stabilize at a certain level. As the speed furt
continues to decline, the hysteretic friction drops rapidly and th
starts to increase with the beginning of a new acceleration per
Maximum and minimum values of hysteretic friction and the i
dentor tip shift are larger in the transient analysis than in
steady-state analysis. The shapes of the resulting graphs s
what resemble those of the ones in Figs. 5 and 6.

For the case of a medium mean value of speed and a med
amplitude ~A50.5, B50.25! the transient and the steady-sta
contact interval width are very close. The transient indentor
shift and hysteretic friction follow their steady-state counterpa
with a time delay as in the case discussed above. The instan
relatively high mean speed varying with small amplitude~A51,
B50.25! qualitatively lies between the first and the second of
previously considered cases Chertok@16#.

For a periodically varying load moving with constant spe
~Figs. 10 and 11!, we notice that the transient and the steady-st
contact interval widths become equal after a short period of ini
stabilization. The transient indentor tip shift and hysteretic fricti
follow the variations in the contact interval width with a tim
delay. The transient hysteretic friction mimics its steady-st
counterpart with a time delay as well. However, the steady-s
indentor tip shift varies very slightly, in contrast with the transie
indentor tip shift, which varies significantly.

Fig. 9 Periodically accelerating indentor: V„t …Ä1¿0.9 sin „t….
History of hysteretic friction f H and speed V.

Fig. 10 Periodically varying load: W„t …Ä1¿0.9 sin „t…. History
of contact interval width C, indentor tip shift h and speed V. W
is scaled by a factor of 10 to fit on the graph.
Transactions of the ASME
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7 Conclusion
The integral Eq.~17! subject to subsidiary conditions~20!, ~21!

has been solved for the first time in the transient case. Sev
patterns of speed variation/loading conditions have been anal
and histories of transient contact interval width, hysteretic frict
and indentor tip shift compared with their steady-state coun
parts. For all types of speed/load variation the transient an
steady-state contact interval widths are quite close. For vari
speed, however, the graph shapes of transient and steady-
hysteretic friction are substantially different; the indentor tip sh
generally mimics the behavior of the hysteretic friction. After
period of acceleration, the transient value of the hysteretic frict
exceeds the steady-state value. Finally, for a variableload the
transient hysteretic friction follows the steady-state hysteretic f
tion with a time delay.

To the authors’ knowledge, the current work is the first exam
of a numerical technique for solving transient viscoelastic mix
boundary value problems that involve moving boundary regio
Further research may include the rolling in one direction of a tr
of indentors and the to-and-fro motion of a single indentor. Ho
ever, those two cases require substantial modification of the
rent algorithm and its software implementation.

Fig. 11 Periodically varying load: W„t …Ä1¿0.9 sin „t…. History
of hysteretic friction f H and speed V. W is scaled by a factor of
100 to fit on the graph.
Journal of Applied Mechanics
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Vibrations of Tapered Timoshenko
Beams in Terms of Static
Timoshenko Beam Functions
In this paper, the free vibrations of a wide range of tapered Timoshenko beams
investigated. The cross section of the beam varies continuously and the variati
described by a power function of the coordinate along the neutral axis of the beam
static Timoshenko beam functions, which are the complete solutions of a tapered Ti
enko beam under a Taylor series of static load, are developed, respectively, as the
functions of the flexural displacement and the angle of rotation due to bending.
Rayleigh-Ritz method is applied to derive the eigenfrequency equation of the ta
Timoshenko beam. Unlike conventional basis functions which are independent o
cross-sectional variation of the beam, these static Timoshenko beam functions v
accordance with the cross-sectional variation of the beam so that higher accuracy
more rapid convergence have been obtained. Some numerical results are presen
both truncated and sharp-ended Timoshenko beams. On the basis of convergenc
and comparison with available results in the literature it is shown that the first
eigenfrequencies can be given with quite good accuracy by using a small number of
of the static Timoshenko beam functions. Finally, some valuable results are pres
systematically. @DOI: 10.1115/1.1357164#
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1 Introduction
Beams with varying cross section are widely used as struct

elements in aeronautical, civil, naval, and mechanical enginee
Therefore, it is necessary for designers to understand their
namic characteristics. It is well known that the Bernoulli-Eu
beam theory has been successfully applied to the slender b
analysis. This classical beam theory, however, overpredicts al
eigenfrequencies for thick beams and the higher eigenfrequen
for slender beams, as it neglects the effects of transverse s
deformation and rotary inertia. This shortcoming of classical be
theory results in the presentation of the Timoshenko beam th
~@1#!. Unlike the single deflection variable in Bernoulli-Eule
beam theory, the governing characteristic equations of Timo
enko beam are two coupled differential equations expresse
terms of two independent variables: the flexural displacement
the angle of rotation due to bending. Therefore, the analysis
Timoshenko beams is more difficult than that of Bernoulli-Eu
beams. Consequently, no exact solutions in the closed form
vibrations of tapered Timoshenko beams have been obtaine
most cases approximate numerical methods have to be used,
as the finite element method~@2–4#!, the spline function method
~@5#!, the optimized Rayleigh-Ritz method~@6#!, the Galerkin
method ~@7,8#!, the transfer matrix method~@9#!, the step-
reduction method~@10#!, and series solutions based on the meth
of Frobenius~@11#!. A survey on the study of Timoshenko beam
~@12#! can be found in the literature.

In the present analysis, the static Timoshenko beam funct
are developed as the basis functions to analyze the free vibra
of tapered Timoshenko beams. The Rayleigh-Ritz method is u
to derive the eigenfrequency equation of the beam. Both con
gence and comparison studies show that the present metho

1To whom correspondence should be sent.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nov. 3
1999; final revision, Aug. 15, 2000. Associate Editor: A. K. Mal. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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quite high accuracy and the first few eigenfrequencies can be
tained by using a small number of the static Timoshenko be
functions.

2 The Eigenfrequency Equation of a Tapered Beam
The tapered Timoshenko beam considered here and its co

nate system are shown in Fig. 1. The cross section of the b
varies continuously and is described by a power function of
coordinate along the neutral axis of the beam. The origin of
coordinate system is fixed at such a position that the power fu
tion describing the cross section of the beam takes up zero v
or infinity. Both truncated beams and sharp-ended beams are
ied in the present analysis. The length of the sharp-ended bea
L. A truncated beam is considered as part of a sharp-ended b
and has the lengthl 5(12a)L wherea is referred to as trunca
tion factor. Assuming that the cross-sectional areaA(x) and the
cross-sectional moment of inertiaI (x) can be, respectively, writ-
ten in the form of

A~x!5A1~x/L !r , I ~x!5I 1~x/L !s (1)

whereA1 and I 1 are, respectively, the values ofA(x) and I (x) at
x5L. Indicesr ands are referred to as taper factors. Equation~1!
expresses a wide range of tapered beams at different valuesr
ands. Some common linearly tapered beams are shown in Ta
1. According to the Timoshenko beam theory, the strain energU
and the kinetic energyT of a nonuniform Timoshenko beam ca
be given as follows:

U5
1

2 EaL

L H EI1~x/L !sF]w~x,t !

]x G2

1kGA1~x/L !r

3Fw~x,t !1
]y~x,t !

]x G2J dx,
(2)

T5
1

2 EaL

L H rA1~x/L !rF]y~x,t !

]t G2

1rI 1~x/L !sF]w~x,t !

]t G2J dx

0,
he
nt of
ill
E

01 by ASME Transactions of the ASME



e

nd

r
s-
t-
d if
wherey(x,t) is the flexural displacement,w(x,t) is the angle of
rotation due to bending andt is the time.E is the Young’s modulus
andG is the shear modulus.r is the mass per unit volume of th
beam andk is the shear correction factor.

For the free vibration of a beam, the flexural displacement a
the angle of rotation due to bending may be written as

y~x,t !5Y~x!e2 ivt, w~x,t !5c~x!e2 ivt/L (3)

wherev is the eigenfrequency of the beam andi 5A21.

Fig. 1 The sketch of beams with continuously varying cross
section; „a… the variation of cross-sectional area when rÌ0; „b…
the variation of cross-sectional moment of inertia when sÌ0;
„c… the variation of cross-sectional area when rË0; „d… the
variation of cross-sectional moment inertia when sË0

Table 1 Some common linearly tapered beams
Journal of Applied Mechanics
nd

Introducing the following nondimensional coordinate a
parameters

j5x/L, V25rA1v2l 4/EI1 , d5EI1 /~kGA1L2!,

h5I 1 /~A1L2! (4)

and substituting Eq.~3! into Eq. ~2!, the Lagrangian functionL
can be given as follows:

L5
1

2 Ea

1H jsFdc~j!

dj G2

1
1

d
j rFc~j!1

dY~j!

dj G2J dj

2
V2

2~12a!4 E
a

1

@j rY~j!21hjsc~j!2#dj. (5)

Assuming that the displacement functionY(j) and the rota-
tional angle functionc~j! can be written as

Y~j!5 (
j 5 j 0

`

ajYj~j!, c~j!5 (
n5 j 0

`

bncn~j! (6)

where bothaj and bn are unknown coefficients andj 0 is the
lowest order of the basis functions. For truncated beams,j 050,
however, for sharp-ended beams,j 0 is determined by the tape
factor s of cross-sectional moment of inertia, which will be di
cussed later.Yj (j) andcn(j) are the basis functions, which sa
isfy at least the geometric boundary conditions of the beam an
possible, all the boundary conditions.

Truncatingj and n, respectively, afterj 01J, then substituting
Eq. ~6! into Eq. ~5! and applying the Rayleigh-Ritz method

]L

]aj
50, j 5 j 0 , j 011,j 012, . . . ,j 01J,

]L

]bn
50, n5 j 0 , j 011,j 012, . . . ,j 01J, (7)

one obtains the eigenfrequency equation as follows:

F K j j̄ K jn̄

Kn j̄ Knn̄
G F $A%

$B%G2 V2

~12a!4 F M j j̄ M jn̄

Mn j̄ Mnn̄
G F $A%

$B%G5 H0
0J (8)

where

K j j̄ 5
1

dEa

1

j r
dYj~j!

dj

dYj̄ ~j!

dj
dj,

K jn̄5
1

dEa

1

j r
dYj~j!

dj
c n̄~j!dj,

Kn j̄5
1

dEa

1

j rcn~j!
dYj̄ ~j!

dj
dj,

Knn̄5E
a

1Fjs
dcn~j!

dj

dc n̄~j!

dj
1

1

d
j rcn~j!c n̄~j!Gdj,

M j j̄ 5E
a

1

j rYj~j!Yj̄ ~j!dj, M jn̄5Mn j̄50,

Mnn̄5hE
a

1

jscn~j!c n̄~j!dj,

$A%5@aj 0
aj 011 . . . aj 01 j #

T, $B%5@bj 0
bj 011 . . . bj 01J#

T.
(9)

Using the standard eigenvalue program to solve Eq.~8!, 2(J
11) eigenfrequencies and the unknown coefficientsaj ( j
5 j 0 , j 011, . . . ,j 01J) and bn (n5 j 0 , j 011, . . . ,j 01J) corre-
sponding to every eigenfrequency can be easily obtained.
JULY 2001, Vol. 68 Õ 597
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3 The Static Timoshenko Beam Functions„STBF…
Once again consider the tapered beam analyzed in the last

tion. The differential characteristic equation of the tapered be
under a transverse nondimensional static loadQ(j) can be given
as follows:

d
d

dj H j rFdY~j!

dj
2c~j!G J 5Q~j! (10a)

d

dj Fjs
dc~j!

dj G1dj rFdY~j!

dj
2c~j!G50. (10b)

The bending momentM (j) and the transverse shear forceV(j)
of the beam are, respectively, given as

M ~j!52
EI1

L2 js
dc~j!

dj
, V~j!5

kGA1

L
j rFdY~j!

dj
2c~j!G .

(11)

At each end of the beam, two boundary equations can be
scribed. For example, at the endj5a, one has

Y~a!50, c~a!50 for the clamped end (12a)

Y~a!50, M ~a!50 for the simply-supported end
(12b)

M ~a!50, V~a!50 for the free end. (12c)

Similarly, the boundary equations at the endj51 can also be
written.

From equations~10a! and ~10b!, an uncoupled differentia
equation aboutc~j! can be derived as follows:

d2

dj2 Fjs
dc~j!

dj G5Q~j!. (13)

An arbitrary loadQ(j) can be expanded into a Taylor series

Q~j!5(
j 50

`

Qj~j2jc!
j5(

j 50

`

Qj(
k50

j

~21! j 2kDk
j jc

j 2kjk (14)
598 Õ Vol. 68, JULY 2001
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where jc is the center of the Taylor series expansion andDk
j

5 j !/ @k!( j 2k)! #.
Substituting Eq.~14! into Eq. ~13!, the general solution of the

angle of rotation due to bending can be easily given as follow

c~j!5(
j 50

`

Qjc j~j! (15)

where

c j~j!5(
k50

j

~21! j 2kDk
j jc

j 2kf k~j!1 f 0~j!C0
j 1 f 1~j!C1

j 1C2
j

(16)

and

f k~j!5
1

~k11!~k12! H ln~j!, k5s23

jk132s/~k132s!, kÞs23,

f 0~j!5H ln~j!, s52

j22s/~22s!, sÞ2,
(17)

f 1~j!5H ln~j!, s51

j12s/~12s!, sÞ1.

Substituting Eq.~14!–~17! into Eq. ~10a! or ~10b!, the general
solutions of the transverse displacement can be solved and wr
in the form of

Y~j!5(
j 50

`

QjYj~j!, (18)

where

Yj~j!5(
k50

j

~21! j 2kDk
j jc

j 2k@F1k~j!2dF2k~j!#1@F01~j!

2dF02~j!#C0
j 1F1~j!C1

j 1jC2
j 1C3

j , (19)

and
F1k~j!5
1

~k11!~k12! H j@ ln~j!21#, k5s23

ln~j!, k5s24

jk142r /@~k132s!~k142s!#, kÞs23; kÞs24,

F2k~j!5
1

k11 H ln~j!, k5r 22

jk122r /~k122r !, kÞr 22,

F01~j!5H j@ ln~j!21#, s52

ln~j!, s53

j32s/@~22s!~32s!#, sÞ2; sÞ3,

F02~j!5H ln~j!, r 51

j12r /~12r !, rÞ1,

F1~j!5H j@ ln~j!21#, s51

ln~j!, s52

j22s/@~12s!~22s!#, sÞ1; sÞ2.

(20)
nts
the
two
are
In Eq. ~16! and~19!, Ck
j (k50,1,2,3) are the unknown constant

3.1 Truncated Beam. For the truncated beams withou
rigid-body movements, the unknown coefficientsCk

j (k
50,1,2,3) in Eq.~16! and ~19! can be uniquely determined from
s.

t

the four boundary equations of the beam for everyj. However, for
a beam with rigid-body movements, these unknown coefficie
cannot be determined directly from the boundary equations of
beam. In such a case, one can divide the basis functions into
parts: the rigid-body modes and a set of basic solutions which
Transactions of the ASME
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the basis functions of the beam with additional restraints elimin
ing the rigid-body movements~@13#!. The authors used this simpl
method time and again to analyze the vibrations of beams
plates~@14–16#!. Up to now, no failure case has been found.
the present analysis, the static Timoshenko beam functions for
beam with simply supported two ends are selected as the b
solutions, which are supplemented by the modes of rigid-bo
movements as given in Table 2.

3.2 Sharp-Ended Beam. For the sharp-ended beams, th
sharp end cannot sustain a bending or a shear force, hence on

C0
j 50, C1

j 50. (21)

Moreover, the displacement and rotational angle of the be
should be finite at the sharp end, so that there is a limit to
lowest order of the Taylor series load as follows:

j .s22. (22)

Therefore, the lowest order of the Taylor series should be take

j 05Max$Int~s21!,0% (23)

and Eq.~13! should be replaced by

Q~j!5 (
j 5 j 0

`

Qj~j2jc!
j5 (

j 5 j 0

`

Qj (
k5 j 0

j

~21! j 2kDk
j jc

j 2kjk

(24)

For the cantilevered sharp-ended beams~F-C beams!, the un-
known coefficientsC2

j and C3
j in Eq. ~16! and ~19! can be

uniquely determined from the boundary equations of the beam
j51 for eachj. While for a beam with rigid-body movements, th
static Timoshenko beam functions for the cantilevered sha
ended beam are taken as the basic solutions, which are su
mented by the modes of rigid-body movements as given in Ta
3.

4 Convergence and Comparison Study
Using the static Timoshenko beam functions derived in the

section as the basis functions of the tapered Timoshenko be
the convergence and comparison study is carried out in this
tion. It should be pointed out that the convergence is concer
with the centerjc of the Taylor series expansion~@13#!. The best
convergence can be obtained when the midpoint of the beam
taken as the center of the Taylor series expansion, i.e.,jc5~1

Table 2 The static beam functions „SBF… y i„j… „ iÄ1,2,3, . . . …
for truncated tapered Timoshenko beams with rigid-body
movements

Table 3 The static beam functions „SBF… y i„j… „ iÄ1,2,3, . . . …
for sharp-ended Timoshenko beams with rigid-body move-
ments
Journal of Applied Mechanics
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1a!/2. This phenomenon can be easily explained:jc5(11a)/2
can provide the optimal convergence for the Taylor series exp
sion in the interval@a,1#. Without lose of generality, in all the
following computations, only the tapered beams with rectangu
cross section are analyzed and parametersjc5(11a)/2, k55/6,
Poisson’s ration50.3 are used unless otherwise stated. In suc
case,d50.26(12a)2(h1 / l )2 and h5(12a)2(h1 / l )2/12 where
h1 is the thickness of the tapered beam atj51 andh1 / l is the
thickness-length ratio of the beam.

The convergence study on eigenfrequencies of a cantilev
beam with linearly varying width, which is clamped at the wid
end, is first considered. The first four eigenfrequencies versus
number of terms of the static Timoshenko beam functions from
to 10 are given in Table 4 for the beam with a thickness-len
ratio h1 / l 50.3. It can be seen that in general, four to eight ter
of the static Timoshenko beam functions are sufficient to give
first four eigenfrequencies with quite satisfactory accuracy.
should be reminded that when the value of the truncation factoa
is close to 1, the tapered beams approximate to the unif
beams. However, it is obvious that Eqs.~16! and~19! are singular
at a51. Therefore, the larger isa ~especially whena.0.8!, the
smaller number of terms of the static beam functions can be u
in the computation. For example, whena50.9 only no more than
three terms of the static Timoshenko beam functions can pro
stable numerical computations under double precision. In orde
prevent the occurrence of ill-conditioning and increase the num
of significant figures, quadruple precision is used in the followi
computations by takingJ57 for a,0.7; J56 for 0.7<a,0.8;
J55 for 0.8<a,0.9, andJ54 for a50.9.

The comparison study on the first four eigenfrequencies
given in Table 5 for both thick beams~Timoshenko beams! with
linearly varying thickness and slender beams~Bernoulli-Euler
beams! with linearly varying thickness. The reference data com
from finite element method~@4#!, step-reduction method~@10#!,
Frobenius’ method~@17#!, and series solution~@11#!, respectively.

Table 4 The convergence study on eigenfrequencies of a can-
tilevered beam clamped at the wider end and with linearly vary-
ing width, h 1 Õ lÄ0.3
JULY 2001, Vol. 68 Õ 599
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Three kinds of support conditions are considered: beams with
clamped thicker end and the free thinner end~F-C!; beams with
two clamped ends~C-C!; and beams clamped at the thicker en
and simply supported at the thinner end~S-C!. Good agreement
has been observed for all cases.

The comparison study on the first two eigenfrequencies o
simply-simply supported Timoshenko beam with linearly varyi

Table 5 The comparison study on the first four eigenfrequen-
cies of tapered beams with linearly varying thickness

Table 6 The accuracy comparison of the first two eigenfre-
quencies for a simply-simply supported Timoshenko beam
with linearly varying thickness, respectively, using the static
Timoshenko beam functions „STBF… on the tapered beam and
vibrating Timoshenko beam functions „VTBF… of uniform beam
600 Õ Vol. 68, JULY 2001
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thickness based on three values of truncation factors~a
50.1,0.2,0.3!, respectively, by using the static Timoshenko bea
functions developed from the tapered beam and the conventi
vibrating Timoshenko beam functions developed from the u
form beam are given in Table 6. It is seen that accuracy a
convergence of the vibrating Timoshenko beam functions
worse than those of the static Timoshenko beam functions. Th
always true for fundamental eigenfrequencies of tapered be
with any truncation factor although the vibrating Timoshen
beam functions are the exact solutions for uniform Timoshen
beams. It is shown that using the vibrating Timoshenko be
functions as basis functions in the Rayleigh-Ritz method, the
curacy and convergence of eigenfrequencies of a tapered b
will decrease with the decrease of the truncation factora. The
above analysis demonstrates that when developing the basis f
tions for tapered beams, especially for the beams with a sm
truncation factor, the effect of both the variation of cross sect
and the shear correction factor should be considered.

5 Numerical Results
A survey on the literature reveals that the available results

vibrations of Timoshenko beams with varying cross section
very limited and only results about beams with larger truncat
factor ~a>0.6! can be found. Therefore, it is meaningful to sy
tematically provide some data what can serve as a benchmar
further reference for researchers and present useful informa
for designers. In this section, three types of tapered beams are
analyzed in detail: beams with linearly varying thickness; bea
with linearly varying width; and beams with linearly varying bot
width and thickness. In the analysis, three kinds of support c
ditions are considered: clamped-clamped beams~C-C!; simply-
simply supported beams~S-S!; cantilevered beams with the
clamped larger end~F-C!. The first three eigenfrequencies of th
tapered Timoshenko beams with three types of varying cross
tions are given, respectively, in Table 7, Table 8, and Table 9
truncation factora varying from 0 to 0.9 with an increment 0.1. In
every case, two kinds of thickness-length ratios:h1 / l 50.1; h1 / l
50.2 are considered. From these tables, one can see that in
cases, the eigenfrequencies of the beams increase with the
crease of the truncation factora. However, for the F-C beams
with linearly varying thickness and the F-C beams with both li
early varying thickness and linearly varying width, the fundame
tal eigenfrequencies decrease with the increase of the trunca
factor. And for the F-C beams with linearly varying width, the fir

Table 7 The first three eigenfrequencies of Timoshenko
beams with linearly varying thickness, Case A: F-C beams;
Case B: C-C beams; Case C: S-S beams
Transactions of the ASME
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three eigenfrequencies all decrease with the increase of the
cation factor. Furthermore, it is seen that the effect of the trun
tion factor on the eigenfrequencies of C-C and S-S beams w
linearly varying width is substantially lower than that on th
eigenfrequencies of other cases.

In Fig. 2, the first three eigenfrequencies of the sharp-en
Timoshenko beams clamped at the larger end are also given
respect to different thickness-length ratioh1 / l . Three types of
varying cross sections are considered. Moreover, the first th
eigenfrequencies of the truncated tapered beams with the clam
larger end and the free smaller end for thickness-length ratioh1 / l
from 0.001 to 0.5 are given, respectively, in Fig. 3, Fig. 4, and F
5. Three types of varying cross sections are also considered
spectively. From the results, one can find that the thickness-len
ratio h1 / l has an important effect on the eigenfrequencies of
moshenko beams, which increases with both the increase ofh1 / l
and the order of the eigenfrequencies. It is seen that increasing
thickness-length ratio trends to lower the eigenfrequencies.

When the truncation factora50.5, the fundamental eigenfre
quencies of cantilevered truncated Timoshenko beams with

Table 8 The first three eigenfrequencies of Timoshenko
beams with linearly varying width, Case A: F-C beams; Case B:
C-C beams; Case C: S-S beams

Table 9 The first three eigenfrequencies of Timoshenko
beams with linearly varying both width and thickness, Case A:
F-C beams; Case B: C-C beams; Case C: S-S beams
Journal of Applied Mechanics
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same thickness and width variations are given in Fig. 6 with
spect to the thickness-length ratioh1 / l for 0.001 to 0.5. Six
groups of taper factors:r 54 ands58; r 53 ands56; r 52 and
s54; r 51 ands52; r 521 ands522; r 522 ands524 are
considered. In Fig. 7, the first two eigenfrequencies of cant
vered sharp-ended Timoshenko beams are given with respe

Fig. 2 The first two eigenfrequencies of cantilevered sharp-
ended Timoshenko beams with linearly varying thickness
and Õor width via the thickness-length ratio h 1 Õ l : –d– V1 and
- -d- - V2 for the beams with linear varying thickness; – m– V1
and - -m- - V2 for the beams with linear varying width; – j– V1
and - -j- - V2 for the beams with linear varying both thickness
and width

Fig. 3 The first three eigenfrequencies of cantilevered Ti-
moshenko beams with linearly varying thickness via the
thickness-length ratio h 1 Õ l for two values of truncation factors
aÄ0.25 and aÄ0.5

Fig. 4 The first three eigenfrequencies of cantilevered Ti-
moshenko beams with linearly varying width via the thickness-
length ratio h 1 Õ l for two values of truncation factors aÄ0.25
and aÄ0.5
JULY 2001, Vol. 68 Õ 601
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the thickness-length ratioh1 / l from 0.001 to 0.5. Three groups o
taper factors:r 51 and s52; r 51/2 ands53/2; r 51/2 ands
51/2 are considered. It is seen that the present method ca
applied to analyze the vibratory characteristics of a wide rang
tapered Timoshenko beams.

Fig. 5 The first three eigenfrequencies of cantilevered Ti-
moshenko beams with linearly varying both thickness and
width via the thickness-length ratio h 1 Õ l for two values of trun-
cation factors aÄ0.25 and aÄ0.5

Fig. 6 The fundamental eigenfrequencies of cantilevered Ti-
moshenko beams with the same thickness and width variation
via the thickness-length ratio h 1 Õ l for the truncation factor
aÄ0.5

Fig. 7 The first two eigenfrequencies of cantilevered sharp-
ended Timoshenko beams via the thickness-length ratio h 1 Õ l :
–d– V1 and - -d- - V2 for taper factors rÄ1, sÄ2; –m– V1 and
- -m- - V2 for taper factors rÄ1Õ2, sÄ3Õ2; –j– V1 and - -j- - V2
for taper factors rÄ1Õ2, sÄ1Õ2
602 Õ Vol. 68, JULY 2001
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6 Conclusions
The static Timoshenko beam functions which are the comp

solutions of the tapered Timoshenko beams under a Taylor se
of static loads, are developed as the basis functions of the flex
displacement and the angle of rotation due to bending to ana
the vibrations of Timoshenko beams with varying cross section
the Rayleigh-Ritz method. Unlike conventional basis functio
such as vibrating Timoshenko beam functions for uniform
moshenko beams which are independent of the cross-sect
variation of the beam, the static Timoshenko beam functions
veloped in this paper closely tie with the cross-sectional variat
of the beam. Therefore, they are, in a sense, a set of optimal b
functions for vibration analysis of tapered Timoshenko beams
wide range of tapered Timoshenko beams with the cross sectio
power variation is studied for both truncated beams and sh
ended beams. The convergence and comparison studies show
the first few eigenfrequencies can be given with sufficiently sa
factory accuracy by using only a small number of terms of
static Timoshenko beam functions. Finally, some valuable res
are presented systematically.
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Wave Oscillation in a Circular
Harbor With Porous Wall
The wave resonance in a circular harbor surrounded by a porous seawall is analy
Matching the velocity and pressure along the porous seawall and the harbor entranc
full solution is obtained. The resonance condition is found to depend on the wave
quency, the complex porous-effect parameter and the internal dimension of the p
seawall. The oscillation characteristics are analyzed in different cases. The conditio
natural oscillation is derived by studying the wave resonance in a closed circular ha
surrounded by a porous seawall.@DOI: 10.1115/1.1379955#
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1 Introduction
In the last decade, there has been a significant change in

nature of harbor traffic in Hong Kong, which results in the de
rioration of wave conditions in Victoria Harbor. As a result, th
dynamic and mooring forces acting on ships and docks are
ously affected by the high wave oscillation and in turn cre
serious problems to different marine structures, affecting load
and unloading of cargoes. As a means to dissipate wave ener
porous seawall is introduced inside an existing harbor, which
reduce the wave oscillation and improve the general wave clim

The vertical-wall harbors are widely used for their simple d
sign and construction. In the presence of waves, a vertical ha
wall reflects most of the wave energy incident on it. With stro
harbor oscillations, vertical walls are subjected to large wa
forces. Recently, permeable breakwaters, detached breakw
and submerged breakwaters have received much attention
their capability to dissipate wave energy is widely studied. So
of the energy-dissipating breakwaters are being tested in har
~@1,2#!.

On the other hand, wave agitation in harbor due to an incom
wave of a particular frequency may last for a long time. Th
agitation leads to a resonant state and is the cause of extre
high wave oscillations inside the harbor. The dynamic and mo
ing forces acting on marine structures are increased during
high oscillation which usually create serious problems to load
and unloading of cargoes. Thus, during the harbor planning, m
sures should be taken to avoid such harbor resonance. Ther
two kinds of oscillations existing in a harbor, one is the free
cillation and the other forced oscillation. Lamb@3# analyzed the
effect of free oscillation in closed rectangular, circular, and ell
tical basins. McNown@4# investigated the forced oscillation in
circular harbor having a narrow opening. In a rectangular har
the effect of forced oscillation was analyzed by Kravtchnenko a
McNown @5#. Further study on harbor resonance was done
Miles and Munk @6#, LeMehaute@7# and Ippen and Goda@8#.
Miles and Munk@6# found that the wider the harbor mouth, th
smaller the amplitude of the resonant oscillation which is con
dictory to the fact that less wave energy will be transmitted to
harbor through a smaller opening. This phenomenon was kn
as the harbor paradox. Lee@9# considered rectangular and circul
harbors with their openings located on a straight coastline w
Mei and Petroni@10# dealt with a circular harbor protruding half
way into the open sea. To deal with arbitrary harbor configurat

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
2000; final revision, Sept. 26, 2000. Associate Editor: D. A. Siginer. Discussion
the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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Hwang and Tuck@11# and Lee@9# developed integral equation
methods while Mei and Chen@12# provided a hybrid elemen
method. Numerical studies for harbors of arbitrary geometry h
also been verified by field and experimental data~e.g. @9,11#!.
Recently, certain amount of numerical work is available to inclu
the reflectivity of the harbor wall~@13,14#!. However, because o
the deficiency of numerical methods, the results can only rep
sent special conditions, not the general relationship between
reflectivity and the harbor oscillation.

In recent times, porous breakwaters are being constructed
dissipating wave energy in order to reduce the hydrodyna
forces on breakwaters. With the assumption of Darcy’s law, So
and Cross@15# and Chwang@16# separately developed models
study the flow past porous structures. These methods were un
and combined by Yu and Chwang@17# to become the most ac
ceptable one in the recent literature of flow past porous structu
Yu and Chwang@17# studied the problem of wave resonance in
harbor with a porous breakwater. It is observed that a por
breakwater can reduce the amplitude of resonant frequency
nificantly. A small but finite permeability of the breakwater
found to be optimal to diminish the resonant oscillation.

In the present paper, we investigate the problem of wave re
nance in a circular basin surrounded by a porous breakwater.
basin has an entrance located on a straight coastline. As a pa
lar case, the wave resonance in a closed circular basin surrou
by a permeable breakwater is analyzed. Matching the velocity
well as the pressure along the porous seawall and the harbo
trance, the full solution is obtained and the resonance conditio
derived. The effect of the porous-effect parameter and the pos
of the breakwater on wave oscillation are analyzed. The pre
work should be useful in future harbor design and modificatio

2 Formulation of the Problem
The problem under consideration is three dimensional in na

and is studied in a cylindrical coordinate system with unifo
depth h. The opening of the harbor is along the coastline a
distanceb cos« from the center of the harbor with 2« being the
opening angle of the harbor~see Fig. 1!. The circular harbor is of
radiusb with an inner permeable circular wall of radiusa. Assum-
ing that the fluid is inviscid and incompressible and its moti
irrotational, we can define a velocity potentialF(r ,u,z,t) which
satisfies the Laplace equation. Assuming the motion is simple
monic in time, we can expressF as F(r ,u,z,t)
5Re@f(r,u,z)e2ivt# with v being the angular frequency. The flui
domain is divided into three regions:~i! the open sea region,~ii !
the region between the porous wall and the solid harbor wall
~iii ! the inner harbor region surrounded by the porous w
f j ( j 51,2,3) denotes the velocity potential in regionj. The spa-
tial velocity potentialf satisfies the Laplace equation

4,
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]z2 50. (1)

The free surface boundary condition is given by

]f

]z
2

v2

g
f50 at z50, (2)

whereg is the gravitational constant. The bottom boundary co
dition is given by

]f

]z
50 at z52h. (3)

As r tends to infinity, the scattered wave potentialfs satisfies the
radiation condition

Ar S ]fs

]r
2 ik0fsD→0, as r→`, (4)

wherek0 is the wave number of the incoming progressive wa
Along the straight coastline, the velocity potential satisfies
condition

]f

]x
50 at x5b cos«. (5)

The continuity of pressure along the harbor opening requires

f15f2 on r 5b, 2«,u,«. (6)

The vanishing of velocity along the impermeable harbor wall a
the continuity of velocity along the opening is given by

f2r5H 0, at r 5b, «,u,2p2«,

f1r at r 5b, 2«,u,«.
(7)

The condition along the porous wall and the opening of the por
wall is given by

ik0G~f32f2!5H 0, at r 5a, 2«,u,«,

f3r , at r 5a, «,u,2p2«,
(8)

whereG is the porous-effect parameter or the Chwang param
~@18#!, which is different from the Chwang’s wave-effect param
eter ~@19#!. The porous-effect parameterG is a complex number
with non-negative real and imaginary parts. The real part oG
represents the resistance effect of a porous medium agains
flow. The imaginary part ofG denotes the inertia effect of fluids i
the porous medium.

Finally, the continuity of velocity along the opening of the p
rous wall is given by

Fig. 1 Schematic diagram of a circular harbor
604 Õ Vol. 68, JULY 2001
n-

e.
he

nd

us

ter
-

t the

-

]f2

]r
5

]f3

]r
on r 5a, 2«,u,«. (9)

3 The Method of Solution
The velocity potential for the open sea region is the superp

tion of plane waves with the coastline reflection in the absence
the harbor,f I , and the scattered wavefs due to the presence o
the harbor,

f I5AI$e
2 ik0@2~x2b cos«!cosa1y sin a#

1eik0@~x2b cos«!cosa1y sin a#% f 0~z!

5AI f 0~z!(
m50

`

bm$Vm
c c m

c 1Vm
s c m

s %Jm~k0r !, (10)

fS5 (
m50

` F ~Am0
c c m

c 1Am0
s c m

s !
Hm~k0r !

Hm8 ~k0b!
f 0~z!

1(
n51

`

~Amn
c c m

c 1Amn
s c m

s !
Km~knr !

Km8 ~knb!
f n~z!G , (11)

where f 0(z)5coshk0(h1z)/coshk0h, f n(z)5coskn(h1z), AI
5gH/2v, a is the incident wave angle,H is the incident wave
height,b051, bn52, (n51,2,3. . . ), Jm(•) is the Bessel func-
tion of the first kind,Hm(•) is the Hankel function of the first
kind, Km(•) is the modified Bessel function of the second kin
Amn

c , Amn
s are unknown constants to be determined,

c m
c 5cosmu, c m

s 5sinmu,

Vm
c 5@~2 i !meik0b cos« cosa1~ i !me2 ik0b cos« cosa#cosma,

Vm
s 5@2~2 i !meik0b cos« cosa1~ i !me2 ik0b cos« cosa#sinma.

Superscriptsc ands represent the terms associated withc m
c and

c m
s , respectively. In ~4! and ~11!, wave numbers kn(n

50,1,2, . . . ) satisfy the dispersion relations

v25gk0 tanhk0h52gkn tanknh. (12)

Hence, in region 1,

f15f I1fS . (13)

The velocity potentialsf j ( j 52,3) are of the form

f25 (
m50

` H F ~Bm0
c c m

c 1Bm0
s c m

s !
Jm~k0r !

Jm8 ~k0b!
1~Cm0

c c m
c

1Cm0
s c m

s !
Ym~k0r !

Ym8 ~k0b!G f 0~z!1(
n51

` F ~Bmn
c c m

c 1Bmn
s c m

s !

3
I m~knr !

I m8 ~knb!
1~Cmn

c c m
c 1Cmn

s c m
s !

Km~knr !

Km8 ~knb!G f n~z!J , (14)

f35 (
m50

` H ~Dm0
c c m

c 1Dm0
s c m

s !
Jm~k0r !

Jm8 ~k0a!
f 0~z!

1(
n51

`

~Dmn
c c m

c 1Dmn
s c m

s !
I m~knr !

I m8 ~kna!
f n~z!J , (15)

where Bmn
p , Cmn

p , Dmn
p (p5c,s;m,n50,1,2, . . . ) areunknown

constants to be determined,I m(•) is the modified Bessel function
of the first kind, andYm(•) is the Bessel function of the secon
kind.

From ~6!, ~7!, ~13!, ~14! and the orthogonality off n and
c m

p (p5c,s), we have
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j 50

` H Bj 0
p

Jj~k0b!

Jj8~k0b!
1Cj 0

p
Yj~k0b!

Yj8~k0b!
2Aj 0

p
H j~k0b!

H j8~k0b!

2AIb jV j
pc j

pJj~k0b!J ejm
p 50, ~p5c,s;m50,1,2, . . . !,

(16)

(
j 50

` H Bjn
p

I j~knb!

I j8~knb!
1Cjn

p
K j~knb!

K j8~knb!
2Ajn

p
K j~knb!

K j8~knb! J ejm
p 50,

~p5c,s;n51,2, . . . ;m50,1,2, . . . !, (17)

~Bm0
p 1Cm0

p !dm
p 5(

j 50

`

@Alb jV j
pJm8 ~k0b!1Am0

p #ejm
p

~m50,1,2, . . . !, (18)

~Bmn
p 1Cmn

p !dm
p 5(

j 50

`

em j
p Ajn ~n51,2,3, . . . ;m50,1,2, . . . !,

(19)

where

dm
p 5E

0

2p

@c m
p #2du, ejm

p 5E
2«

«

c j
pc m

p du.

From ~8!, ~9!, ~14!, ~15! and the orthogonality off n and
c m

p (p5c,s), we obtain

ik0GFJm~k0a!

Jm8 ~k0a!
Dm0

p 2S Jm~k0a!

Jm8 ~k0b!
Bm0

p 1
Ym~k0a!

Ym8 ~k0b!
Cm0

p D Gdm
p

5(
j 50

`

k0D j 0
p f m j

p ~m50,1,2, . . . !, (20)

ik0GF I m~kna!

I m8 ~kna!
Dmn

p 2S Km~kna!

Km8 ~knb!
Bmn

p 1
I m~kna!

I m8 ~knb!
Cmn

p D Gdm
p

5(
j 50

`

knD jn
p f m j

p ~n51,2,3, . . . ;m50,1,2, . . . !, (21)

where

f m j
p 5E

«

2p2«

c m
p c j

pdu.

(22)

Jm8 ~k0a!

Jm8 ~k0b!
Bm0

p 1
Ym8 ~k0a!

Ym8 ~k0b!
Cm0

p 5Dm0
p ~p5c,s;m50,1,2, . . . !,

I m8 ~kna!

I m8 ~knb!
Bmn

p 1
Km8 ~kna!

Km8 ~knb!
Cmn

p 5Dmn
p

~p5c,s;m50,1,2, . . . ;n51,2,3, . . . !. (23)

The system of equations~16!–~23! can be solved to obtain th
complete solution.

4 Oscillation in a Closed Basin
In such a case, we have«50. The velocity potentialf1 will not

be taken into account. Without loss of generality, the veloc
potentials are
Journal of Applied Mechanics
ity

f25 (
m50

` H FBm0

Jm~k0r !

Jm8 ~k0b!
1Cm0

Ym~k0r !

Ym8 ~k0b! G f 0~z!

1(
n51

` FBmn

I m~knr !

I m8 ~knb!
1Cmn

Km~knr !

Km8 ~knb! G f n~z!J cosmu,

(24)

f35 (
m50

` H Dm0

Jm~k0r !

Jm8 ~k0a!
f 0~z!1(

n51

`

Dmn

I m~knr !

I m8 ~kna!
f n~z!J cosmu.

(25)

It may be noted thatkn (n50,1,2, . . . ) arerelated to the angular
frequency of the free oscillation of the harbor. In this case,
havef2r50 on r 5b which gives

Bmn52Cmn ~m,n50,1,2, . . . !. (26)

Condition ~8! along the permeable wall becomes

]f2

]r
5

]f3

]r
5 ik0G~f32f2! at r 5a~ j 52,3!. (27)

The orthogonality off n (n50,1,2, . . . ) and cosmu leads to

FJm8 ~k0a!

Jm8 ~k0b!
2

Ym8 ~k0a!

Ym8 ~k0b!
GBm05Dm0 ~m50,1,2, . . . !, (28)

F I m8 ~kna!

I m8 ~knb!
2

Km8 ~kna!

Km8 ~knb!
GBmn5Dmn

~n51,2,3, . . . ;m50,1,2, . . . !, (29)

ik0GFJm~k0a!

Jm8 ~k0a!
Dm02S Jm~k0a!

Jm8 ~k0b!
2

Ym~k0a!

Ym8 ~k0b! DBm0G5k0Dm0

~m50,1,2, . . . !, (30)

ik0GF I m~kna!

I m8 ~kna!
Dmn2S I m~kna!

I m8 ~knb!
2

Km~kna!

Km8 ~knb! DBmnG5knDmn

~n51,2,3, . . . ;m50,1,2, . . . !. (31)

From Eq.~28!–~31!, we derive the resonance conditions rela
ing the porous-effect parameter, the radius of the circular ba
the permeable wall and the wave number of the progressive w
mode as

iGFJm~k0a!

Jm8 ~k0a!
S Jm8 ~k0a!

Jm8 ~k0b!
2

Ym8 ~k0a!

Ym8 ~k0b!
D 2S Jm~k0a!

Jm8 ~k0b!
2

Ym~k0a!

Ym8 ~k0b! D G
5S Jm8 ~k0a!

Jm8 ~k0b!
2

Ym8 ~k0a!

Ym8 ~k0b!
D ~m50,1,2, . . . !, (32)

ik0GF I m~kna!

I m8 ~kna!
S I m8 ~kna!

I m8 ~knb!
2

Km8 ~kna!

Km8 ~knb!
D 2S I m~kna!

I m8 ~knb!
2

Km~kna!

Km8 ~knb! D G
5knS I m8 ~kna!

I m8 ~knb!
2

Km8 ~kna!

Km8 ~knb!
D ~n51,2,3, . . . ;m50,1,2, . . . !.

(33)

From ~32! and~33!, it is obvious that there is no real root for rea
G. Hence, there is no steady oscillation in a circular harbor wit
permeable wall, which is similar to the observation of Yu a
Chwang@17#.

From ~32! after rearrangement, we have

Jm8 ~k0a!

Jm8 ~k0b!Ym8 ~k0a!
2

iGJm~k0a!2Jm8 ~k0a!

iGYm~k0a!Jm8 ~k0b!2Ym8 ~k0b!Jm8 ~k0a!
50.

(34)
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WhenG50, the inner permeable wall behaves like a solid w
and we have a closed circular region and another annular reg
From ~34!,

Jm8 ~k0a!50 ~m50,1,2, . . . ! (35a)

or

Jm8 ~k0a!Ym8 ~k0b!2Jm8 ~k0b!Ym8 ~k0a!50 ~m50,1,2, . . . !.

(35b)

The solution of ~35a! represents the wave modes due to
closed circular basin of radius a, while the solution of~35b! rep-
resents the wave modes inside the closed annular basin with
and outer radiia and b, respectively. On the other hand, asG
→`, the permeable wall becomes transparent to the fluid and
resonance is due to the free oscillation of a closed circular bas
radiusb. In such a case, from~34!, we derive

Jm8 ~k0b!50 ~m50,1,2, . . . !. (36)

5 Discussion
The amplification factorR which is a measure of wave oscilla

tion inside the harbor is defined as

R5Uf3~r ,u,0!

AI
U. (37)

In the two-dimensional analysis of Chwang and Dong@20#,
when the porous-effect parameterG51 and gap length (b–a)
5(2n11)l/4, the reflection coefficient vanishes and the ph
nomenon of wave trapping takes place. From Yip and Chw
@21# it was noted that the curves for complex values ofG are of
similar shape as those for real values. To avoid repetition of s
lar results which have been investigated before, the curves
complex values ofG are not presented in the present paper.

Figure 2 shows the variation of amplification factorR at the
center versus wave numberk0b for different values of the porous
effect parameterG. As 0,a,b, we must have 0,2p(b2a)/l
,k0b. The amplification factorR increases generally asG in-
creases. AsG increases, the porous wall becomes transparen
the fluid and most of the wave energy is reflected back by
vertical harbor wall with an increase in the wave oscillation a
thus an increase in the amplification factor. However, it should
noted that whenG51, the wave dissipation is maximum~see
@17,20#! and in the process the wave resonance is minimum.
amplification factorR attains maxima for certain values of th
wave number irrespective of the porous-effect parameter. The
porous-effect parameter only reduces the amplification fa
without affecting the wave number.

In Fig. 3, the amplification factorR is plotted versus wave
numberk0b at different locations in the inner region of the harbo

Fig. 2 Variation of amplification factor R at the center versus
wave number k 0b for different values of G with aÄ0 deg, b Õh
Ä0.75, 2«Ä10 deg, and „b – a…ÕlÄ0.25
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The amplification factorR attains its maximum value at differen
locations for different wave numberk0b. Generally speaking, the
wave amplification is large near the center compared to a p
towards the harbor wall. It should be noted that, for normal in
dencea50 deg, the wave condition inside the harbor is symm
ric with respect tou50 deg.

Figure 4 shows the variation of amplification factorR at the
harbor center versus the gap length (b–a)/l for different values
of the porous-effect parameterG. The two-dimensional result o
Chwang and Dong@20# showed that the wave dissipation is max
mum at (b–a)/l50.25, and the amount of dissipated energy d
pends on the porous-effect parameterG. The same phenomeno
was observed later by Fugazza and Natale@22# and Suh and Park
@23# although their analyses were different. Similar phenomem
is observed in the case of a circular harbor. However, the w
dissipation is more sensitive in the two-dimensional case~@20#!
near (b–a)/l50.25, while in the present case of a circular ha
bor, large dissipation occurs at a wider range of (b–a)/l near
0.25. It should be noted that the wave incidence at the porous
is not always normal but varying along the porous wall. In ge
eral, the incidence angle along the porous wall is very difficult
predict for three-dimensional cases. As shown in Fig. 4, the w
is dissipated most for a moderate value ofG. LargerG represents
a more porous wall and less wave energy is dissipated. AsG
→`, the porous wall becomes transparent to the fluid and
dissipation occurs.

Figure 5 shows the variation of amplification factorR at the
harbor center versus harbor opening 2« for different values of the
porous-effect parameterG. When the opening of the harbor van
ishes, the amplification factorR becomes zero, as no wave
allowed to enter the harbor. A large amplification factorR is ob-
served at moderate values of opening 2«, similar to ‘‘the harbor

Fig. 3 Variation of amplification factor R versus wave number
k 0b at different locations with aÄ0 deg, b ÕhÄ0.75, 2«Ä10 deg,
GÄ1, and „b – a…ÕlÄ0.25

Fig. 4 Variation of amplification factor R at the center versus
„b – a…Õl for different values of G with aÄ0 deg , b ÕhÄ0.75,
2«Ä10 deg, and k 0bÄ3.8
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paradox,’’ and the harbor oscillation decreases generally as
opening 2« further increases. There is a sharp decrease in
amplification factorR with a decrease of the porous-effect para
eterG. There is a shift in the maximum of the amplification fact
as G decreases and the opening angle of the harbor increa
When the harbor becomes a point and only the straight c
remains, all curves come to the same limiting value.

Figure 6 illustrates the variation of amplification factorR at the
center versus incidence anglea of incident waves. Because of th
symmetry of the problem, the curves are symmetric with resp
to a50 deg. The increase of incidence anglea allows less wave
energy to transmit through the opening to the harbor. Thus,
normal incidence allows the most wave energy into the har
The amplification factorR tends to fixed values as incidence ang
a approaches690 deg.

Just as a remark to the current practice in numerical comp
tion, the partially reflective boundary condition

]f

]n
5k0

12Kr

11Kr
f,

whereKr is the normal reflection coefficient at the boundary,
widely used by prescribingKr as a constant. However,Kr de-
pends on the wave number and incidence direction and no
lytical solution can be obtained if the partially reflective bounda
condition is applied in this problem. To sum up, the above ana
ses are for a harbor of circular geometry. As previous analy
have demonstrated, the harbor geometry is a critical factor to
bor oscillations.

Fig. 5 Variation of amplification factor R at the center versus
harbor opening 2 « for different values of G with aÄ0 deg, b Õh
Ä0.75, k 0bÄ3.8, and „b – a…ÕlÄ0.25

Fig. 6 Variation of amplification factor R at the center versus
incidence angle a for different values of G with b ÕhÄ0.75,
2«Ä10 deg, k 0bÄ3.8 and „b – a…ÕlÄ0.25
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6 Conclusions
The problem of wave oscillation in a circular harbor is analyz

in the presence of a porous wall. For maximum wave dissipa
the gap between the porous wall and the harbor wall should
approximately a quarter of the wavelength of the incident wav
A moderate value of the porous-effect parameterG dissipates the
maximum wave energy. For a large angle of incidence, wave
plification inside the harbor reduces. The amplification factor
pends on the wave number of the incident waves and the loca
inside the harbor. The amplification factor in the harbor can
adjusted with a proper opening angle and using a porous wall w
moderate porosity.
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Exact Solution for Simply
Supported and Multilayered
Magneto-Electro-Elastic Plates
Exact solutions are derived for three-dimensional, anisotropic, linearly magneto-ele
elastic, simply-supported, and multilayered rectangular plates under static loadi
While the homogeneous solutions are obtained in terms of a new and simple form
that resemble the Stroh formalism, solutions for multilayered plates are expressed in
of the propagator matrix. The present solutions include all the previous solutions, su
piezoelectric, piezomagnetic, purely elastic solutions, as special cases, and can the
serve as benchmarks to check various thick plate theories and numerical methods us
the modeling of layered composite structures. Typical numerical examples are pres
and discussed for layered piezoelectric/piezomagnetic plates under surface and in
loads. @DOI: 10.1115/1.1380385#
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Introduction
Because of their analytical nature, exact solutions for simp

supported~layered! plates under static loadings are still of partic
lar values. These solutions can predict exactly the behavior
elastic deformations and stresses near or across the interfa
material layers, and can thus be used to check the accurac
various numerical methods for more complicated applicati
~@1#!. For anisotropic elastic composites, Pagano@2,3#, Srinivas
et al. @4#, and Srinivas and Rao@5# derived the classic solution
for both the cylindrical and rectangular plates. While the aut
~@6#! introduced the propagator matrix method~@7#! to handle the
corresponding multilayered case, Noor and Burton@8# derived
analytical solutions for laminated anisotropic plates.

Recent development of piezoelectric ceramics has stimul
considerable studies on the electric and mechanical behavio
piezoelectric structures. Again, analytical solutions, even tho
under certain assumptions, are still desirable. Extensions of
elastostatic solutions for simply-supported plates to the co
sponding piezoelectric cases were carried out by Ray and
workers @9,10#, Heyliger and co-workers@11,12#, Bisegna and
Maceri @13#, and Lee and Jiang@14#. Very recently, Vel and Batra
@15# presented an analytical solution for multilayered piezoelec
plates in terms of the double Fourier series to handle more gen
boundary conditions at the edges.

More recent advances are the smart or intelligent mater
where piezoelectric and piezomagnetic materials are involv
These materials have the ability of converting energy from o
form ~among magnetic, electric, and mechanical energies! to the
other ~@16–18#!. Furthermore, composites made of piezoelect
piezomagnetic materials exhibit magnetoelectric effect that is
present in single-phase piezoelectric or piezomagnetic mate
~@19–21#!. Although various inclusion-related problems in the
materials have been investigated in recent years~@20–24#!, no
three-dimensional solution is available for the simply suppor
plate made of piezoelectric/piezomagnetic materials.

In this paper, we derive the exact solutions for thre
dimensional, anisotropic magneto-electro-elastic, simp
supported, and multilayered rectangular plates under both su

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April
2000; final revision, January 30, 2001. Associate Editor: W. J. Drugan. Discussio
the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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and internal loads. The general solution in a homogeneous pla
obtained in terms of a new and simple formalism that resemb
the Stroh formalism~@25–27#!. In order to treat a multilayered
plate, the propagator matrix method is introduced with which
corresponding multilayered solution has an elegant and sim
expression. To the best of the author’s knowledge, it is the fi
time that a piezoelectric and magnetostrictive multilayered p
under simple supporting conditions is analytically studied. It
also the first time that an internal loading case is investigated
compared to the surface loading case. The present solution
clude all the previous solutions, such as the piezoelectric, pie
magnetic, purely elastic solutions, as special cases. Since
present solutions are exact, they can serve as benchmarks t
various thick plate theories and various numerical methods, s
as the finite and boundary element methods, used for the mode
of layered composite structures.

As a numerical illustration, a piezoelectric and homogene
plate under surface and internal loads and a sandwich plate m
of piezoelectric BaTiO3 and magnetostrictive CoFe2O4 under a
surface mechanical load are analyzed. It is very interesting
even for a relatively thin plate, responses from an internal load
quite different to those from a surface load. For the sandwich p
made of piezoelectric BaTiO3 and magnetostrictive CoFe2O4, it is
observed that responses from different stacking sequences
completely different, especially for the electric and magne
quantities. These new numerical results should be of special in
est to the design of magneto-electro-elastic composite lamina

Problem Description and Basic Equations
Let us consider an anisotropic, magneto-electro-elastic,

N-layered rectangular plate with horizontal dimensionsLx andLy
and total thicknessH ~in the vertical direction! with its four sides
being simply supported. A Cartesian coordinate system (x,y,z)
5(x1 ,x2 ,x3) is attached to the plate in such a way that its orig
is at one of the four corners on the bottom surface and the pla
in the positivez region. Let layerj be bonded by the lower inter
face zj and the upper interfacezj 11 with thicknesshj5zj 11
2zj . It is obvious thatz150 andzN115H. Material properties in
each layer can be different, and internal and/or surface loads~me-
chanical, electric or magnetic! can be applied. Along the interface
the extended displacement and traction vectors~to be defined
later! are assumed to be continuous, with the exception of
internal loading level, which will be discussed later. Without lo
of generality, we also assume that the surface load is applied
the top surface of the layered plate.

,
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For an anisotropic and linearly magneto-electro-elastic so
the coupled constitutive relation can be written as~@16#!

s i5Cikgk2ekiEk2qkiHk

Di5eikgk1« ikEk1dikHk

Bi5qikgk1dikEk1m ikHk (1)

wheres i , Di , and Bi are the stress, electric displacement, a
magnetic induction~i.e., magnetic flux!, respectively;g i , Ei , and
Hi are the strain, electric field, and magnetic field, respective
Ci j , « i j , andm i j are the elastic, dielectric, and magnetic perm
ability coefficients, respectively;ei j , qi j , anddi j are the piezo-
electric, piezomagnetic, and magnetoelectric coefficients, res
tively. It is obvious that various uncoupled cases can be redu
from Eq. ~1! by setting the appropriate coefficients to zero.

For an orthotropic solid, with transverse isotropy being
special case, the material constant matrices of Eq.~1! are ex-
pressed by

@C#53
C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

Sym C55 0

C66

4 ,

@e#53
0 0 e31

0 0 e32

0 0 e33

0 e24 0

e15 0 0

0 0 0

4 , @q#53
0 0 q31

0 0 q32

0 0 q33

0 q24 0

q15 0 0

0 0 0

4 (2)

@«#5F «11 0 0

0 «22 0

0 0 «33

G , @d#5F d11 0 0

0 d22 0

0 0 d33

G ,

@m#5F m11 0 0

0 m22 0

0 0 m33

G . (3)

The extended strain~using tensor symbol for the elastic stra
g ik!-displacement relation is

g i j 50.5~ui , j1uj ,i !

Ei52f ,i , Hi52c ,i (4)

whereui , f, andc are the elastic displacement, electric potent
and magnetic potential, respectively.

The equations of equilibrium, including the balance of the bo
force and electric charge and current, can be written as

s i j , j1 f i50

D j , j2 f e50

Bj , j2 f m50 (5)

where f i , f e , and f m are the body force, electric charge densi
and electric current density, respectively. The electric current d
sity is also called magnetic charge density as compared to
electric charge density.
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General Solutions
For a simply-supported and homogeneous plate, we seek

solution of the extended displacement vector in the form of

u[F u1

u2

u3

f

c

G5eszF a1 cospx sinqy

a2 sinpx cosqy

a3 sinpx sinqy

a4 sinpx sinqy

a5 sinpx sinqy

G (6)

where

p5np/Lx , q5mp/Ly (7)

andn andm are two positive integers.
It is noted that solution~6! represents only one of the terms

a double Fourier series expansion when solving a general bo
ary value problem. Therefore, in general, summations forn andm
over suitable ranges are implied whenever the sinusoidal t
appears.

Substitution of Eq.~6! into the strain-displacement relation~4!
and subsequently into the constitutive relation~1! yields the ex-
tended traction vector

t[F s13

s23

s33

D3

B3

G5eszF b1 cospx sinqy

b2 sinpx cosqy

b3 sinpx sinqy

b4 sinpx sinqy

b5 sinpx sinqy

G . (8)

Introducing two vectors

a5@a1 ,a2 ,a3 ,a4 ,a5# t, b5@b1 ,b2 ,b3 ,b4 ,b5# t (9)

we then find that the vectorb is related toa by

b5~2Rt1sT!a52
1

s
~Q1sR!a (10)

where the superscriptt denotes matrix transpose, and

R5F 0 0 pC13 pe31 pq31

0 0 qC23 qe32 pq32

2pC55 2qC44 0 0 0

2pe15 2qe24 0 0 0

2pq15 2qq24 0 0 0

G ,

T5F C55 0 0 0 0

C44 0 0 0

C33 e33 q33

2«33 2d33

2m33

G (11)
JULY 2001, Vol. 68 Õ 609



Q5F 2~C11p
21C66q

2! 2pq~C121C66! 0 0 0

2~C66p
21C22q

2! 0 0 0

2~C55p
21C44q

2! 2~e15p
21e24q

2! 2~q15p
21q24q

2!
2 2 2 2 G . (12)
«11p 1«22q d11p 1d22q

m11p
21m22q
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We mention that matricesQ andT are symmetric.
The in-plane stresses and electric and magnetic displacem

are obtained as

3
s11

s12

s22

D1

D2

B1

B2

4 5esz3
c1 sinpx sinqy
c2 cospx cosqy
c3 sinpx cosqy
c4 cospx sinqy
c5 sinpx cosqy
c6 cospx sinqy
c7 sinpx cosqy

4 (13)

where

3
c1

c2

c3

c4

c5

c6

c7

4 53
2C11p 2C12q C13s e31s q31s

C66q C66p 0 0 0

2C12p 2C22q C23s e32s q32s

e15s 0 e15p 2«11p 2d11p

0 e24s e24q 2«22q 2d22q

q15s 0 q15p 2d11p 2m11p

0 q24s q24q 2d22q 2m22q

4 F a1

a2

a3

a4

a5

G .

(14)

These extended stresses~Eqs. ~8! and ~13!! should satisfy the
equations of equilibrium~assuming zero body force and zero ele
tric and magnetic charge densities!, which in terms of the vectora,
yields the following eigenequation:

@Q1s~R1R8!1s2T#a50 (15)

whereR852Rt.
It is noted that Eq.~15!, derived for a simply supported plate

resembles the Stroh formalism~@25,26#!. However, their solution
structures are different because of the slightly different feature
theR matrix ~in the Stroh formalism,R85Rt!. It is known that in
the Stroh formalism, positive internal energy requirement guar
tees that the characteristic roots of Eq.~15! should be complex
numbers with nonvanishing imaginary parts; they cannot be
~@26#!. In the present formalism, however, such a feature does
exist. Instead, since a matrix and its transpose have the s
determinant value, we conclude that ifs is an eigenvalue of Eq
~15!, so is2s. Furthermore, ifs is a complex~or purely imagi-
nary! eigenvalue, then its complex conjugate is also an eigenv
since all the coefficient matrices in Eq.~15! are real. We name Eq
~15! as the pseudo-Stroh formalism because of its similarity to
Stroh formalism.

With aid of Eq.~10!, Eq. ~15! can now be recast into a 10310
linear eigensystem

NFa
bG5sFa

bG (16)

where

N5F 2T21R8 T21

2Q1RT21R8 2RT21G . (17)

Depending upon the given material property, the ten eigen
ues of Eq.~16! may not be distinct. Should repeated roots occu
610 Õ Vol. 68, JULY 2001
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slight change in the material constants would result in disti
roots with negligible error~@28#! so that the following simple
solution structure can still be applied.

Therefore, let us assume that the first five eigenvalues h
positive real parts~if the root is purely imaginary, we then pick u
the one with positive imaginary part! and the remainder have op
posite signs to the first five. We distinguish the corresponding
eigenvectors by attaching a subscript toa andb. Then the general
solution for the extended displacement and traction vectors~of the
z-dependent factor! are derived as

Fut G5FA1 A2

B1 B2
G ^es* z&FK1

K2
G (18)

where

A15@a1 ,a2 ,a3 ,a4 ,a5#, A25@a6 ,a7 ,a8 ,a9 ,a10#

B15@b1 ,b2 ,b3 ,b4 ,b5#, B25@b6 ,b7 ,b8 ,b9 ,b10#

^es* z&

5diag@es1z,es2z,es3z,es4z,es5z,e2s1z,e2s2z,e2s3z,e2s4z,e2s5z#

and K1 and K2 are two 531 constant column matrices to b
determined.

Equation ~18! is a general solution for a homogeneou
magneto-electro-elastic, and simply-supported plate, and con
previous piezoelectric and purely elastic solutions as its spe
cases. Clearly, in spite of the complicated nature of the probl
the general solution is remarkably simple. Furthermore, cer
thin plate results can also be reduced from this solution by
panding the exponential term in terms of a Taylor series~@29,30#!.
This is particularly easy since one needs only to replace the d
onal exponential matrix with its Taylor series expansion~@6,13#!.
We mention that although other methods, such as the state s
approach~@14#!, may also be employed to derive a general so
tion for such a plate, more algebraic manipulations are nee
Furthermore, reduction to the thin plate result is complicated
state space approach is followed.

With Eq. ~18! being served as a general solution for a homo
neous and magneto-electro-elastic plate, solutions for the co
sponding multilayered plate can be obtained using the contin
conditions along the interface and the boundary conditions on
top and bottom surfaces of the plate. In doing so, a system
linear equations for the unknowns can be formed and sol
~@3,12#!. However, for structures with relatively large numbers
layers~say, up to a hundred layers!, the system of linear equation
then becomes very large, and the propagator matrix method
veloped exclusively for layered structures can be conveniently
efficiently applied~for a brief review, see@31#!. We discuss this
matter in the next section.

Propagator Matrix and Solution of Layered System
Since the matrixN, defined in Eq.~17!, is not symmetric, the

eigenvectors of Eq.~16! are actually the right ones. The left eigen
vectors are found by solving the following eigenvalue system

Nth5lh. (19)
Transactions of the ASME
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It is a matter of simple fact that ifs and@a,b# t are the eigenvalue
and eigenvector of Eq.~16!, thenl52s andh5@2b,a# t are the
corresponding solutions of Eq.~19!. Since the left and right eigen
vectors are orthogonal to each other, we then come to the foll
ing important relation:

F2B2
t A2

t

B1
t 2A1

t G FA1 A2

B1 B2
G5F I 0

0 I G (20)

where I is a 535 unit matrix, and the eigenvectors have be
normalized according to

2B2
t A11A2

t B15I (21)

Equation ~20! resembles the orthogonal relation in the Str
formalism ~@26#! and provides us with a simple way of invertin
the eigenvector matrix, which is required in forming the propa
tor matrix.

Let us assume that Eq.~18! is a general solution in the homo
geneous layerj, with the top and bottom boundaries locally ath
and 0, respectively. Letz50 in Eq. ~18! and solve for the un-
known constant column matrix, we find that

FK1

K2
G5FA1 A2

B1 B2
G21Fut G

0
5F2B2

t A2
t

B1
t 2A1

t G Fut G
0
. (22)

The second equation follows from Eq.~20!. Therefore, the solu-
tion in the homogeneous layerj at any levelz can be expressed b
that atz50 as

Fut G
z

5P~z!Fut G
0

(23)

where

P~z!5FA1 A2

B1 B2
G ^es* z&F2B2

t A2
t

B1
t 2A1

t G (24)

is called the propagator matrix~@7,31#!. Listed below are three
important features of the propagator matrix, which can be pro
easily.

P~0!5F I 0

0 I G (25)

P~z32z1!5P~z32z2!P~z22z1! (26)

P~z32z1!5P21~z12z3! (27)

The propagating relation~23! can be used repeatedly so th
one can propagate the physical quantities from the bottom sur
z50 to the top surfacez5H of the layered plate. Consequentl
we have

Fut G
H

5PN~hN!PN21~hN21! . . . . . .P2~h2!P1~h1!Fut G
0

(28)

wherehj5zj 112zj is the thickness of layerj and Pj the propa-
gator matrix of the same layer.

Equation~28! is a surprisingly simple relation and, for give
boundary conditions, can be solved for the unknowns involv
As an example, we assume that, on the top surface (z5H) the
z-direction traction component is applied, i.e.,

szz5s0 sinpx sinqy (29)

which may represent one of the terms in the double Fourier se
solution for a general loading case~uniform or point loading!, and
all other traction components on both surfaces are zero~i.e., the
second-type boundary value problem!. Equation~28! is then re-
duced to

Fu~H !

t~H ! G5FC1 C2

C3 C4
G Fu~0!

0 G (30)
Journal of Applied Mechanics
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where the four submatricesCj are the multiplications of the
propagator matrices in Eq.~28!, and t(H) is the given boundary
condition on the top surface, i.e.,

t~H !5@0,0,s0 sinpx sinqy,0,0# t. (31)

Solving the unknown extended displacements on both surface
the layered plate, we find

u~0!5C3
21t~H !

u~H !5C1C3
21t~H !. (32)

In order to obtain the extended displacement and traction vec
at any depth, sayzk<z<zk11 in layer k, we propagate the solu
tion from the bottom of the surface to thez-level ~@31#!, i.e.,

Fut G
z

5Pk~z2zk21!Pk21~hk21! . . . . . .P2~h2!P1~h1!Fut G
0
.

(33)

With the extended displacement and traction vectors at a g
depth being solved, the corresponding in-plane quantities ca
evaluated using Eqs.~13! and ~14!.

Similar solutions can also be obtained for the first-type bou
ary value problem~i.e., for given extended displacement vecto
on both surfaces! and for the third-type, i.e., the mixed bounda
value problem as well. Therefore, for an anisotropic, magne
electro-elastic, and simply-supported multilayered rectangu
plate, we have derived the exact solution based on the pse
Stroh formalism and the propagator matrix method.

The present methodology can also be equally and easily
tended to the corresponding internal loading case, which is
significance to the Green’s function study. We now seek suc
solution.

If there is an internal source~force, charge, dislocation, etc.!
located atz5d0 level within layer j (zj 11 ,zj ), we artificially di-
vide this layer into two sublayersj 1(d0 ,zj ) ~with hj 15d02zj !
and j 2(zj 11 ,d0) ~with hj 25zj 112d0!, and define the disconti-
nuities across the source level as

FDu
Dt G[Fu~d010!

t~d010! G2Fu~d020!

t~d020! G . (34)

Again, propagating the propagator matrices from the bottom to
top of the surfaces and making use of the discontinuity relat
~34! ~@31,32#!, we arrive at the following important equation:

Fut G
H

2PN~hN!PN21~hN21! . . . . . .P2~h2!P1~h1!Fut G
0

5PN~hN!PN21~hN21! . . . . . .Pj 11~hj 11!Pj 2~hj 2!FDu
Dt G .

(35)

Clearly, this equation is more general and includes Eq.~28! as a
special case~when there is no discontinuity!. Similar to the sur-
face loading case, this equation can be solved for the unkn
quantities involved~@31#!.

Before carrying out numerical studies using the present form
lation, we remark that the present solution is valid for any integ
n and m as defined by Eq.~7!. In other words, the solution we
have derived can be regarded as for one of the terms in a Fo
series expansion. Because of the linearity, the solution co
sponding to a general loading~uniform or point loading! can be
obtained by expanding the loading as a finite double Fourier se
~@13,33#! and adding the responses together term by term.

Numerical Examples
Having derived the exact and simple solutions, we now pres

some numerical results. Before using our formalism, we fi
checked our solutions with some previously published results
JULY 2001, Vol. 68 Õ 611
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Fig. 1 Variation of the elastic displacement u x„Äu y… along the thickness di-
rection in a homogeneous and piezoelectric plate caused by an internal load on
the middle plane and a surface load on the top surface

Fig. 2 Variation of the electric displacement Dx„ÄDy… along the thickness di-
rection in a homogeneous and piezoelectric plate caused by an internal load on
the middle plane and a surface load on the top surface

Table 1 Material coefficients of the piezoelectric BaTiO 3 „Cij in 109 NÕm2, eij in C Õm2, « i j in
10À9C2Õ„Nm2

…, and m i j in 10À6Ns2ÕC2
…

C115C22 C12 C135C23 C33 C445C55 C6650.5(C112C12)
166 77 78 162 43 44.5

e315e32 e33 e245e15

24.4 18.6 11.6

«115«22 «33 m115m22 m33

11.2 12.6 5 10
JULY 2001 Transactions of the ASME
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Fig. 3 Variation of the stress component szz along the thickness direction in a
homogeneous and piezoelectric plate caused by an internal load on the middle
plane and a surface load on the top surface

Fig. 4 Variation of the electric potential f along the thickness direction in the
sandwich piezoelectric Õpiezomagnetic plate caused by a surface load on the
top surface

Table 2 Material coefficients of the magnetostrictive CoFe 2O4 „Cij in 109NÕm2, q ij in N Õ„Am …, « i j
in 10À9C2Õ„Nm2

…, and m i j in 10À6Ns2ÕC2
…

C115C22 C12 C135C23 C33 C445C55 C6650.5(C112C12)
286 173 170.5 269.5 45.3 56.5

q315q32 q33 q245q15

580.3 699.7 550

«115«22 «33 m115m22 m33

0.08 0.093 2590 157
ied Mechanics JULY 2001, Vol. 68 Õ 613
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Fig. 5 Variation of the magnetic potential c along the thickness direction in the
sandwich piezoelectric Õpiezomagnetic plate caused by a surface load on the top
surface
s

n
s

e
of

be
fixed

ce-
both purely elastic and piezoelectric plates~@3,12,14,34#!, and
found that the present formulation agrees with these solution

The first example is for a homogeneous and transversely iso
pic piezoelectric plate. The symmetry axis of the material is alo
the z-direction with material properties being listed in Table
~@14#!. The dimension of the plate isLx3Ly3H513130.2 m.
Two cases are studied:~1! A z-direction surface load is applied o
the top surface of the platez5H. That is, the extended traction i
given by Eq.~31! with m5n51 ~i.e., p5p/Lx , q5p/Ly! and
001
.
tro-
ng
1

amplitude s051 N/m2. The bottom surface is assumed to b
traction-free.~2! An internal load is applied on the middle plane
the plate (z50.1 m). The extended traction discontinuityDt has a
similar expression as Eq.~31! with amplitudeDszz equal to 1
N/m2. Both the top and bottom surfaces are assumed to
traction-free. For both cases, responses are calculated for
horizontal coordinates (x,y)5(0.75Lx,0.25Ly).

Figures 1, 2, and 3 show the variations of the elastic displa
ment ux , electric displacementDx , and normal stressszz along
Fig. 6 Variation of the electric displacement Dx„ÄDy… along the thickness di-
rection in the sandwich piezoelectric Õpiezomagnetic plate caused by a surface
load on the top surface
Transactions of the ASME
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Fig. 7 Variation of the electric displacement Dz along the thickness direction in
the sandwich piezoelectric Õpiezomagnetic plate caused by a surface load on the
top surface
e

n

s
e to
oad

ing
ading

lec-
the thickness direction of the plate. It is clear that these two lo
ing cases produce quite different responses in the plate, e
though the plate is relative thin~with a ratio of thickness to hori-
zontal dimension equal to 0.2!. For instance, while the interna
loading solution is strictly symmetric or antisymmetric with r
spect to the middle plane~i.e., the loading plane!, the surface
loading solution does not possess such features. The latter~for the
elastic displacementux and electric displacementDx! is only ap-
proximately symmetric or antisymmetric about the middle pla
hanics
ad-
ven

l
-

e.

While the normal stressszz due to the surface load is continuou
and increases monotonically from zero on the bottom surfac
the applied value on the top surface, that due to the internal l
is discontinuous across the loading planez50.1 m and it has op-
posite sign on both sides of the middle plane. The internal load
case has never been studied and compared to the surface lo
case in the literature.

The second example is for sandwich plates made of piezoe
tric BaTiO3 and magnetostrictive CoFe2O4. The three layers have
Fig. 8 Variation of the magnetic induction B x„ÄB y… along the thickness direc-
tion in the sandwich piezoelectric Õpiezomagnetic plate caused by a surface
load on the top surface
JULY 2001, Vol. 68 Õ 615
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Fig. 9 Variation of the magnetic induction B z along the thickness direction in
the sandwich piezoelectric Õpiezomagnetic plate caused by a surface load on
the top surface
d

tric
nd-

/B
equal thickness of 0.1 m~with a total thicknessH50.3 m!. While
the material properties for the piezoelectric BaTiO3 are those
listed in Table 1, the properties for the magnetostrictive CoFe2O4
are given in Table 2~@35#!. Similar to the piezoelectric BaTiO3,
the magnetostrictive CoFe2O4 is also a transversely isotropic soli
with its symmetry axis along thez-axis.

Two sandwich plates with stacking sequences BaTiO3 /
CoFe2O4 /BaTiO3 ~called B/F/B! and CoFe2O4 /BaTiO3 /CoFe2O4
~called F/B/F! are investigated. The surface loading as for the fi
001
rst

example is assumed here~that is, az-direction traction with am-
plitude s051 N/m2 is applied on the top surfacez50.3 m while
all other components on both surfaces are zero!. Again, responses
are calculated for fixed horizontal coordinates (x,y)
5(0.75Lx,0.25Ly).

Figures 4 and 5 show, respectively, the variations of the elec
and magnetic potentials along the thickness direction in the sa
wich plate. It is obvious that the potential variations for the B/F
Fig. 10 Variation of the normal stress szz along the thickness direction in the
sandwich piezoelectric Õpiezomagnetic plate caused by a surface load on the top
surface.
Transactions of the ASME
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and F/B/F cases are completely different, demonstrating cle
the role played by the material stacking sequences. Furtherm
the slopes of these quantities can be discontinuous across th
terface, even though the potentials themselves are continuou

While Figs. 6 and 7 show the electric displacementsDx
(5Dy) andDz , the magnetic displacements~magnetic induction!
Bx(5By) and Bz are plotted in Figs. 8 and 9. The followin
general features are observed from these figures:

1 The horizontal electric and magnetic displacements are
continuous across the interfaces~Figs. 6 and 8!.

2 The magnitude of horizontal electric~magnetic! displace-
ment is very small in magnetostrictive CoFe2O4 ~piezoelectric
BaTiO3! layer ~Figs. 6 and 8!. This is due to the fact that for the
magnetostrictive CoFe2O4 ~piezoelectric BaTiO3! material, the pi-
ezoelectricei j ~piezomagneticqi j ! coefficients are zero.

3 Within the outer layers, the horizontal and vertical elect
displacements~magnetic inductions! change dramatically for the
B/F/B ~F/B/F! case~Figs. 6–9!.

4 For these dramatically changed physical quantities, the
tical components reach their maximum magnitudes in the mid
of the outer layers~Figs. 7 and 9!, while for the horizontal com-
ponents, the maximums are on the top and bottom surfaces
the minima at the interfaces.

While the electric and magnetic quantities have been gre
influenced by the stacking sequences, relatively small differen
have been observed for the corresponding elastic displacem
and stresses for these two sandwich cases. For instance, Fi
shows the variation of the normal stressszz along the thickness
direction in the sandwich piezoelectric/piezomagnetic plates.
apparent that both stacking sequences produce nearly the
stress distribution, even though the elastic constants for the
materials are considerably different~Tables 1 and 2!. This is ob-
viously a coupling phenomenon and can only be explained
resorting to the coupled constitutive relation~1!. For the stress
field, it is seen from Eq.~1! that it consists of three parts: th
elastic constant and strain, the piezoelectric coefficient and e
tric field, and the piezomagnetic coefficient and magnetic fie
Even though the first part may produce quite different stresse
both sandwich plates, the effect of the second and third parts~i.e.,
the piezoelectric and piezomagnetic terms! is to wipe out, in the
present case, the difference of the stress field produced by the
part.

The model results may have potential applications in the fi
of smart/intelligent structures. For example, to design a sandw
plate made of the magnetostrictive CoFe2O4 and piezoelectric
BaTiO3 materials that requires a given stress level~or distribution!
within the plate under a normal surface loading on the top, the
order to produce a large horizontal electric displacement~Dx or
Dy! on both the top and bottom surfaces~Fig. 6!, the B/F/B stack-
ing sequence should be selected. On the other hand, if a l
horizontal magnetic induction~Bx or By! on both the top and
bottom surfaces~Fig. 8! is expected, then the F/B/F stacking s
quence is the choice.

Conclusions
In this paper, we have derived exact solutions for thr

dimensional, anisotropic magneto-electro-elastic, simp
supported, and multilayered rectangular plates under both su
and internal loads. We have developed a new and simple for
ism that resembles the Stroh formalism so that the homogen
solution can be obtained in a simple and elegant form. We h
also introduced the propagator matrix method in order to tr
efficiently and accurately the multilayered case. Our solutions
clude all the previous solutions, such as the piezoelectric, pie
magnetic, purely elastic solutions, as special cases, and can
vide benchmarks for various thick plate theories and numer
methods, such as the finite and boundary element methods.
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Two typical numerical examples presented have also sho
some significant and interesting features. For instance, respo
to an internal load are quite different from those to a surface lo
even for a relatively thin plate. The solution to the internal lo
and its comparison to the corresponding surface loading solu
have never been reported in the literature. For sandwich pl
made of the piezoelectric BaTiO3 and magnetostrictive CoFe2O4,
we have observed that the stacking sequences~B/F/B and F/B/F!
have a clear influence on most physical quantities, in particular
the electric and magnetic quantities. These features should b
special interest to the design of magneto-electro-elastic compo
laminates.
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Scattering of Guided Waves by
Circumferential Cracks in Steel
Pipes
A novel numerical procedure is presented in this paper to study wave scattering pro
by circumferential cracks in steel pipes. The study is motivated by the need to dev
quantitative ultrasonic technique to characterize properties of cracks in pipes. By em
ing wave function expansion in axial direction and decomposing the problem in
symmetry problem and an antisymmetry problem, a three-dimensional wave scat
problem is then reduced into two quasi-one-dimensional problems. This simplific
greatly reduces the computational time. Numerical results for reflection and transmis
coefficients of different incident wave modes are presented here for a steel pipe
cracks (may have arbitrary circumferential crack length and radial crack depth) and
are shown to agree quite closely with available but limited experimental data.
@DOI: 10.1115/1.1364493#
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Introduction
Circular tubes and pipelines are used extensively in energy

transportation industries. These structural components are
mally fabricated from metallic and composite materials. Dama
to these components occur with handling, service load, nat
disturbances, and environmental causes. Of particular intere
this study is the stress corrosion cracking that occurs in steel p
lines used in oil, gas, and petrochemical industries. Ultraso
nondestructive techniques are being developed for the inspe
of such industrial pipelines. Ultrasonic waves in steel pipes can
generated quite efficiently by ring transducers~see, Alleyne et al.
@1# and Lowe et al.@2#! for launching waves that propagate alon
the pipe axis. Electromagnetic acoustic transducers~EMATs! are
also used to generate waves guided along the circumference o
pipe wall ~@2#!. A major problem that is faced in the ultrason
evaluation of pipes is the presence of protective coating or in
lation on the outside of the pipe wall. The coating or insulati
material is much softer than steel and usually has high attenua
This makes access to the pipe from outside difficult and vari
devices for access from inside the pipe have been under dev
ment. Also, the ultrasonic waves propagating in the pipe wall
be modified by the coating or insulation layer. In a recent pap
Pan et al.@3# examined the effect of a soft viscoelastic layer
guided ultrasonic waves in a bilayered plate. It was found t
certain~Lamb wave! modes in a single-layer steel plate are pr
erable for inspection of damage because they do not suffer
nificant modification by the soft layer. Thus, mode selection pl
a very important role in the success of ultrasonic nondestruc
evaluation~NDE! techniques.

Guided waves in cylindrical tubes are similar in nature as
ones in plates. However, many more modes are excited in tu
than in plates~Alleyne et al.@1#!. This makes appropriate mod
selection very critical for the success of an ultrasonic techni
for pipeline inspection. The problem is further complicated
there are large cracks in the pipe wall. Thus, it is important
have accurate theoretical model studies of ultrasonic wave pr
gation and scattering in cylindrical tubes.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ap
2, 2000; final revision, Sept. 15, 2000. Associate Editor: A. K. Mal. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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Dispersion of elastic waves in circular cylinders has been st
ied by many authors. Soldatos@4# reviews the literature on dy-
namics of cylinders and cylindrical shells. Datta@5# has reviewed
the theoretical work on waves in composite cylinders and she
A semianalytic finite element~SAFE! technique for the analysis
of dispersive guided waves in anisotropic homogeneous and c
posite shells has been discussed in the latter publication.

Studies of wave propagation and reflection in a semi-infin
cylinder and wave propagation in a cylinder with a region
material inhomogeneity have also been reported. Kohl et al.@6#,
Rattanawangcharoen@7#, and Rattanawangcharoen et al.@8# stud-
ied the wave propagation in a semi-infinite tube by a superposi
of all possible traveling waves and end modes to satisfy the
condition. Recently, hybrid methods have been used to st
wave scattering in a tube containing a finite axisymmetric reg
of inhomogeneity and crack. Rattanawangcharoen et al.@9# and
Zhuang et al.@10# used a hybrid technique to investigate reflecti
and transmission of waves in jointed and welded cylinders an
a welded cylinder containing a circumferential crack. All the
studies dealt with the axisymmetric problem.

Recently, Alleyne et al.@1# have reported an experimental an
modeling study of wave scattering in a steel pipe containin
circumferential crack. They used a finite element model to stu
the scattering of theL(0,2) mode~see, the Nomenclature of th
modes used in that paper! by a part-circumferential planar notch
In this case, even though the incident mode was axisymme
because of the nonaxisymmetric notch scattering occurred in
axisymmetric and nonaxisymmetric modes~L(m,n) and
F(m,n)!. They reported reflection coefficients for only theL(0,2)
mode as functions of the circumferential extent and the ra
depth of the notch.

As shown in previous studies, the hybrid method is effective
axisymmetric scattering problems. However, for the thre
dimensional scattering problem considered by Alleyne et al.@1#,
the hybrid or the full finite element method entails considera
amount of computational costs. The objective of the present st
is to develop a more efficient combined analytical/numerical t
for the investigation of three-dimensional scattering in a cylind
cal tube. The cylinder is assumed to be isotropic and homo
neous, although the method is easily extended to the case o
isotropic composite cylinders. In order to model scattering b
partly or fully circumferential crack, the problem is subdivide
into a symmetric and an antisymmetric problem about the plan
the crack. This approach has been used by Zhuang et al.@11# to
solve for the Green’s function for cylindrical shell. In the stud

r.
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001 by ASME JULY 2001, Vol. 68 Õ 619



a
s

d
c

y
n

h

a

f

e

-
o

a
a
t

r
f

of
ree-

hod
tered
jor
l

in a
n
ent
an-
od
ng-
d

r is

ty

n-

e-
presented here, the crack can be of an arbitrary depth in the r
direction. In this method, the scattered wave fields are expre
as sums of admissible wave functions in the axial direction. T
cross section of the tube, in which the crack is located, is divi
into a system of six-node planar elements, and the boundary
ditions appropriate for the symmetric and antisymmetric proble
are imposed on these elements. Using a transfer matrix appro
the problem can then be simplified to a quasi-one-dimensio
problem.

The crack considered is an ideal mathematical crack occup
an area located in the planez50 and can have arbitrary length i
circumferential direction and depth in radial direction. The geo
etry of the pipe and crack is shown in Fig. 1. The objective of t
study is to investigate how the length and depth circumferen
cracks affect the scattering characteristics in pipes. Reflection
transmission coefficients are presented for a steel pipe for var
incident fields. The principle of energy conservation is used
ensure the accuracy of numerical computation. The reflection
efficients ofL(0,2) mode are compared with the experiment d
in Alleyne et al.@1#.

Formulation
The problem of an infinitely long steel pipe is considered he

The circumferential crack is assumed to be located atz50 and it
can have arbitrary length and depth in both radial and circum
ential directions. To calculate the wave functions, the pipe is fi
discretized through the thickness intonsl sublayers to determine
wave functions travelling in an axialz-direction. During the cal-
culation of the reflection and transmission coefficients, the pip
then discretized in both circumferential,u, and radial,r, directions
over the cross sectionz50. A time-harmonic incident wave with
angular frequencyv and wave numberjkl generated atz51`
travels in the negativez-direction. Herek denotes the circumfer
ential wave number andl is the axial wave mode. Because
linearity of the governing equations and boundary conditions
z50 the superposition principle can be used in this proble
Also, the displacement and traction components at the planz
50 can be arranged into two groups: one in which the displa
ment components in the radial and circumferential directions
the traction component in the axial direction are prescribed,
the other contains the axial displacement component and the
tion components in the radial and circumferential directions. It c
be shown that the quantities in the first group are known when
external forces are symmetric about the planez50. On the other
hand, quantities in the second group are known if the exte
forces are antisymmetric aboutz50. In either case, only half o

Fig. 1 Geometry of a steel pipe. Ri , inner radius; Ro , outer
radius; d , crack depth; uo , half circumferential crack angle.
620 Õ Vol. 68, JULY 2001
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the cylinder (z>0) needs to be modeled. Using superposition
the solutions to the two problems, a solution to the general th
dimensional case can be constructed.

In the numerical procedure, a wave function expansion met
is used to represent the three-dimensional incident and scat
wave fields travelling in the axial direction. There are two ma
steps in this method:~1! Use the propagator matrix in the radia
direction to form the displacement and stress components
cross section of the cylinder, and~2! discretize the cross section i
radial and circumferential directions and satisfy the displacem
and traction boundary conditions according to symmetry and
tisymmetry conditions. The details of propagator matrix meth
and corresponding formulation can be found in Rattanawa
charoen and Shah@12# and the decomposition into symmetric an
antisymmetric problems was used by Zhuang et al.@11#.

Wave Modes
Time-harmonic wave propagation is considered. The cylinde

divided into coaxial cylinders~layers!, say nsl in number. The
displacement components,ur , uu , anduz , in the cylindrical co-
ordinates,r, u, and z, respectively, of thekth layer which is
bounded byr 5r k and r 5r k11 , are given by~see Gazis@13#,
Rattanawangcharoen and Shah@12#!,

ur5F f 82jh12
m

r
h2Geimuei ~jz2vt !

uu5 i Fm

r
f 1jh12h28Geimuei ~jz2vt !, (1)

uz5 i Fj f 2
m11

r
h12h18Geimuei ~jz2vt !

where

f ~r !5A1Zm~ar !1B1Wm~ar !

h1~r !5A2Zm11~br !1B2Wm11~br !, (2)

h2~r !5A3Zm~br !1B3Wm~br !

and

a25v2/c1
22j2, b25v2/c2

22j2. (3)

A prime denotes differentiation with respect tor, m denotes the
circumferential wave number,v the circular frequency,t the time,
j the wave number in thez-direction, andi 5A21. Zm andWm in
Eq. ~2! are Hankel functionsHm

(1) andHm
(2) , respectively, andA1 ,

A2 , A3 , B1 , B2 , andB3 are constants for the layer. The veloci
of dilatational and torsional~shear! waves,c1 andc2 , are defined
as

c1
25

l12m

r
, c2

25
m

r
, (4)

wherel andm are Lame´’s constants andr the mass density.
By using Eq. ~1! together with the stress-strain and strai

displacement relations, the stress componentss rr , s ru , ands rz
at the interfacer 5r k can be expressed as

HUk

Sk
J 5QkHA

BJ (5)

with

Uk5~ur ,k uu,k uz,k!
T, Sk5~s rr ,k s ru,k s rz,k!

T (6a)

A5~A1 A2 A3!T, B5~B1 B2 B3!T. (6b)

SuperscriptT represents the transpose, subscriptk means the
nodal values at thekth interface. By repeating the above proc
dure at the surfacer 5r k11 and considering Eq.~5!, the following
relation is then achieved:
Transactions of the ASME
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HUk11

Sk11
J 5PkHUk

Sk
J (7)

with

Pk5Qk11Qk
21. (8)

The six by six matrixPk is called the propagator matrix for thekth
layer. Once the wave number,j, is known for the given fre-
quency,v, Eq. ~7! can be used to evaluate the displacements
stresses at each sublayer.

For a solid cylinder, there is a special consideration at the c
cylinder. In order to have a bounded solution in the region o
<r<r o , the functionZm is taken asJm , the Bessel function of
the first kind, andBi50 in Eq. ~2!. The displacement and stres
components at the interfacer 5r 1 satisfy the relation

S15KU1 . (9)

When the wave numberj and the displacement componentsU1
are known, Eqs.~9! and ~7! can then be used to calculate th
displacement and stress components at each interface. The m
cesK, Pk , andQk can be found in Rattanawangcharoen and S
@12#.

Modal Expansion
Assume that the incident wave field is generated atz51` and

travels in the negativez-direction. Scattering~reflection and trans-
mission! occurs when the incident wave strikes the crack loca
at z50. The scattering wave fields consist of a finite number
propagating modes and an infinite number of nonpropaga
modes. Due to the symmetry and antisymmetry considerat
only the reflected wave field needs to be evaluated in the pos
z-direction. The displacements and stresses of the wave field
be expanded as follows:

ur~r ,u,z,t !5 (
m52M

M

(
n51

Nm

ur ,mn~r !akl,mne
i jmnzeimue2 ivt

5 (
m52M

M

Ur ,m~r !Em~z!akl,meimue2 ivt

uu~r ,u,z,t !5 (
m52M

M

(
n51

Nm

uu,mn~r !akl,mne
i jmnzeimue2 ivt

5 (
m52M

M

Uu,m~r !Em~z!akl,meimue2 ivt, (10)

uz~r ,u,z,t !5 (
m52M

M

(
n51

Nm

uz,mn~r !akl,mne
i jmnzeimue2 ivt

5 (
m52M

M

Uz,m~r !Em~z!akl,meimue2 ivt

and

szr~r ,u,z,t !5 (
m52M

M

(
n51

Nm

szr,mn~r !akl,mne
i jmnzeimue2 ivt

5 (
m52M

M

Szr,m~r !Em~z!akl,meimue2 ivt

szu~r ,u,z,t !5 (
m52M

M

(
n51

Nm

szu,mn~r !akl,mne
i jmnzeimue2 ivt

5 (
m52M

M

Szu,m~r !Em~z!akl,meimue2 ivt, (11)
Journal of Applied Mechanics
nd

ore
0

s

e
atri-
ah

ted
of
ing
ion,
tive
can

szz~r ,u,z,t !5 (
m52M

M

(
n51

Nm

szz,mn~r !akl,mne
i jmnzeimue2 ivt

5 (
m52M

M

Szz,m~r !Em~z!akl,meimue2 ivt

with

Ur ,m~r !5@ur ,m1~r ! ur ,m2~r ! ¯ ur ,mNm
~r !#PC13Nm

Uu,m~r !5@uu,m1~r ! uu,m2~r ! ¯ uu,mNm
~r !#PC13Nm (12)

Uz,m~r !5@uz,m1~r ! uz,m2~r ! ¯ uz,mNm
~r !#PC13Nm

Szr,m~r !5@szr,m1~r ! szr,m2~r ! ¯ szr,mNm
~r !#PC13Nm

Szu,m~r !5@szu,m1~r !szu,m2~r ! ¯ szu,mNm
~r !#PC13Nm,

(13)

Szz,m~r !5@szz,m1~r !szz,m2~r ! ¯ szz,mNm
~r !#PC13Nm

akl,m5$akl,m1akl,m2 ¯ akl,mNm
%TPCNm31 (14)

and

Em~z!5diag@ei jm1z ei jm2z
¯ ei jmNmz#PCNm3Nm

where akl,mns are unknown complex coefficients to be dete
mined. The first two subscripts,k and l, indicate the wave num-
bers in circumferential and axial directions of the incident wa
and the last two means the coefficients of the scattered wave fi
corresponding to the wave numbers,m andn, in the circumferen-
tial and axial directions, respectively. The symbolxPCm3n means
that x is a complex matrix with orderm by n. It may be pointed
out that the number of axial modes,Nm , need not be the same fo
different circumferential wave numberm. The factore2 ivt will be
suppressed in the sequel.

For the computational purpose, the continuous functions in
expansions~10! and ~11! are evaluated at discrete points on t
cross section. The cross section is divided into six-node elem
with uniform distribution both in circumferential and radial dire
tions, as shown in Fig. 2. The number of divisions in radial a
circumferential directions arep and q, respectively. In order to
represent the circular curve in the circumferential direction, th
nodes are used in this direction. Two nodes are used in the ra
direction in each element. With the geometry of the mesh sho
in Fig. 2, the consistent forces can be obtained from the stre
associated with the wave modes using standard procedures~see
Bathe@14#!.

Fig. 2 A typical mesh in the cross section. The shadow region
represents the crack.
JULY 2001, Vol. 68 Õ 621
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The expansions~10! and~11! satisfy the traction free condition
on the inner and outer surfaces of the cylinder. Hence, o
boundary conditions at the endz50 have to be satisfied. Becaus
of the existence of the crack in the cross section, care mus
taken on this part of the cross section when dealing with
boundary conditions. Traction-free boundary conditions for b
symmetric and antisymmetric cases are imposed on the crack
Therefore, for the symmetric case, the boundary conditions
given by

S5SI1SR5H SC
I

SN
I J 1H SC

R

SN
RJ 50, at z50 (15)

with

SC
I 5H f r

I

f u
I

f z
I
J , SN

I 5H f r
I

f u
I

uz
I
J , SC

R5H f r
R

f u
R

f z
R
J , SN

R5H f r
R

f u
R

uz
R
J

(16)

and for antisymmetry, they are,

A5AI1AR5H AC
I

AN
I J 1H AC

R

AN
RJ 50, at z50 (17)

with

AC
I 5H f r

I

f u
I

f z
I
J , AN

I 5H ur
I

uu
I

f z
I
J , AC

R5H f r
R

f u
R

f z
R
J , AN

R5H ur
R

uu
R

f z
R
J

(18)

where f r , f u , and f z are the consistent force components inr, u,
and z-directions at the boundaryz50, respectively. The super
scriptsI andR represent the quantities associated with the incid
and scattered wave fields, respectively. The subscriptC and N
represent whether the point considered is located in the cracke
the uncracked region, respectively.

Without loss of generality, we assume that the nodal seque
is arranged such that the firstPC points are located in the cracke
region and all the restPN5P2PC points are located in the un
cracked region.

We now first consider the symmetric case. It should be poin
out that when the mixed displacement and force componentsf r ,
f u , anduz are known, the dual componentsur , uu , and f z are
unknown for the point located in the uncracked region and v
versa. For the cracked region, all the force components are kn
and the corresponding dual displacement components are
known.

Evaluating the sums in~10! and ~11! pointwise at the cross
sectionz50, it is seen that

Em~0!5diag@1 1 ¯ 1#PRNm3Nm.

The vectorsSC
R and SN

R in the boundary conditions~15! may be
written as

SC
R5GC

Ra, SN
R5GN

Ra (19)

where

GC
R5@GC,2M

R
¯ GC,m

R
¯ GC,M

R #PC3PC3N,
(20)

GN
R5@GN,2M

R
¯ GN,m

R
¯ GN,M

R #PC3PN3N,

a5$akl,2M ¯ akl,m ¯ akl,M%TPCN31 (21)

GC,m
R 5F FC,r ,m

R

FC,u,m
R

FC,z,m
R

GPC3PC3Nm, GN,m
R 5F FN,r ,m

R

FN,u,m
R

UN,z,m
R

GPC3PN3Nm.

(22)

The total number of wave modes,NT , considered in the wave
function expansion is given by
622 Õ Vol. 68, JULY 2001
nly
e
t be
the
th
ace.
are

ent

d or

nce
d

ted

ice
own
un-

NT5 (
m52M

M

Nm

whereNm is the axial modes corresponding to the circumferen
numberm. P is the total number of nodes in the cross sectionz
50, PC the number of nodes in the cracked region, andPN5P
2PC the number of nodes in the uncracked region.akl,m is given
by Eq. ~14!. The specific forms of matricesFC,r ,m

R , FC,u,m
R ,

FC,z,m
R , FN,r ,m

R , FN,u,m
R , andUN,z,m

R are given in Appendix A.
In a similar manner, the incident wave fieldSI can be con-

structed as

SC
I 5akl

I gC,kl
I , SN

I 5akl
I gN,kl

I . (23)

Here, the vectorgC,kl
I is obtained from thelth column of the

matrix GC,k
R after replacing eachr andu-directions force compo-

nent by the negative value of it. The vectorgN,kl
I is obtained from

lth column of the matrixGN,k
R after replacing eachz-direction

force component by the negative value of it.akl
I is the amplitude

of the incident wave.
Equation~15! ~see also Eq.~19!! is solved using the principle o

virtual work. To accomplish this, vectors,TC
R andTN

R , which are
the dual components of the vectorsSC

R andSN
R , are formed,

TR5H TC
R

TN
RJ 5FHC

R

HN
RGa (24)

with

TC
R5H ur

R

uu
R

uz
R
J , TN

R5H ur
R

uu
R

f z
R
J (25)

HC
R5@HC,2M

R
¯ HC,m

R
¯ HC,M

R #PC3PC3N,
(26)

HN
R5@HN,2M

R
¯ HN,m

R
¯ HN,M

R #PC3PN3N,

HC,m
R 5F UC,r ,m

R

UC,u,m
R

UC,z,m
R

GPC3PC3Nm, HN,m
R 5F UN,r ,m

R

UN,u,m
R

FN,z,m
R

GPC3PN3Nm.

(27)

The specific form of block matrices appearing in Eq.~28! can be
found in Appendix B.

Now applying the principle of virtual work to boundary cond
tions~15! by multiplying the dual components,TC

R andTN
R , on the

both sides of Eq.~15! yields

FHC
R

HN
RG* FGC

R

GN
RGa52akl

I FHC
R

HN
RG* H gC,kl

I

gN,kl
I J . (28)

The superscript* denotes the complex conjugate plus mat
transpose.

The solutions of Eq.~28! are the reflection coefficients assoc
ated with the wave modes. Having known these coefficients,
ues of the displacement and stress components at different
tions in the cylinder are readily obtained by substituting them i
expansions~10! and ~11!.

Reduction to Quasi-One-Dimensional Problem. It is noted
that Eq.~28! is derived by using pointwise conditions. Due to th
large number of nodes in the two-dimensional mesh in planz
50, as shown in Fig. 2, it is a computationally demanding pro
dure. If we consider the idea of a transfer matrix from radius
radius, instead of point to point, calculations can be perform
more efficiently. This idea is based upon the circular symmetry
the geometry and the physical characteristics of the problem~see
the expansions~10! and ~11!!.

Take two vectorsf C,r ,mnPCPC31 and f N,r ,mnPCPN31, which
are in thenth column of the matricesFC,r ,m

R and FN,r ,m
R in ~A1!
Transactions of the ASME
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Fig. 3 Frequency spectrum of a steel pipe. HÕRÄ0.135, nÄ0.287. „a… Longitu-
dinal wave „mÄ0…; „b… Flexural wave „mÄ1….

Fig. 4 Phase velocity versus frequency for a steel pipe. HÕRÄ0.135, nÄ0.287.
i
e
nd
and ~A4!, as an example. It is noted that these two vectors
evaluated at all the nodes of the cracked and uncracked reg
respectively. We first construct two vectorsf C,r ,mn

(1) and f N,r ,mn
(1)

corresponding to these two vectors but evaluated at the two a
cent radiiu50 andu5p/q, whereq is the number of subdivi-
sions in the circumferential direction. Also, we denote two rad
u52 j p/q andu5(2 j 11)p/q, for j 50,1, . . . ,q21, the jth ra-
chanics
are
ons,

dja-

ii,

dius pair in the following. Without loss of generality, we assum
thatqC number of radii pairs are located in the cracked region a
qN in the uncracked region.

By considering the wave functions in Eqs.~10! and~11!, it can
be shown that the values of the two vectors,f C,r ,mn and f N,r ,mn ,
on thejth radius pair are obtained only by a rotation,e2imkp/q, of
that of the first radius pairf C,r ,mn

(1) and f N,r ,mn
(1) . Therefore we have
JULY 2001, Vol. 68 Õ 623
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f C,r ,mn
~ j ! 5lm

j 21f C,r ,mn
~1! , 1< j <qC (29a)

f N,r ,mn
~ j ! 5lm

j 21f N,r ,mn
~1! , qC11< j <q5qC1qN (29b)

where

lm5e2imp/q. (29c)

Thus, the vectorsf C,r ,mn and f N,r ,mn can be written in a more
compact form as

f C,r ,mn5LC,mf C,r ,mn
~1! , f N,r ,mn5LN,mf N,r ,mn

~1! (30)

with transfer matricesLC,m andLN,m , given by

LC,m5@ Î lmÎ ¯ lm
qC21Î #TPC2pqC32p

(31)

LN,m5lm
qC@ Î lmÎ ¯ lm

qN21Î #TPC2pqN32p.

Here,Î is the unit matrix with order 2p by 2p, 2p being the total
number of nodes in a radius pair. With the help of Eq.~30!, the
matricesFC,r ,m

R andFN,r ,m
R can then be expressed as

FC,r ,m
R 5LC,mFC,r ,m

~1!R , FN,r ,m
R 5LN,mFN,r ,m

~1!R . (32)

The matricesFC,r ,m
(1)R andFN,r ,m

(1)R have similar forms as the origina
matrices FC,r ,m

R and FN,r ,m
R after changing each column wit

f C,r ,mn
(1) and f N,r ,mn

(1) , respectively. All the other matrices in Appen
dices A and B have similar expressions, as shown in Eq.~32!.
Using these expressions, the matricesGC

R and GN
R have the fol-

lowing forms:

GC
R5@L̃C,2MGC,2M

~1!R
¯ L̃C,mGC,m

~1!R
¯ L̃C,MGC,M

~1!R#, (33)

GN
R5@L̃N,2MGN,2M

~1!R
¯ L̃N,mGN,m

~1!R
¯ L̃N,MGN,M

~1!R#, (34)

where

L̃C,m5FLC,m

LC,m

LC,m

GPC6pqC36p

(35)

L̃N,m5FLN,m

LN,m

LN,m

GPC6pqN36p.

The block matricesGC,m
(1)R andGN,m

(1)R are obtained from the matri
cesGC,m

R and GN,m
R after replacing the corresponding force a
624 Õ Vol. 68, JULY 2001
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displacement components by their reference vectors, which
only evaluated at the first radius pair. Similar relations hold a
for the matricesHC

R , HN
R and vectorsSC

I , SN
I .

With the above simplification, we have the following results

~HC
R!* GC

R5F¯ ¯ ¯

¯ mC,m1m2
~HC,m1

~1!R !* GC,m2

~1!R
¯

¯ ¯ ¯

GPCN3N

(36)

~HN
R!* GN

R5F¯ ¯ ¯

¯ mN,m1m2
~HN,m1

~1!R !* GN,m2

~1!R
¯

¯ ¯ ¯

GPCN3N

(37)

~HC
R!* SC

I 5H ]

mC,mk~HC,m
~1!R!* gC,kl

~1!R

]

J PCN31 (38)

~HN
R!* SN

I 5H ]

mN,mk~HN,m
~1!R!* gN,kl

~1!R

]

J PCN31 (39)

and

mC,m1m2
5H qC , for m15m2

12lm1 ,m2

qC

12lm1m2

, for m1Þm2
, (40)

Table 1 Amplitude of reflection coefficients as a function of
total wave modes for VÄ0.74 with circumferential length 50
percent and crack depth 0.5 H

M N uR02,01u uR02,02u uR02,11u uR02,12u uR02,13u

0 51 0.242 0.195 ¯ ¯ ¯

1 131 0.241 0.154 0.161 0.041 0.118
2 211 0.254 0.169 0.155 0.034 0.100
3 291 0.237 0.153 0.151 0.033 0.099
4 371 0.252 0.168 0.152 0.032 0.096
5 451 0.233 0.147 0.149 0.032 0.096
6 531 0.240 0.157 0.150 0.032 0.096
7 611 0.236 0.152 0.149 0.032 0.096
8 691 0.237 0.153 0.149 0.032 0.096
9 771 0.235 0.152 0.149 0.032 0.096

10 851 0.235 0.152 0.149 0.032 0.096
11 931 0.235 0.152 0.149 0.032 0.096
Fig. 5 Reflection coefficients for three different crack extensions. , crack
depth Ä0.5H; , crack depth Ä0.55H.
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Fig. 6 Normalized reflection and transmission coefficients in a steel pipe. HÕR
Ä0.135, nÄ0.287, crack length is ten percent of the circumference and crack
depth Ä0.55H. „a… Reflection coefficient; „b… transmission coefficient.
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mN,m1m2
5H qN , for m15m2

2
12lm1 ,m2

qC

12lm1m2

, for m1Þm2
, (41)

lm1 ,m2
5l̄m1

lm2
5e2i ~m22m1!p/q. (42)

Equations~41! and ~42! may also be written as

mC,m1m2
1mN,m1m2

5qdm1m2
(43)

dm1m2
5H 1, for m15m2

0, for m1Þm2
. (44)

Substituting Eqs.~36!, ~37!, ~38!, and~39! into Eq.~28! results in
the final equation,

@~HC
R!* GC

R1~HN
R!* GN

R#a52akl
I @~HC

R!* SC
I 1~HN

R!* SN
I #.

(45)

It can be seen from Eqs.~36! to ~41! that, in the computationa
procedure, all the matrices are evaluated only for the first rad
pair. In other words, the circumferential discretization will n
affect the size of the matrices nor the computational time. Hen
the problem is now reduced to be quasi-one-dimensional.

WhenqC5q, thenqN50. This corresponds to the axisymme
ric crack. It is then obvious thatmC,m1m2

50, whenm1Þm2 , and
mN,m1m2

50 for all m1 andm2 , andmC,mm5q. Therefore, matri-
chanics
ius
t
ce,

t-

ces (HC
R)* GC

R and (HN
R)* GN

R are reduced to diagonal block matr
ces. Furthermore, vectors in Eqs.~38! and ~39!, (HC

R)* SC
I and

(HN
R)* SN

I , are reduced to zero. But thekth block vector remains
unchanged. So the problem becomes one of smaller dimen
and one needs to consider the wave modes only related to
circumferential wave number,k, the incident wave number in cir
cumferential direction. In this situation, it is easy to show that
subdivision in circumferential direction will not contribute to th
complexity of the numerical procedure, because the parametq
will be eliminated from the final linear equation.

Once the linear Eq.~28! is established, the reflection coeffi
cients for the symmetric case are obtained. For the antisymm
case, it can be solved by a similar procedure, and it will not
repeated for brevity. If knowing the solutions of these two cas
the reflection and transmission coefficients,Rkl,mn andTkl,mn , for
the problem considered here are easily derived respectivel
shown below,

Rkl,mn5
akl,mn

S 1akl,mn
A

2akl
I , Tkl,mn5

akl,mn
S 2akl,mn

A

2akl
I , (46)

whereakl,mn
S andakl,mn

A represent the solutions for the symmetr
and antisymmetric problems, respectively. The numerical ac
racy of the coefficients is checked by the principle of energy c
servation. The energy flux of each propagating mode has b
discussed in Rattanawangcharoen et al.@8#.
JULY 2001, Vol. 68 Õ 625
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Fig. 7 Normalized reflection and transmission coefficients in a steel pipe. HÕR
Ä0.135, nÄ0.287, crack length is ten percent of the circumference and crack
depth Ä0.55H. „a… Reflection coefficient; „b… transmission coefficient.
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Numerical Results and Discussion
The method described in the previous section can be use

analyze the effect of planar cracks located in a cross section o
pipe wall. As shown above, the crack can have arbitrary lengthL,
in the circumferential direction and depth,d, in the radial direction
~Figs. 1 and 2!. Note that it is not necessary that the crack brea
the outer surface of the pipe. The problem considered was in
tigated experimentally and numerically by Alleyne et al.@1# and
Lowe et al.@2#. They used the finite element method for analyzi
the problem. Here, we will consider the same geometric and
terial properties of the pipe as used by them so that we can pre
some results comparing the predictions of the present method
their experimental observations.

The material constants for the all examples presented below
for steel with longitudinal wave and torsional wave velociti
given, respectively, by

c155.963103 m/s, c253.263103 m/s. (47)

The Young’s modulus is 216.9 GPa. They considered two dif
ent pipes having diameters 76 mm and 152 mm with thicknes
5.5 mm and 7 mm. Results for both cases were found to be q
similar. For the present study, we have chosen the inner rad
Ri , and thickness,H, of the pipe to be,

Ri538 mm, H55.5 mm. (48)

Then, the Poisson’s ratio,n, and the thickness over mean radiu
H/R, are, respectively,
2001
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n50.287, H/R50.135. (49)

The frequency spectrum for the longitudinal wave (m50) and
first flexural wave (m51) are shown in Fig. 3. In the following
discussion, we will use the nondimensional frequency,V, and the
nondimensional wave number,g, as

V5
vH

c2
, g5jH. (50)

Thus, for frequency of 100 kHz,V51.06. As Figs. 3 and 4 show
there are two longitudinal modes~L(0,1) andL(0,2)! and three
flexural modes~F(1,1), F(1,2), andF(1,3)! propagating at this
frequency. There are other propagating modesF(n,m), n.1, at
this frequency. These are not shown~see Alleyne et al.@1#!.

Alleyene et al.@1# presented results for the reflection of th
incident modeL(0,2) from circumferential cracks of differen
lengths and depths in the frequency range 60–85 kHz~V50.64–
0.90!. As seen from Fig. 4, the velocity of theL(0,2) mode is
nearly independent of frequency in the rangeV50.6–3. The ve-
locity in this range is 5.29 mm/ms, which is somewhat higher tha
the velocity (c55.22 mm/ms) of the L(0,1) mode at very low
frequencies. Note that the phase velocity of theF(1,3) mode ap-
proaches that of theL(0,2) mode at frequencies higher than abo
75 kHz and that ofF(1,2) approaches the shear wave velocityc2 .
In the following, numerical results are presented for the reflect
coefficients for mode-converted waves when two different mo
Transactions of the ASME
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Fig. 8 Normalized reflection and transmission coefficients in a steel pipe. HÕR
Ä0.135, nÄ0.287, crack length is 50 percent of the circumference and crack
depth Ä0.55H. „a… Reflection coefficient; „b… transmission coefficient.
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the
~L(0,2), andF(1,3)! are incident on circumferential cracks. Com
parison with the experimental results, when appropriate, are
discussed.

First, convergence of the numerical procedure was tested
different mesh sizes and results were compared for several
tering problems. For each case, a different number of circum
ential and axial modes was chosen in the modal expansio
ensure convergence of the series. The incident wave were ch
to be the second wave modeL(0,2). It was found that the result
converged~comparing successive sums with increasing numbe
terms in the modal expansion! with the choice of mesh having
node numbersp5100 andq510,000, and with the number o
modes beingM511, Nm551 for m50 and Nm540 for m5
61,62, . . . ,6M . Table 1 shows the rate of convergence of t
series for the reflection coefficient from a crack of circumferen
length 50 percent of the circumference and depth 0.5H. As noted
in the previous section, the convergence was tested by using
energy conservation. Since attention has been focused her
reflection and transmission coefficients, singularities at the cr
corners were not taken into account in the numerical proced
because they would not affect the far field. This has been veri
also by comparison with the results reported in@1#.

After establishing the convergence, the mesh size and the n
ber of modes were fixed for the rest of the calculations. Reflec
coefficients were calculated for two different crack depths, nam
0.5H and 0.55H. It was found that the results for 0.55H crack
depth agreed better with that of the experiment and the rela
chanics
-
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ith
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error was less than 6 percent for the 100 percent circumfere
crack. Using the same mesh and crack depth, the relative erro
the reflection coefficient for a 50 percent circumferential cra
length was around 10 percent, which was higher than that for
axisymmetric case.

There may be various reasons for this discrepancy. One m
reason could be that the notch used in the experiment had a fi
width. Also, there could be inaccuracy in the measured no
depth. Furthermore, the notch may not be planar. For all the
sults presented here we kept the crack depth to be 0.55H.

The comparison between the experimental data and the m
results is shown in Fig. 5. The results for three different cra
with circumferential lengths 10 percent, 50 percent, and 100 p
cent of the total pipe circumference are given in Fig. 5. In t
figure, the reflection coefficients for theL(0,2) mode are shown a
functions of frequency ranging from 60 kHz to 85 kHz, or
nondimensional frequency,V from 0.64 to 0.90.

The reflection and transmission coefficients,uR02,mnu, uT02,mnu,
and uR13,mnu, uT13,mnu are shown in Figs. 6 and 7 for the circum
ferential crack lengthL5ten percent. All the reflection coefficient
are very small, less then 0.07. It is interesting to note that for
incident modeL(0,2) the presence of the crack has little influen
on this mode, because this mode is transmitted with most of
energy in it. For the incidentF(1,3) mode, most of the transmitte
energy is shared between the modesF(1,2) andF(1,3), with the
energy going into the former increasing with frequency and
latter losing energy with increasing frequency.
JULY 2001, Vol. 68 Õ 627
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Fig. 9 Normalized reflection and transmission coefficients in a steel pipe. HÕR
Ä0.135, nÄ0.287, crack length is 50 percent of the circumference and crack
depth Ä0.55H. „a… Reflection coefficient; „b… transmission coefficient.
e

-

.

p

nly
ele-
n a
as
re-

nge

t
tion
the
her
es.

com-

ipe
lines
ified
the

ort
ip
p-

l of
In Figs. 8 and 9, we present similar results for the circumf
ential crack lengthL550 percent. Again, the transmitted wav
field has very similar characteristics as in the caseL
510 percent. However, in the reflected fielduR02,01u has the larg-
est value, followed byuR02,02u and uR02,11u. It is seen that the
reflection and transmission coefficients have very weak dep
dence on frequency. This would be desirable for ultrasonic m
surements over long pipes. For the incident modeF(1,3), Fig. 9
shows that the reflected amplitudeuR13,11u is the largest, followed
by uR13,13u and uR13,01u. Thus, the asymmetry of the crack caus
more energy going into the bending modes, as expected.

Results of the reflection and transmission coefficients,uR02,mnu,
uT02,mnu, and uR13,mnu and uT13,mnu, as functions of the circumfer
ential crack length at frequencyf 570 kHz are shown in Figs. 10
and 11. The experimental results are also shown in Fig. 10
noted by Alleyne et al.@1#, it is interesting that the reflection
coefficient,uRkl,klu, for k50, l 52 is nearly a linear function of
the circumferential crack length. We also find that the same ho
true for uR02,01u, uR13,13u, anduR13,11u. It is to be noted thatuR02,01u
is larger thanuR02,02u. For the transmission coefficients, the mod
results shown in Fig. 10 have the interesting feature thatuT02,02u
and uT02,01u are also nearly linear functions ofL, the former de-
creasing with increasingL and the latter increasing withL.

Conclusions
Scattering of guided waves in a steel pipe by a planar circu

ferential crack of arbitrary circumferential length and radial de
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was studied by a novel solution technique. In this technique, o
the plane of the crack needs to be discretized into surface
ments. This is much more computationally cost effective tha
fully two or three-dimensional finite element analysis. It w
found that the results agreed well with available experimental
sults. The effects of the crack on the incident wave modes,L(0,2)
andF(1,3), are presented in this paper. It is found that the cha
in the reflection coefficientsuRkl,klu, k50(1), andl 52(3), with
circumferential crack lengthL is linear inL. This was found to be
the case by Alleyne et al.@1#, who studied only the inciden
L(0,2) mode. Also, as observed by these authors, the reflec
coefficients are found to be nearly independent of frequency in
range of frequency considered. This study should aid in furt
investigations of scattering of guided waves by cracks in pip
The method presented can be easily extended to layered or
posite anisotropic cylinders.

In this paper, planar cracks in a cross section of a circular p
has been considered. Other types of cracks that appear in pipe
are axial. The method presented here would have to be mod
to analyze scattering by those cracks. This will be explored in
future.
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Appendix A

The Specific Form of Matrices in Eq. „22….

FC,r ,m
R 5F f r1,m1 f r1,m2 ¯ f r1,mNm

f r2,m1 f r2,m2 ¯ f r2,mNm

] ] � ]

f rPC ,m1 f rPC ,m2 ¯ f rPC ,mNm

GPCPC3Nm,

(A1)

FC,u,m
R 5F f u1,m1 f u1,m2 ¯ f u1,mNm

f u2,m1 f u2,m2 ¯ f u2,mNm

] ] � ]

f uPC ,m1 f uPC ,m2 ¯ f uPC ,mNm

GPCPC3Nm,

(A2)
chanics
by
ci-

p FC,z,m
R 5F f z1,m1 f z1,m2 ¯ f z1,mNm

f z2,m1 f z2,m2 ¯ f z2,mNm

] ] � ]

f zPC ,m1 f zPC ,m2 ¯ f zPC ,mNm

GPCPC3Nm,

(A3)

FN,r ,m
R 5F f rPc11,m1 f rPc11,m2 ¯ f rPc11,mNm

f rPc12,m1 f rPc12,m2 ¯ f rPc12,mNm

] ] � ]

f rPc1PN ,m1 f rPc1PN ,m2 ¯ f rPc1PN ,mNm

G
PCPN3Nm, (A4)

FN,u,m
R 5F f uPc11,m1 f uPc11,m2 ¯ f uPc11,mNm

f uPc12,m1 f uPc12,m2 ¯ f uPc12,mNm

] ] � ]

f uPc1PN ,m1 f uPc1PN ,m2 ¯ f uPc1PN ,mNm

G
PCPN3Nm, (A5)
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R 5F uzPc11,m

uzPc12,m

]
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Fig. 11 Normalized reflection and transmission coefficients in a steel pipe as
functions of the crack length at fÄ70 kHz. HÕRÄ0.135, nÄ0.287, crack depth Ä
0.55H. „a… Reflection coefficient; „b… transmission coefficient.
1 uzPc11,m2 ¯ uzPc11,mNm

1 uzPc12,m2 ¯ uzPc12,mNm

] � ] G UC,z,m
R 5F uz1,m1 uz1,m2 ¯ uz1,mNm

uz2,m1 uz2,m2 ¯ uz2,mNm

] ] � ] GPCPC3Nm,
uzPc1PN ,m1 uzPc1PN ,m2 ¯ uzPc1PN ,mNm

PCPN3Nm, (A6)

Appendix B

The Specific Form of Matrices in Eq. „27….

UC,r ,m
R 5F ur1,m1 ur1,m2 ¯ ur1,mNm

ur2,m1 ur2,m2 ¯ ur2,mNm

] ] � ]

urPC ,m1 urPC ,m2 ¯ urPC ,mNm

GPCPC3Nm,

(B1)

UC,u,m
R 5F uu1,m1 uu1,m2 ¯ uu1,mNm

uu2,m1 uu2,m2 ¯ uu2,mNm

] ] � ]

uuPC ,m1 uuPC ,m2 ¯ uuPC ,mNm

GPCPC3Nm,

(B2)
2001
uzPC ,m1 uzPC ,m2 ¯ uzPC ,mNm

(B3)

UN,r ,m
R 5F urPc11,m1 urPc11,m2 ¯ urPc11,mNm

urPc12,m1 urPc12,m2 ¯ urPc12,mNm

] ] � ]

urPc1PN ,m1 urPc1PN ,m2 ¯ urPc1PN ,mNm

G
PCPN3Nm, (B4)

UN,u,m
R 5F uuPc11,m1 uuPc11,m2 ¯ uuPc11,mNm

uuPc12,m1 uuPc12,m2 ¯ uuPc12,mNm

] ] � ]

uuPc1PN ,m1 uuPc1PN ,m2 ¯ uuPc1PN ,mNm

G
PCPN3Nm, (B5)
Transactions of the ASME



o
p

io
p

n

s

aves
n-

n of
pl.

997,
J.

ed
ssel

n’s
l.

mi-

of
t.

s

FN,z,m
R 5F f zPc11,m1 f zPc11,m2 ¯ f zPc11,mNm

f zPc12,m1 f zPc12,m2 ¯ f zPc12,mNm

] ] � ]

f zPc1PN ,m1 f zPc1PN ,m2 ¯ f zPc1PN ,mNm

G
PCPN3Nm, (B6)
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Buckling Optimization of
Composite Axisymmetric
Cylindrical Shells Under
Uncertain Loading Combinations
Optimal elastic buckling loads of composite axisymmetric circular cylinders under un
tain loading conditions are investigated. The mechanical loads applied to the cylinde
a combination of axial compression, lateral pressure, and torsion. Additionally, th
loads are allowed to vary within a certain class of admissible loads during the optim
tion search, as opposed to the restriction of fixed loads in the traditional optimization.
consideration of a degree of uncertainty in the mechanical loads leads to optimal de
which are inherently insensitive to perturbations and/or randomness in the applied lo
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1 Introduction
Composite materials have been gaining increasing importa

over the years in the aerospace industry as an alternative to
monly used isotropic materials. The major advantages of com
ite materials are increased stiffness and strength to weight ra
and the possibility of tailoring composite structural compone
for very specific applications. For example, composite lamina
can be optimized through a proper choice of fibre orientation
order to maximize structural characteristics such as stiffn
strength, natural frequencies, and buckling loads.

The basis for the numerical analysis of shells of revolution w
established in the 1960s~@1,2#!. The displacement solution fo
such shells is decomposed into a Fourier series in the circum
ential direction and interpolated by polynomials in the meridio
direction. Accounting for the uncoupling of the harmonics, t
solution process is carried out for each harmonic individually.

In the 1970s analytical methods to study cylindrical shells
the buckling and post-buckling regimes were sharpened~@3–5#!.
These works are mainly based on the formulations derived f
theoretical investigations of Koiter@6# and Budiansky and Hutch
inson @7#. The remarkable effect of initial imperfections on th
buckling behavior of anisotropic cylindrical shells was mode
and experimentally verified. Also, Thompson and Hunt@8# pro-
vided a thorough analysis methodology which may in some se
be understood as a discrete counterpart of Koiter’s method.

Optimization of composite cylinders was not systematically
dressed until the 1980s when innovative works set the guidel
on the subject~@9–12#!. Later in the decade Sun and Hansen@13#
presented results for optimized circular cylindrical shells un
axial compression, lateral pressure, and torsion having the
angles as design variables and considering a general axisymm
nonlinear prebuckling state.

All the previously mentioned works on buckling optimizatio
share one characteristic in common; the loading configuratio
fixed during the optimization procedure. As a result, the obtai
optimal design is able to satisfactorily withstand only that parti
lar loading configuration. That is, the load ratios relating ax

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept.
1999; final revision, Feb. 7, 2000. Associate Editor: S. Kyriakides. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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compression, lateral pressure, and torque are maintained fixed
the buckling load magnitude is maximized for those values of lo
ratios. However, if the load ratios are changed the design will
longer be optimal and may be unstable to changes in the
ratios. This constitutes a potentially hazardous situation si
structural systems are always subjected to loads which are un
dictable, random, or varying in time.

Cherkaev and Cherkaeva@14# were concerned with the sens
tivity of optimal designs to perturbations of the applied loa
about the design loads. Their proposal was a minimax formula
to minimize the design compliance under the most unfavora
loading situation of a defined set of applied loads. In some se
their formulation and this work may be considered as a ba
between an attacker and a defender. The attacker represent
load combination from an admissible set which will cause
most damage; the defender is the optimal design of the struc
which responds to the applied loads. Clearly the ‘‘worst’’ loa
and the ‘‘best’’ designs are dependent on one another.

In this work, the composite cylinders to be optimized are su
jected to mechanical loads which are assumed to have a degr
uncertainty; the uncertainty is associated with the idea that
applied load may be any member of a prescribed load se
parameterization is then adopted to represent the loads and w
incorporates their variable nature within the load set. Thus
optimization involves a minimax formulation where the objecti
is to maximize the buckling load with respect to fiber angles a
minimize it with respect to load parameters. The developed
mulation guarantees that the obtained optimal designs corres
to the most unfavorable loading configuration within the load
and in turn these designs are conservative for any other mem
of admissible load set. Furthermore, it is guaranteed that the
timal designs are insensitive to changes in load relative to
design load for all members of the set of admissible loads.

2 Formulation of the Problem
The objective function of the problem is the critical load

composite cylinders whose design variables are fiber angles
mechanical loads. The calculation of the objective function is c
ried out in two steps: the prebuckling problem and the buckl
problem. Figure 1 presents the cylinder with applied loads a
boundary conditions.

The elastic stability analysis approach as developed by Ko
@6# is used in the present work for the derivation of the equil
rium equations and the stability condition. As such, an equilibri
state u0 and a perturbed statev close to u0 are considered.
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The perturbed state is written asv5u01u whereu must be geo-
metrically admissible but are otherwise completely arbitrary p
turbations. Expansion of the total potential energyP(v) in Taylor
series aboutu0 yields the required equilibrium equation and st
bility condition. Details of the derivation may be found in Koite
@6# or in Sun and Hansen@13#, for example.

The shell is modelled using classical thin-shell theory and v
Kármán nonlinear strain-displacement relations. Accordingly,
in-plane displacementsũ(x,y,z) and ṽ(x,y,z) are assumed to
vary linearly through the thickness with respect toz and the trans-
verse displacementw̃(x,y,z) is assumed independent ofz. Thus
the displacements are taken in the form

ũ~x,y,z!5u~x,y!2zw,x~x,y! ṽ~x,y,z!5v~x,y!2zw,y~x,y!

w̃~x,y,z!5w~x,y! (1)

where the field variables areu, v, w representing the midsurfac
displacements. Based on these expressions, the strain vecto
represented as

$eL~v!%5$e0%1z$k%5H u,x

v ,y1
w

R
u,y1v ,x

J 1zH 2w,xx

2w,yy

22w,xy

J
(2)

$eN~v!%5
1

2 H w,x
2

w,y
2

2w,xw,y

J
whereR is the cylinder radius andv5(u,v,w). Using the above,
the expression for the total potential energy can be written as

P~v!5
1

2 EV
H e01eN

k J TF @A# @B#

@B# @D#
G H e01eN

k J dV2E
V

pzwdV

2E
G
NxudG2E

G
NxyvdG (3)

where V is the reference surface domain,G the domain where
axial compression and torque are applied, and@A#, @B#, @D# are the
laminate stiffness matrices given by

~@A#,@B#,@D# !5E
2h/2

h/2

~1,z,z2!@Q̄#dz (4)

whereh is the shell total thickness and@Q̄# is the material stiff-
nesses in structural coordinates.

The mechanical loads applied to the structure are represe
by a proportionality parameterl and a reference statef̄ such that
f52lf̄. Considerable simplifications can be introduced if the a
symmetry of the prebuckling and initial imperfection displac

Fig. 1 Cylinder subjected to mechanical loads and boundary
conditions
Journal of Applied Mechanics
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ments are observed because in this case derivatives with resp
the circumferential coordinatey are identically zero and the pre
buckling displacements are functions of the axial coordinatx
only. A finite element discretization is carried out only in the ax
direction using a two-node element with linear interpolation fun
tions for u andv, and cubic Hermite polynomials forw. Assum-
ing a linear prebuckling state, assembly of the global matrices
the finite element method yields

Kq P52l f̄ (5)

whereK is the stiffness matrix andqP are the prebuckling dis-
placements. Unfortunately the axisymmetric property used in
prebuckling problem is not valid for the buckling problem. Thu
for the solution of the buckling problem, the field variables a
assumed in the form

an~x,y!5aI~x!cosS ny

R D1aII ~x!sinS ny

R D (6)

wheren is the harmonic number anda stands foru, v, or w. In
this manner, the buckling problem dependence ony can be ana-
lytically treated while the dependence onx is treated numerically
via finite elements. Thus, discretization ofaI andaII is carried out
in the axial direction using the finite element technique.

Even assuming a linear prebuckling state, quadratic termsl
would be present in the stability equation such that the criti
load would result from the solution of a quadratic eigenproble
However, omission of the higher order terms from prebucklin
buckling coupling has been evaluated and, for the proble
considered here, the contribution to the optimal design and
bucking load is negligibly small. Therefore, for the sake
considerably speeding up the optimization procedure the coup
term has been neglected resulting in a classical linear eig
value problem. The linear eigenproblem assumes the form
Eq. ~7!

~K2lKG!q50 (7)

whereK is the stiffness matrix,KG the geometric stiffness matrix
andq an arbitrary geometrically admissible displacement vec
Notice that bothK andKG are functions of the harmonic numbe
n; therefore, the eigenproblem must be solved for a numbe
harmonics from which the least eigenvalue is selected as the c
cal load.

3 Optimization Procedure
The present work addresses composite laminates and buc

load optimization when a structure is subjected to uncertain c
bined loads. Letp be the vector of fiber angle design variables a
r the vector of uncertain design variables~the load ratios!. The
minimax problem is therefore expressed as

max
p

min
r

l~p,r !5max
p

f~p! , f~p!5min
r

l~p,r !. (8)

The solution of this problem yields the result that the buckli
load obtained will be the maximum buckling load for the wor
combination of uncertain variablesr . Furthermore, Eq.~8! guar-
antees that if the vectorr differs from that of the optimal design
then the buckling load is always greater than the optimal buck
load in the sense thatl.lopt . Therefore, the optimal design
is insensitive and stable with respect to variations in lo
ratios. Thus, the present approach has a major advantag
being capable of treating uncertainties in the loads using a de
ministic method which eliminates the necessity of a probabilis
formulation.

The significance of vectorp is relatively well known from the
literature. However,r requires clarification. Consider a composi
shell loaded as in Fig. 1. The uniformly distributed applied loa
Nx , Nxy and lateral pressurepz are represented in the form
JULY 2001, Vol. 68 Õ 633
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Nx5l f xRx5l f x~Rx01DRx!

pz5l f zRz5l f z~Rz01DRz! (9)

Nxy5l f xyRxy5l f xy~Rxy01DRxy!

wherel is a nondimensional load parameter andRx , Rz , Rxy are
load ratios composed of fixed~specified! componentsRx0 , Rz0 ,
Rxy0 and variable~unspecified! componentsDRx , DRz , DRxy .
The fixed componentsRx0 , Rz0 , Rxy0 are assigned by the de
signer and reflect knowledge of the loading state. Also,f x , f z , f xy
are constant dimensional scaling factors which must be speci
these will be discussed in the following. The vector of uncert
design variables is therefore given byr5$RxRzRxy%. The load
ratiosRx , Rz , Rxy are assumed to form a convex set defined
the relationship

Rx1Rz1Rxy51 (10)

subject to the condition 0<Rx , Rz , Rxy<1. Furthermore, the
fixed and variable load ratios are required to satisfy 0<Rx0 , Rz0 ,
Rxy0<1 and 0<DRx , DRz , DRxy<1. Rx0 , Rz0 , Rxy0 are in-
cluded to account for specified~deterministic! information avail-
able prior to the optimization procedure; they are related to c
tainty of the applied loads. IfRx01Rz01Rxy051 the loads are
specified precisely. If, however, the loads are not know precis
but there is some degree of confidence in their specification,
fact is again reflected in the choice ofRx0 , Rz0 , Rxy0 . For ex-
ample, if it is known that the load sets are such that 70 percen
the applied load is always axial compression, thenRx050.7, Rz0
5Rxy050. In such a caseDRx , DRz , DRxy account for only 30
percent of the applied load. Finally, if no information concerni
the load sets is available thenRx05Rz05Rxy050.

The scaling factors,f x , f z , f xy , may be chosen arbitrarily bu
should be chosen to provide a rational reference surface for
optimization process; this will become clear in the following.
the present workf x , f z , f xy are equated to the optimal bucklin
loads obtained by assuming that completely specified unidi
tional loads are applied to the structure. Thus,f x is the maximum
buckling load that the structure can sustain under the loading
ditions Nx5Px , pz50, Nxy50. Similarly, f z results from the op-
timization problemNx50, pz5Pz , Nxy50 and f xy from Nx50,
pz50, Nxy5Pxy .

It is to be noted that the optimal designs corresponding
f x , f z , f xy are different; thus, these factors provide a normali
tion of the final results that relates to the maximum capabi
of the structure when subjected to independent loads. There
the scaling factorsf x , f z , f xy provide the capability of accounting
for factors such as structural geometry, boundary conditions,
material anisotropy which may result in significant disparit
in the relative buckling load magnitudes of the individual lo
components.

4 Geometric Interpretation
Equation ~10! describes a plane in load space~the reference

plane!. Any load in the space is represented by a point on
reference plane multiplied by the load parameterl and the con-
stant load factors; these factors are illustrated in Fig. 2 where
loads have been nondimensionalized according to the scaling
tors: nx5Nx / f x , nz5pz / f z , nxy5Nxy / f xy . As l varies a family
of planes parallel to the reference plane is generated. Notice
relation ~10! and the assumption 0<Rx , Rz , Rxy<1 define a
tetrahedron in the load space which is a convex set. Thus, p
erties of convex modelling associated with mechanics of un
tainties are applicable to the present study~@15#!.

At this stage a geometric interpretation of the minimax form
lation can be given. Consider Fig. 2 which shows a sketch o
representative concave stability boundary. The shape of the st
ity boundary depends on the design variablesp which are the
composite lamina ply angles. The following interpretation can
given: the minimax optimization procedure selects a design w
634 Õ Vol. 68, JULY 2001
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the stability boundary such that planes parallel to the referen
plane can be extended as far as possible from the origin with
crossing the stability boundary. The first point of intersection of
the stability boundary and a member of the family of planes al
increases from zero defines the optimal design and provides
optimal value ofl.

The stability boundary defined in load space can be quite c
plex in shape, but for special cases of either convex or conc
surfaces~with respect to the origin! relatively simple conclusions
can be drawn. For the case when the critical loads are obtaine
the solution of a linear eigenvalue problem a tremendous sim
fication occurs since it can be shown that the stability boundar
concave~@16#!. In this case, under ideal conditions with sufficie
design flexibility, the optimal design is obtained when the thr
vertices of the load plane intersect the stability boundary.

It is to be noted that the shape of the stability boundary
controlled by the composite lamina fiber angles; therefore the
gree of design flexibility or the ability to control the stabilit
surface may be limited. This means that the optimal design m
correspond to the intersection of three, two or one of the verti
of the projection of reference plane with the stability bounda
one of these possibilities will always yield the solution.

If the stability surface is convex the situation is much mo
straightforward. The optimal design will be found at a single po
which has the characteristics of a global minimum. This minimu
must be interpreted in the sense that it is the point on the stab
surface that yields a minimum distance from the surface to
reference plane. The optimal value ofl corresponds therefore to
the plane parallel to the reference plane which passes through
‘‘minimum.’’

From the discussion concerning the concavity of the stabi
boundary practical conclusions can be drawn regarding the s
egy to minimizel with respect to the load ratios. In the case
linear eigenproblems it was shown that the optimal design g
metrically corresponds to a situation where one or more vert
of the reference load plane triangle are on the stability bound
It can be then concluded that the minimum load ratios are ne
sarily associated with one of the vertices. Therefore, the mini
zation ofl with respect tor is easily performed since it is suffi
cient to check which of the three vertices yields the leastl. The
maximization of functionf in Eq. ~8! is achieved in a two-step
process. First a genetic algorithm~GA! is used to obtain an opti-
mal design in the neighborhood of the global optimum; second
Powell’s method is used to refine the solution obtained bringin
to the actual optimum. The stopping criterion adopted for Po
ell’s method is based on changes of the new objective functionf,
which is the minimum critical load among the three vertices. T
optimization search stops when the relative difference between
previous and the present values off does not exceed 0.001.

The incorporation of the constant load ratiosRx0 , Rz0 , Rxy0

Fig. 2 Geometric interpretation
Transactions of the ASME
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means that the reference plane is bounded; that is, the valu
Rx , Rz , Rxy are constrained to lie in a smaller triangular subd
main of the reference plane. This subdomain is defined by
constant load ratios via the inequalities

Rx>Rx0 ; Rz>Rz0 ; Rxy>Rxy0 . (11)

Based on Eq.~11! these inequalities yield the admissible set f
DRx , DRz , DRxy as

DRx1DRz1DRxy512Rx02Rz02Rxy0 (12)
DRx>0; DRz>0; DRxy>0

The minimax criterion still applies but now over the appropria
subdomain; the optimal stability boundary ideally contains
three vertices of the load plane subtriangle. As an illustrative
ample, a two-dimensional situation is shown in Fig. 3 where
torsion load is taken to be zero (Rxy50) and positive constan
load ratios exist for the axial and pressure loads (Rx0 ,Rz0.0).

5 Numerical Simulations and Discussion
The cylindrical shells considered have radiusR583.3 mm and

length L5152.4 mm with four composite plies 0.123-mm thic
each. The material chosen for simulation is Hercules AS4/350
graphite/epoxy; its properties are given in Table 1.

In the optimal design process, it is assumed the cylinde
initially free of geometric imperfections. This may sound ove
simplistic; however, it is based on the assumption that there ar
statistical data available for the imperfection pattern result
from the manufacture process. In this situation, once the speci
is manufactured, the imperfection shape can be measured but
it is too late to perform the optimization. Thus, the point of vie
has been adopted, that if no data on the imperfections is avail
during the design process, the best procedure is to consid
perfect structure for the optimization. On the other hand, if su
information is available it can easily be incorporated into wh
follows.

As noted earlier, the optimization involves a two step proc
combining a genetic algorithm and Powell’s method. The para
eters associated with the GA are: population size of 200 indivi
als, probability of crossover of 97 percent and probability of m

Fig. 3 Constant load ratios

Table 1 Material properties of Hercules AS4 Õ3501-6 graphite Õ
epoxy
Journal of Applied Mechanics
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tation of 50 percent. Each design is encoded as a st
~chromosome! of genes, each of them representing the fiber o
entations and whose alleles range from290 deg to190 deg. The
crossover process is implemented by randomly selecting a b
point in two parents’ chromosomes and exchanging substring
order to generate the offspring. Then, mutation may occur wit
probability of 50 percent per chromosome. One gene is rando
chosen in the child’s chromosome and it is assigned an a
within the range of alleles. An elitist strategy is adopted such t
the best fitted individual of a generation is cloned to the n
generation. This strategy provides a useful stopping criterion:
search is assumed to have converged if the best design rem
unchanged for three generations. In this work, harmonic numb
from 1 to 20 are evaluated; advantage is taken of the symme
antisymmetry about the cylinder mid length in order to mod
only a half cylinder with 20 elements~@5,13#!. The result of the
converged GA is then used as a starting point for Powe
method.

A four-ply laminate @u1 /u2 /u3 /u4# is considered whereu1
corresponds to the innermost ply. Thirteen load cases are con
ered which involve completely specified loads, partially specifi
loads and completely unspecified loads as described in Tab
Cases 1a, 2a, and 3a refer to the traditional optimization un
prescribed loads. Cases 1b, 1c, 1d correspond to axial comp
sion load cases of increasing degree of uncertainty. Simila
cases 2b, 2c, 2d, and 3b, 3c, 3d correspond, respectively, t
increasing degree of uncertainty in lateral pressure and tors
Finally, case 4 represents the situation of completely uncer
loads.

Tables 3~a–c! and 4 present the results obtained by the optim
zation procedures. Columns four, five, and six correspond, in e
case, to the vertices of the subtriangle defined by the constant
ratios Rx0 , Rz0 , and Rxy0 . Since cases 1a, 2a, and 3a poss
Rx01Rz01Rxy051, the three vertices coalesce to a single po
and, therefore, only one column is needed. The critical loads
tained in the final stage by Powell’s method are accompanied
superscripts ‘‘a’’ or ‘‘n’’ meaning, respectively, active or nona
tive vertices, and the wave number in parenthesis. An active
tex strikes the stability boundary of the optimal design while
nonactive one lies below the stability boundary.

The buckling load magnitudes achieved when the shell
subjected to certain uniaxial loads are given byNx

58.7770 104 N/m ~case 1a!, pz51.7402 105 Pa ~case 2a!, Nxy

54.6088 104 N/m ~case 3a!; these values are used to define t
scaling factorsf x , f z , f xy , respectively, for the optimization with
uncertain loads. This means that, in terms of the nondimensi
load parameterl, these values of critical loads correspond to 1

Table 2 Load cases
JULY 2001, Vol. 68 Õ 635
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Small discrepancies occur between the present results and t

due to Sun and Hansen@13#; this results because Sun and Hans
considered a nonlinear prebuckling state.

For brevity, introduce the notationl i for the optimal critical
load obtained for load casei. Notice that for all the cases pre
sented in Tables 3~a–c! and 4 the load parameter is always le
than 1.0. Furthermore,l4,l1d,l1c,l1b,l1a51.0, l4,l2d
,l2c,l2b,l2a51.0, and l4,l3d,l3c,l3b,l3a51.0. An
expected result is observed: the more information available
garding the load ratios or stated otherwise, the greater the
tainty associated with the applied load the greater the optimal l
will be. This is related to the ability of the optimal designs
sustain different loading combinations. The more weapons

Table 3 „a… Optimization under uncertain load ratios—axial
compression; „b… optimization under uncertain load ratios—
lateral pressure; „c… optimization under uncertain load ratios—
torsion
636 Õ Vol. 68, JULY 2001
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‘‘destructor’’ ~the loads! has at its disposal~the larger the set of
possible loading combinations!, the harder it is for the defende
~the fibre angles! to do a good job in terms of increasing th
critical load.

Investigation of Tables 3~a–c! and 4 shows that the majority o
optimal designs possess two active vertices. This is true excep
cases 2d and 3b. In the former three vertices are active whil
the later only one vertex is active. Ideally, the three vertices of
subtriangle should be active in the optimal design but, becaus
the relatively small number of design variables~composite lamina
ply angles!, the degree of flexibility of the stability boundary i
restrained. Moreover, although one can never be completely
that the search has not converged to a local optimum, in
present study a sufficient number of GA runs was done in orde
provide confidence that the global optimum was reached.

An interesting characteristic of the optimal design obtained
case 4 is worth discussing. If the optimal designs 1a, 2a, 3a
tained under completely specified load ratios are considered,
found that there is a substantial variation between the criti
buckling load and the higher buckling loads associated with ot
wave numbers. Thus the critical load is a single, well-separa
eigenvalue associated with a single wave number. On the o
hand, if the optimal design of case 4 is considered, a very sm
variation is found in terms of buckling loads related to differe
wave numbers. It is observed that, for the optimal design of c
4, Rx51, all wave numbers between 9 and 14 produce sim
buckling loads within the interval 0.7278<l<0.7399. This type
of coalescence of eigenvalues is not unexpected since the de
process has the tendency of flattening the optimal critical surf

Table 4 Optimization under completely uncertain load ratios

Table 3 „Continued ….
Transactions of the ASME
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and that different buckling loads and modes~eigenvalues and
eigenvectors! are associated with the various locations on t
critical load surface.

The effect of the uncertainty degree on the optimal critic
loads can be visualized in Fig. 4 where the results obtained

Fig. 4 Effect of uncertainty degree on the optimal critical load
Journal of Applied Mechanics
he
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Tables 3~a–c! and 4 are grouped in a single plot. Noticeable is t
fact that the axial compression loading case is the most affe
by the uncertainties in the load ratios while the optimall for
lateral pressure and torsion are relatively insensitive for degree
certainty higher than 50 percent.

Figure 4 gives a good insight into how the degree of uncerta
affects the optimal buckling loads. However, this figure provid
neither an insight into design performance over a range of load
combinations nor a comparison between optimal designs. In o
to do so, it is helpful to define a parameterization of the load ra
in the form

Rx5a Rz5b Rxy512a2b (13)

wherea, b are parameters such that 0<a<1, 0<a1b<1. Notice
that Eq. ~13! identically satisfies the constraint imposed by E
~10! and that the vertices of the triangle in~a, b! space correspond
to the uniaxial load ratio cases. Based on Eq.~13!, Figs. 5~a!, 5~b!,
5~c!, and 5~d! are drawn which show values ofl for all admissible
loading combinations for the optimal designs 1a, 2b, 3c, and
respectively.

The conclusion readily drawn from Figs. 5~a–b! is that the
optimal design for case 4~Fig. 5~d!! presents a better overa
performance; it possessesl.1 for more loading combinations
than the other three cases~broader lighter region!. The enhance-
ment of the buckling loads with respect to a specified set of lo
is of course not without penalty and the penalty is paid by the lo
sets not in the admissible set; this is in fact the reason for adop
Fig. 5 „a… Load space—case 1a; „b… load space—case 2b; „c… load space—case 3c „d… load space—case 4
JULY 2001, Vol. 68 Õ 637
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Fig. 6 „a… Comparative performance—axial compression; „b… comparative performance—lateral
pressure; „c… comparative performance—torsion
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the present approach. This result is clearly illustrated in Fig. 5~a!
where the region abouta51 (Rx51) yields the largest buckling
loads. However, the buckling loads decrease quickly as this re
of influence is abandoned. The same behavior may be seen in
5~b! aboutRz51 ~b51! and, less pronouncedly, in Fig. 5~c! about
Rxy51 ~a5b50!.

A comparative performance with respect to the optimal bu
ling load obtained for case 4~l50.72787! can also be carried ou
with the aid of Eq.~13!. Take, for example, the axial compressio
case 1a and define, for its optimal design, the set of pairs~a,b!
which yield l50.72787. This set corresponds to a line in t
ab-plane that separates the region wherel.0.72787 from that
wherel,0.72787. Clearly, such a line cannot be drawn for cas
sincel>0.72787 over the domain of the entire triangle 0<a<1,
0<b, 0<a1b<1.

Figure 6~a! illustrates the separation lines associated with
axial compression cases 1a, 1b, 1c, 1d. The regions define
lines 1a, 1b, 1c, 1d that contain the pointa51, b50 (Rx51)
correspond tol.0.72787. It can be observed that the regi
wherea>0.75 is within region 1b, regiona>0.50 is within re-
gion 1c and regiona>0.25 is within region 1d. Noticeable is th
fact that region 1d contains approximately the entire load sp
triangle. This can be explained if the results of Table 3~a! are
compared to those of Table 4 and it is noted that the opti
designs for cases 1d and 4 have fiber orientations close to
other.

The behavior observed in Fig. 6~b! is somewhat different than
that in Fig. 6~a!; the separation lines are much closer. This can
rationalized if Fig. 4 is observed because it then becomes c
that the effects of uncertainty degree in lateral pressure are n
, JULY 2001
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pronounced as those for the axial compression case. Notice a
that, similarly to line 1d, the region defined by line 2d contai
approximately all the load space triangle.

As expected from Fig. 4, Fig. 6~c! exhibits a behavior similar to
Fig. 6~b!. The remarkable fact here is that lines 3a, 3b, 3c,
intercept each other at various points. In geometric terms~Fig. 2!,
this means that the stability boundaries of the optimal desi
obtained under uncertain torsion load ratios intersect in the l
space. This is a perfectly reasonable result in the region out
the admissible set of load ratios since the stability boundaries
always concave but they may possess a curvature distribu
which leads to the behavior presented in Fig. 6~c!.

The results obtained confirm that a degree of uncertainty in
load ratios does have a significant effect on the optimal des
and critical loads of composite cylindrical shells. The sensitiv
to applied loads of traditionally optimized cylinders can be co
pensated for by the use of a minimax formulation which takes i
account the variable nature of the loads. It is concluded tha
increase in the degree of certainty regarding the applied lo
leads to higher optimal critical loads. On the other hand, optim
designs able to withstand a broad range of loading sets yield lo
buckling loads. This reduction in the optimal buckling load ha
however, a much lower sensitivity to variability of the applie
loads and that is the advantage to the present approach. It sh
also be noted that the sensitivity of the optimal loads to change
load ratio is most pronounced for the case of axial compressio
relative insensitivity to the load ratio change is found for the l
eral pressure and the torsional load situations.
Transactions of the ASME
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One-to-One Internal Resonance of
Symmetric Crossply Laminated
Shallow Shells
This paper presents the response of symmetric crossply laminated shallow shells w
internal resonancev2'v3 , wherev2 and v3 are the linear natural frequencies of th
asymmetric vibration modes (2,1) and (1,2), respectively. Galerkin’s procedure is ap
to the nonlinear governing equations for the shells based on the von Ka´rmán-type geo-
metric nonlinear theory and the first-order shear deformation theory, and the shoo
method is used to obtain the steady-state response when a driving frequencyV is near
v2 . In order to take into account the influence of quadratic nonlinearities, the displa
ment functions of the shells are approximated by the eigenfunctions for the linear v
tion mode (1,1) in addition to the ones for the modes (2,1) and (1,2). This approxim
overcomes the shortcomings in Galerkin’s procedure. In the numerical examples
effect of the (1,1) mode on the primary resonance of the (2,1) mode is examined in
which allows us to conclude that the consideration of the (1,1) mode is indispensab
analyzing nonlinear vibrations of asymmetric vibration modes of shells.
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1 Introduction
With the increasing use of fiber-reinforced plastics in indust

applications, many papers have been published in the area of
linear vibrations of laminated plates and shells. Chia@1,2# and
Sathyamoorthy@3# have conducted a comprehensive review of
literature dealing with nonlinear problems in plates. The effects
transverse shear deformation, rotatory inertia, and initial g
metrical imperfections on the nonlinear vibration and po
buckling of antisymmetric angle-ply cylindrical thick panels a
generally laminated circular cylindrical thick shells with nonun
form boundary conditions were discussed by Fu and Chia@4,5#.
Raouf and Palazotto@6# performed a single-mode analysis of th
nonlinear free vibration of a curved, simply supported orthotro
panel, based on the Donnell-Mushtari-Vlasov shell theory.
et al. @7# derived nonlinear equations of transverse motion fo
generally laminated, truncated conical shell and solved the n
linear vibration problem by the method of harmonic balance. C
ung and Fu@8# studied nonlinear static and dynamic responses
dynamic buckling of symmetric crossply shallow spherical she
by using the orthogonal collocation method and the Newm
scheme.

In this paper, we study a one-to-one internal resonance of cr
ply laminated shallow shells subject to a harmonic transve
load, where the linear natural frequenciesv2 andv3 of the asym-
metric vibration modes~2,1! and ~1,2! have the relationshipv2
'v3 . As for internal resonances of laminated plates, Had
et al. @9# analyzed two-to-one internal resonances of antisymm
ric crossply laminated rectangular plates by using the avera
Lagrangian. The present authors investigated two-mode@10,11#
and three-mode@12# responses of laminated plates, in which t
combination of Galerkin’s procedure and the method of multi

1To whom correspondence should be addressed. Present address: Departm
Information System Engineering, Asahikawa National College of Technology,
1-6 Syunkodai, Asahikawa, Hokkaido 071-8142, Japan.
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of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
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scales was used. However, no papers have been presente
internal resonances of laminated shells treated here, and studi
the topic have been confined to isotropic materials@13–16#.

For the purpose of this study, taking into account the v
Kármán-type geometric nonlinear theory and the first-order sh
deformation theory, the nonlinear governing equations for sy
metric crossply laminated shallow shells are derived by mean
Hamilton’s principle. Chin and Nayfeh@16# investigated the re-
sponse of an externally excited infinitely long circular cylindric
shell with a one-to-one internal resonance to a primary excita
of one of two orthogonal flexural modes. They compared the
sults derived by applying the method of multiple scales directly
the nonlinear governing partial differential equations with tho
derived from a two-mode Galerkin discretization approach, a
pointed out that the latter led to incorrect results~i.e., the influence
of the quadratic nonlinear terms was neglected!. However, be-
cause displacements for the shells treated here are governed b
two spatial variables, it is very difficult to solve the present pro
lem with the direct method. Accordingly, we discretize the go
erning equations by using Galerkin’s procedure. In the pres
analysis, the displacement functions of the shells are appr
mated by the eigenfunctions for the linear vibration mode~1,1! in
addition to the ones for the modes~2,1! and ~1,2!. This approxi-
mation yields ordinary differential equations with not only cub
but also quadratic nonlinear terms and overcomes the shortc
ings in Galerkin’s procedure using only the modes~2,1! and~1,2!.

Finally, we apply the shooting method to the ordinary differe
tial equations, and obtain the frequency-response curves of
shells when a driving frequencyV is nearv2 . The numerical
examples prove that taking the~1,1! mode into consideration is
indispensable for analyzing nonlinear vibrations of the asymm
ric vibration modes of shells. Furthermore, not only periodic b
also quasi-periodic and chaotic responses of the shells are
sented in the form of diagrams.

2 Basic Equations
Figure 1 shows a laminated shallow shell of rectangular pl

form, which consists ofN layers of an orthotropic sheet, with
lengthsa andb, thicknessh and radii of curvatureRx andRy . The
coordinates~x, y, z! are assigned as in the figure. The compone
of the displacement at an arbitrary point of the shell in thex, y and
z directions areu, v andw, respectively.
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According to the first-order shear deformation theory, the
plane displacementsu andv are linear functions of the coordinat
z, and the transverse displacementw is constant throughout the
thickness of the shell. Under this assumption the displacem
field may be given in the following form:

u5u01zcx , v5v01zcy , w5w0 , (1)

whereu0 , v0 , andw0 are the displacements at the midsurface,cx
andcy are the rotations of the midsurface about they andx axes,
respectively. The nonlinear strain-displacement relations of
shallow shell can be written as

ex5ex
01zkx , ey5ey

01zky , ez50,
exy5exy

0 1zkxy , exz5cx1w0 ,x , eyz5cy1w0 ,y
J , (2)

in which

ex
05u0 ,x1

w0

Rx
1

1

2
w0 ,x

2, ey
05v0 ,y1

w0

Ry
1

1

2
w0 ,y

2,

exy
0 5u0 ,x1v0 ,x1w0 ,xw0 ,y , (3)

kx5cx ,x , ky5cy ,y , kxy5cx ,y1cy ,x , (4)

and the subscripts following a comma stand for partial differ
tiation.

The constitutive relations of the shell can be expressed as
lows:

5
ex

0

ey
0

exy
0

Mx

M y

Mxy

6 53
A11* A12* A16* B11* B12* B16*

A12* A22* A26* B21* B22* B26*

A16* A26* A66* B61* B62* B66*

2B11* 2B21* 2B61* D11* D12* D16*

2B12* 2B22* 2B62* D12* D22* D26*

2B16* 2B26* 2B66* D16* D26* D66*
4

35
Nx

Ny

Nxy

kx

ky

kxy

6 , (5)

HQy

Qx
J 5FS44 S45

S45 S55
G H eyz

exz
J , (6)

Fig. 1 Geometry of a laminated shallow shell and coordinate
systems
Journal of Applied Mechanics
in-

ent

the
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whereN, M, andQ are the stress, moment, and shear stress re
ants, respectively. The constantsAi j* , Bi j* , Di j* , and Si j are de-
rived from

5
sx

sy

syz

sxz

sxy

6
~k!

5F C11 C12 0 0 C16

C12 C22 0 0 C26

0 0 C44 C45 0

0 0 C45 C55 0

C16 C26 0 0 C66

G ~k!

5
ex

ey

eyz

exy

exy

6 , (7)

~Ai j ,Bi j ,Di j !5(
k51

N E
hk21

hk

Ci j
~k!~1,z,z2!dz, i , j 51,2,6, (8)

Si j 5K2Ai j 5K2(
k51

N E
hk21

hk

Ci j
~k!dz, i , j 54,5, (9)

A* 5A21, B* 52A21B, D* 5D2BA21B, (10)

in which the stiffness matrix elementsCi j
(k) express the stress

strain relation in thekth layer,K2 is the shear correction factor
andhk is the distance from the midsurface to the upper surface
the kth layer.

In this paper, it is assumed that both rotatory and in-plane
ertias are negligible@17#. Therefore, the kinetic energy of the she
can be written as

T5
r

2 E0

bE
0

a

w0,
t
2dxdy, (11)

wherer is the mass per unit area of the shell. The strain energ
the shell is given by

U5
1

2 E0

bE
0

a

~Nxex
01Nyey

01Nxyexy
0 1Qxexz1Qyeyz1Mxkx

1M yky1Mxykxy!dxdy. (12)

The work done by an external pressureq(x,y,t) acting in thez
direction is

W5E
0

bE
0

a

q~x,y,t !w0dxdy. (13)

By substituting Eqs.~11!–~13! into Hamilton’s principle

E
t0

t1
d~T2U1W!dt50, (14)

and taking the variation, in consideration of Eqs.~2!–~4!, the gov-
erning equations are derived as follows:

Nx ,x1Nxy ,y50, Nxy ,x1Ny ,y50, (15)

rw0 ,tt52
Nx

Rx
2

Ny

Ry
1Qx ,x1Qy ,y1~Nxw0 ,x1Nxyw0 ,y!,x

1~Nyw0 ,y1Nxyw0 ,x!,y1q, (16)

Mx ,x1Mxy ,y2Qx50, Mxy ,x1M y ,y2Qy50. (17)

A stress functionf satisfying Eq.~15! automatically is defined
as

Nx5f,yy , Ny5f,xx , Nxy52f,xy . (18)

In the following analysis, we consider symmetric crossply lam
nated shells. In this case, the following elastic coefficients van

A16* 5A26* 5Bi j* 5D16* 5D26* 5S4550 ~ i , j 51,2,6!. (19)

By using relations of Eqs.~5!, ~6!, ~10!, ~15!, ~18!, and~19!, Eqs.
~16! and ~17! can be rewritten as
JULY 2001, Vol. 68 Õ 641
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rw0 ,tt2q2f,yyw0 ,xx12f,xyw0 ,xy2f,xxw0 ,yy1
1

Rx
f,yy

1
1

Ry
f,xx2S44~w0 ,yy1cy ,y!2S55~w0 ,xx1cx ,x!50,

(20)

D11cx ,xx1D66cx ,yy1~D121D66!cy ,xy2S55~w0 ,x1cx!50,
(21)

~D121D66!cx ,xy1D66cy ,xx1D22cy ,yy2S44~w0 ,y1cy!50.
(22)

The compatibility equation is obtained by eliminatingu0 andv0
in Eq. ~3! and using Eqs.~5! and ~18!:

A22* f,xxxx1~2A12* 1A66* !f,xxyy1A11* f,yyyy

5w0,
xy
2 2w0 ,xxw0 ,yy1

1

Rx
w0 ,yy1

1

Ry
w0 ,xx . (23)

Equations~20!–~23! expressed in terms ofw0 , cx , cy , andf are
the nonlinear governing equations for symmetric crossply la
nated shallow shells based on the first-order shear deforma
theory.

We assume that the shell is simply supported and free f
in-plane stresses along its four edges. However, it is very diffi
to solve the stress function satisfying exactly both the compat
ity Eq. ~23! and the in-plane boundary conditions~e.g.,Nx5Nxy
50 at x50,a) in the analysis. As a convenient approach, it
assumed that the average of the normal and tangential stres
zero at the boundaries in References@1# and @18#. We adopt this
assumption in the present paper, and the boundary conditions
be written

w05cy5Mx5E
0

b

f,xydy5E
0

b

f,yydy50 at x50,a

w05cx5M y5E
0

a

f,xydx5E
0

a

f,xxdx50 at y50,b6 .

(24)

The displacement functions, which satisfy the out-of-plane bou
ary conditions~e.g.,w05cy5Mx50 at x50,a), of the shell can
be expressed by using the eigenfunctions of the linear vibratio
n

t
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w05h(
m51

M

(
n51

N

Wmn~ t !sin
mpx

a
sin

npy

b

cx5 (
m51

M

(
n51

N

Xmn~ t !cos
mpx

a
sin

npy

b

cy5 (
m51

M

(
n51

N

Ymn~ t !sin
mpx

a
cos

npy

b

6 , (25)

in which Wmn are nondimensional displacements,Xmn and Ymn
are nondimensional rotation angles, andm andn are the numbers
of half wave in thex andy directions, respectively. In the prese
paper, we consider an internal resonance when the linear na
frequenciesv2 andv3 of the vibration modes~2,1! and~1,2! have
the relationshipv2'v3 . It is assumed that only the vibratio
mode~2,1! is directly excited by the transverse force. Therefo
q(x,y,t) is defined as

q~x,y,t !5q0 sin
2px

a
sin

py

b
cosV8t, (26)

whereq0 andV8 are the amplitude and angular frequency of t
force, respectively.

The stress function satisfying the in-plane boundary conditi
~the integrals in Eq.~24!! is assumed to be of the form

f5(
p50

`

(
q50

`

Bpq cos
ppx

a
cos

qpy

b

1(
r 51

`

(
s51

`

Crs sin
rpx

a
sin

spy

b
, (27)

in which Bpq andCrs are unknown coefficients. If Eqs.~25! and
~27! are substituted into the compatibility condition~23!, thenBpq
andCrs can be determined by comparing the coefficients of trig
nometric functions in both sides of Eq.~23!. Although details of
Bpq and Crs are omitted due to space restriction,Bpq and Crs
become the quadratic and first-order forms ofWmn , respectively.

Substituting Eqs.~25!–~27! into Eqs. ~20!–~22! and applying
Galerkin’s procedure~i.e., multiplying Eqs.~20!, ~21!, and~22! by
sin(mpx/a)sin(npy/b), cos(mpx/a)sin(npy/b) and
sin(mpx/a)cos(npy/b), respectively, and then integrating over th
area of the shell!, nonlinear ordinary differential equations ar
obtained for the time-dependent variablesWmn , Xmn and Ymn .
By eliminatingXmn andYmn from the equations and adding on th
effect of viscous damping, we obtain the following simultaneo
nonlinear ordinary differential equations in terms of the vibrati
modes~1,1!, ~2,1!, and~1,2!:
Ẅ11mv1Ẇ11v1
2W11Ga1W1

21Ga2W2
21Ga3W3

21Ga4W1
31Ga5W1W2

21Ga6W1W3
250

Ẅ21mv2Ẇ21v2
2W21Gb1W1W21Gb2W1

2W21Gb3W2
31Gb4W2W3

25F cosVt

Ẅ31mv3Ẇ31v3
2W31Gc1W1W31Gc2W1

2W31Gc3W2
2W31Gc4W3

350
J , (28)
e

wherem, v, G, F, andV are the nondimensional damping coe
ficient, the nondimensional linear natural frequencies, the no
mensional coefficients of the nonlinear terms, the nondimensio
amplitude and frequency of the load, respectively. It is to be no
that the termsmv i Ẇi mean the modal damping~e.g.,@19#, @20#!.
Details of v, F and V are written in the Appendix. However
details ofG are omitted due to space restriction. Subscripti of the
nondimensional displacements is redefined as$W1 ,W2 ,W3%
5$W11,W21,W12%. A dot expresses differentiation with respect
the nondimensional time
f-
di-
nal
ted

,

o

t5AETh3

ra4 t, (29)

in which ET is the minor Young’s modulus. It is important to not
that the first, second, and third equations in~28! express the mo-
tion of the vibration modes~1,1!, ~2,1! and~1,2!, respectively. As
can be seen from Eq.~28!, whenW2 is excited,W1 will always be
activated by the nonlinear termGa2W2

2 even if there are no inter-
nal resonances between the vibration modes~1,1! and ~2,1!. The
amplitude of the~1,1! mode affects the response of the~2,1! mode
Transactions of the ASME
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through the nonlinear termsGb1W1W2 andGb2W1
2W2 . However,

the effect of the quadratic nonlinear terms likeGb1W1W2 on the
response of the~2,1! mode is not considered whenW1 is ne-
glected. In view of Eq.~28!, it can therefore be said that th
addition of the fundamental vibration mode to the displacem
functions overcomes the shortcomings of the Galerkin discret
tion for asymmetric vibration modes of continuous systems w
quadratic and cubic nonlinearities.

3 Shooting Method
In the following analysis, we investigate the steady-state

sponse of the shells by using the shooting method whenV is near
v2 . Although the perturbation method is widely used to so
nonlinear ordinary differential equations, the following proble
seems to arise when the method is applied to nonlinear m
equations of shallow shells. A single-mode equation of a shal
shell can be written as follows:

Ẅ1v2W1eG1W21e2G2W350, (30)

wheree is a small dimensionless parameter to express the orde
Journal of Applied Mechanics
ent
za-
ith

re-

ve
m
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ow

r of

smallness of nonlinear terms, and the coefficientG1 of the qua-
dratic nonlinear term is generated by the curvature of the sha
shell. The coefficientG1 of the quadratic nonlinear term may b
greater than the coefficientG2 of the cubic nonlinear term becaus
the radii of curvature of the shallow shell are very large. In th
case, it is possible that an assumption (eG1W2.e2G2W3) for the
perturbation is not established. In the shooting method, such
assumption is not necessary. Therefore, we adopt the shoo
method in the present analysis. In order to apply the shoo
method to Eq.~28!, we introduce the following vector

x5$x1 ,x2 ,x3 ,x4 ,x5 ,x6%
T5$W1 ,Ẇ1 ,W2 ,Ẇ2 ,W3 ,Ẇ3%

T,
(31)

and convert Eq.~28! into a set of first-order differential equation

dx

d t̂
5X, (32)

where
uation in
X5$X1 ,X2 ,X3 ,X4 ,X5 ,X6%
T,

X15x2 ,
X252$mv1v2x21v1

2x11~Ga11Ga4x1!x1
21~Ga21Ga5x1!x3

21~Ga31Ga6x1!x5
2%/v2

2,
X35x4 ,

X452mx42x32$~Gb11Gb2x1!x1x31Gb3x3
31Gb4x3x5

22F cos~V/v2! t̂%/v2
2,

X55x6 ,
X652$mv2v3x61v3

2x51~Gc11Gc2x1!x1x51Gc3x3
2x51Gc4x5

3%/v2
2,

6 , (33)

and t̂ is a new time variable defined ast̂5v2t.
Since details of the shooting method were already given by Nayfeh and Balachandran@21# and Tamura and Matsuzaki@22#, only the

algorithm used in this paper is presented here. According to the shooting method, it is necessary to treat the following eq
addition to Eq.~32!:

dF~ t̂ !

d t̂
5YF~ t̂ !, F~0!5E, (34)

in which F is a 636 matrix which is called the transition matrix,E is the unit matrix, andY is the matrix of first partial derivatives
of X:

Y5
]X

]x
53

0 1 0 0 0 0

Y21 Y22 Y23 0 Y25 0

0 0 0 1 0 0

Y41 0 Y43 Y44 Y45 0

0 0 0 0 0 1

Y61 0 Y63 0 Y65 Y66

4 , (35)

Y2152$v1
21~2Ga113Ga4x1!x11Ga5x3

21Ga6x5
2%/v2

2,
Y2252mv1 /v2 ,Y23522~Ga21Ga5x1!x3 /v2

2,Y25522~Ga31Ga6x1!x5 /v2
2,

Y4152~Gb112Gb2x1!x3 /v2
2,Y4452m,Y45522Gb4x3x5 /v2

2

Y435212$~Gb11Gb2x1!x113Gb3x3
21Gb4x5

2%/v2
2,

Y6152~Gc112Gc2x1!x5 /v2
2,Y63522Gc3x3x5 /v2

2

Y6552$v3
21~Gc11Gc2x1!x11Gc3x3

213Gc4x5
2%/v2

2,Y6652mv3 /v2 ,

6 . (36)
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In order to solve Eqs.~32! and ~34! simultaneously, we combine
the two equations as

d

d t̂ 5
x

f1

]

f6

6 55
X

Y•f1

]

Y•f6

6 , (37)

wherefi is the i th column vector of

F5@f1 ,f2 , ¯ ,f6#. (38)

~Step 1! By applying the fourth-order Runge-Kutta method
Eq. ~37!, x(T) and F(T) are obtained under the initial gues
x(0)5x0, assuming that the periodT of the solution is
2p/(V/v2) because Eq.~32! is a nonautonomous system.

~Step 2! By substitutingx(T), F(T), andx0 into a successive
approximation equation for a nonautonomous system

@F~T!2E#dx5x02x~T!, (39)

and by solving the above equation, the correctiondx for x can be
determined.

~Step 3! We check whether a certain convergence criter
~@22#! is satisfied or not. In this paper, the convergence criterio
defined as

!(
i 51

6

$xi~0!2xi~T!%2

(
i 51

6

$xi~0!21xi~T!2%

,10210. (40)

If Eq. ~40!, which measures the relative error betweenx(0) and
x(T), is not satisfied, the initial guessx0 is updated tox01dx,
and then we return to Step 1.

~Step 4! If Eq. ~40! is satisfied, we examine the stability of th
obtained periodic solution by calculating the eigenvalues
F(T). If the maximum eigenvalue lies inside~or outside! the unit
circle in the complex plane, the periodic solution is considered
be stable~or unstable!.

4 Numerical Results and Discussion
In the following numerical examples, we treat symmetric cro

ply laminated shells (u590 deg/0 deg/90 deg) of layers wit
equal thickness. Each layer is assumed to be made of grap
epoxy with the following material properties~@23#!:

EL5138 GPa, ET58.96 GPa, GLT57.1 GPa, nLT50.3,

andGTZ is used asGTZ5ET/2. The shear correction factorK2 and
the damping ratiom are taken to beK255/6 andm50.01, respec-
tively. The nondimensional linear natural frequencies of the sh
and the amplitudeF of the excitation are shown in each figu
except Figs. 1, 6, and 7.

In Section 2, it was shown that the vibration coupled with t
~1,1! mode was generated when the system vibrated in the~2,1!
mode. This means coupled vibration between an asymmetric
bration mode and symmetric vibration modes. We hence exam
first of all the effects of not only the~1,1! mode but also of the
~3,1! mode which is the second symmetric vibration mode in
primary resonance of the second vibration mode. Figure 2 sh
the frequency-response curves for a shell with square planf
(a/b51, Rx /a5Ry /a510 andh/a50.01). Since the shell doe
not have the one-to-one internal resonance (v2'v3), the ~1,2!
mode can be neglected in this case. Note that the natural
quencyv4 of the ~3,1! mode equals 43.95 and there are no int
nal resonances among the~1,1!, ~2,1!, ~1,2!, and ~3,1! modes. In
Fig. 2, W4 indicates the amplitude of the~3,1! mode. The dotted,
solid, and broken lines denote the results obtained by conside
only the ~2,1! mode ~single-mode analysis!, the ~1,1! and ~2,1!
644 Õ Vol. 68, JULY 2001
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modes~two-mode analysis!, and the~1,1!, ~2,1!, and~3,1! modes
~three-mode analysis!, respectively. It is found from Fig. 2~b! that
the result of the two-mode analysis is in good agreement with
of the three-mode analysis, whereas that of the single-mode an
sis is different from both of them.

Time histories atV/v251.3 ~upper branch! are shown in Fig.
3, whereW and T indicate the amplitude of the shell at (x,y)
5(a/4,b/2) and the period of the excitation, respectively. It can
seen in Fig. 3~b! that the periods ofW1 and W4 which are acti-
vated through nonlinear terms are half of that ofW2 which is
excited directly by the load. Moreover,W1 and W4 are always
negative in a vibratory cycle. Chin and Nayfeh@16# through the
direct approach indicated that responses of shells contained t
expressing a drift and a period of half of the period of a harmo
load ~see Eqs.~4! and ~5! in @16#!. This agrees with our results

Fig. 2 Frequency-response curves for the shell with aÕbÄ1,
Rx ÕaÄRy ÕaÄ10 and h ÕaÄ0.01, „v1Ä20.68, v2Ä28.59, v3

Ä48.77, v4Ä43.95 and FÕv2
2Ä0.015…. „a… „1,1… mode, „b… „2,1…

mode and „c… „3,1… mode.
Transactions of the ASME
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The present second author and Leissa@24# investigated nonlinear
free vibrations of thick isotropic shells and reported that the
ward displacement (Wmin) exceeded in magnitude the outwa
displacement (Wmax) in a vibratory cycle. As can be seen from
Fig. 3~c!, the asymmetry of the displacement~i.e., uWminuÞWmax)
appears in the two-mode and in the three-mode analyses. H
ever, the asymmetry does not appear in the single-mode ana
It can therefore be concluded from Figs. 2 and 3 that the fi
vibration mode is indispensable for analyzing the asymme
modes of shells. Furthermore, because the results obtained b
two-mode analysis are in good agreement with those obtaine
the three-mode analysis and the effect of the~3,1! mode is very
small, the symmetric modes other than the~1,1! mode can be
neglected in the analysis.

Next, the effect of the first vibration mode on the internal res
nance v2'v3 is examined. Figure 4 depicts the frequenc
response curves for a shell (a/b50.704, Rx /a5Ry /a510 and

Fig. 3 Time histories at VÕv2Ä1.3 „upper branch … in Fig. 2. „a…
„2,1… mode, „b… „1,1… and „3,1… modes, and „c… the amplitude of
the shell at „x ,y …Ä„aÕ4, b Õ2….
Journal of Applied Mechanics
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h/a50.01) obtained by considering only the~2,1! and ~1,2!
modes~two-mode analysis!. The solid and broken lines denot
stable and unstable responses, respectively. Stable two-mod
sponses occur atV/v2'1.028 via a pitchfork bifurcation and
vanish atV/v2'1.057 via a saddle-node bifurcation. The sing
mode response, which loses its stability via the pitchfork bifur
tion, becomes stable atV/v2'1.053 via another pitchfork
bifurcation.

Frequency-response curves for the same shell as in Fig. 4
tained by considering the~1,1! mode in addition to the~2,1! and
~1,2! modes~three-mode analysis! are presented in Fig. 5. In thi
case, a stableW3 , which is activated by the internal resonanc
occurs atV/v2'1.000 via a saddle-node bifurcation and loses
stability atV/v2'1.011 via a Hopf bifurcation, and the bifurca
tions are different from those in Fig. 4. It is therefore found fro
Figs. 4 and 5 as well that the~1,1! mode cannot be neglected i
the analysis.

The coupled response between the~1,1! and ~2,1! modes loses
and recovers its stability atV/v2'1.003 and 1.018, respectively
via pitchfork bifurcations; hence there do not exist stable perio
responses in the frequency region approximately given by 1.
<V/v2<1.018 in spite of the shell being subjected to the pe
odic load. Such a phenomenon was also observed in an isotr
circular shell@16#. In order to examine the vibration characteri
tics in this region, the variation of the largest and the seco
largest Lyapunov exponents@25# with V/v2 and Poincare´ sec-
tions on theW22W3 plane at some points are presented in Figs
and 7, respectively. The Poincare´ sections are constructed by sam
pling the motion at the period of the excitation, and these figu
show the results calculated for 30,000 periods after the trans
response decayed. The stable response which loses its sta

Fig. 4 Frequency-response curves for the shell with aÕb
Ä0.704, Rx ÕaÄRy ÕaÄ10 and h ÕaÄ0.01 obtained by the two-
mode analysis, „v1Ä18.79, v2Ä28.15, v3Ä28.68, and FÕv2

2

Ä0.01…. „a… „2,1… mode and „b… „1,2… mode.
JULY 2001, Vol. 68 Õ 645
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through the Hopf bifurcation point becomes a quasi-periodic
bration, as shown in Fig. 7~a!. It can be seen in Figs. 6, 7~b!, and
7~c! that as the frequency is increased further, the quasi-peri
vibration undergoes a sequence of period-doubling bifurcatio
eventually giving rise to chaotic vibration. It is to be noted that t
second largest Lyapunov exponent is not positive, and hence
is not hyper chaos. Since the largest Lyapunov exponent at
point D in Fig. 6 is a very small positive value and can be taken
be zero, its motion is quasi-periodic~see also Fig. 7~d!!. In com-
paring Figs. 7~a! and ~b! with ~d!, it is observed that the type o
the quasi-periodic motion at the point D is different from that
the points A and B.

Figure 8 presents frequency-response curves for a shella/b
50.581,Rx /a5Ry /a550 andh/a50.01) whose radii of curva-
ture are five times larger than those of the shell used in Fig. 5
may be expected, the~1,1!, ~2,1!, and~1,2! modes are considere
in the analysis. The magnitude ofW1 is smaller than that in Fig. 5

Fig. 5 Frequency-response curves for the same shell as in
Fig. 4 obtained by the three-mode analysis. „a… „1,1… mode, „b…
„2,1… mode, and „c… „1,2… mode.
646 Õ Vol. 68, JULY 2001
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and the frequency region ofW3 is narrower than that in Fig. 5
The stableW3-response occurs and vanishes via the same bi
cations as in Fig. 4 where the~1,1! mode is neglected. We hav
also confirmed that the same tendency is obtained with an incr
of the thickness ratio. It can therefore be said that increases in
radius of curvature and the thickness ratio reduce the influenc
the ~1,1! mode on the primary resonance of the second vibrat
mode.

In Fig. 9, the effect of damping ratio on the frequency-respo
curves is shown for the same shell as Fig. 4. Only stable respo
are plotted in the figure. The symbolss, n, andh denote Hopf,
saddle-node, and pitchfork bifurcation points, respectively. T
amplitude of the coupled responses between the~1,1! and ~2,1!
modes does not change greatly with the value of the damp
ratio, whereas that of the~1,2! mode does greatly with it. Espe
cially, in the case ofm50.005, there exist two coupled respons
among the~1,1!, ~2,1!, and ~1,2! modes in the frequency regio
1.003<V/v2<1.011.

5 Summary
In the present study, we investigated the response of symm

crossply laminated shallow shells with a one-to-one internal re

Fig. 6 Lyapunov exponents in the region where stable peri-
odic responses do not exist

Fig. 7 Poincare´ sections. „a… VÕv2Ä1.01200, „b… VÕv2
Ä1.01250, „c… VÕv2Ä1.01263, and „d… VÕv2Ä1.01451.
Transactions of the ASME
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nancev2'v3 , wherev2 andv3 were linear natural frequencie
of asymmetric vibration modes~2,1! and ~1,2!, respectively. We
attempted to approximate the displacements of the shell by
eigenfunctions for the linear vibration mode~1,1! in addition to
the ones for the modes~2,1! and~1,2!, and then applied Galerkin’s
procedure to the nonlinear governing equations for the shell yi
ing ordinary differential equations with both quadratic and cu
nonlinear terms. These equations indicated that when the~2,1!
mode was excited, the~1,1! mode was always activated even
there were no internal resonances between the~1,1! and ~2,1!
modes. Frequency-response curves when a driving frequencyV is
nearv2 were obtained by the shooting method.

In the numerical examples, we investigated in detail the non
ear vibration characteristics of laminated shells having a ply la
of (u590 deg/0 deg/90 deg). First, we treated a shell with no

Fig. 8 Frequency-response curves for the shell with aÕb
Ä0.581, Rx ÕaÄRy ÕaÄ50, and h ÕaÄ0.01 obtained by the three-
mode analysis, „v1Ä7.075, v2Ä16.69, v3Ä16.90, and FÕv2

2

Ä0.01…. „a… „1,1… mode, „b… „2,1… mode, and „c… „1,2… mode.
Journal of Applied Mechanics
the

ld-
ic

if

in-
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ternal resonances, and studied the effect of not only the~1,1!
mode but also of the~3,1! mode which is the second symmetr
vibration mode on the primary resonance. The analysis consi
ing the~1,1! mode led to an asymmetry of the displacement~i.e.,
the absolute values of the outward and inward displacements
not agree with each other!, whereas the analysis neglecting th
~1,1! mode did not show this asymmetry. We concluded theref
that the~1,1! mode is indispensable to the analysis of the nonl
ear vibrations of the shells. On the other hand, the higher s
metric modes could be negligible because the effect of the~3,1!
mode on the response was very small. Next, we investigated
effect of the~1,1! mode on the frequency-response curves for
shell with one-to-one internal resonance, and showed that neg
of the ~1,1! mode led to incorrect results. Furthermore, it w
proven through both the Lyapunov exponents and the Poin´

Fig. 9 Effect of damping ratio on frequency-response curves
for the same shell as in Fig. 4 obtained by the three-mode
analysis, „FÕv2

2Ä0.01, s: Hopf bifurcation point, n: saddle-
node bifurcation point and h: pitchfork bifurcation point …. „a…
„1,1… mode, „b… „2,1… mode, and „c… „1,2… mode.
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sections that chaotic vibrations may occur over a certain rang
the driving frequency. Finally, the effects of radii of curvature a
damping ratio on the one-to-one internal resonance were il
trated. We showed that the effect of the~1,1! mode became
smaller with an increase of the radius of curvature, and that
:
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responses activated by the internal resonance were cha
greatly with the value of the damping ratio.

Appendix
Details ofv, F, andV are as follows:
v i
25LWiWi1

LXiWi~LYiY iLWiXi2LYiXiLWiY i!1LYiWi~LXiXiLWiY i2LXiY iLWiXi!

LXiY iLYiXi2LXiXiLYiY i
~ i 51,2,3!,

F5
q0

ETH4 , V5V8A ra4

ETh3,

where

LX1X152p2~d111a2d66!2s55, LX2X252p2~d1114a2d66!2s55,

LX3Y352p2~4d111a2d66!2s55, LX1X15LY1X152p2a~d121d66!,

LX2Y25LY2X25LX3Y35LY3X3522p2a~d121d66!, LY1Y152p2~a2d221d66!2s44,

LY2Y252p2~a2d2214d66!2s44, LY3Y352p2~4a2d221d66!2s44,

LX1W15
LX2W2

2
5LX3W352p2Hs55, LY1W15LY2W25

LY3W3

2
52p2aHs44,

LW1X15
LW2X2

2
5LW3X352

ps55

H
, LW1Y15LW2Y25

LW3Y3

2
52

paS44

H
,

LW1W15p2~a2s441s55!1
a11a12a22a66~r x1a2r y!2

H2r x
2r y

2$a11a12a661a2a11a22~a1212a66!1a4a12a22a66%
,

LW2W25p2~a2s4414s55!1
a11a12a22a66~r x1a2r y!2

H2r x
2r y

2$16a11a12a6614a2a11a22~a1212a66!1a4a12a22a66%
,

LW3W35p2~4a2s441s55!1
a11a12a22a66~r x1a2r y!2

H2r x
2r y

2$a11a12a6614a2a11a22~a1212a66!116a4a12a22a66%
,

~A11* ,A12* ,A22* ,A66* !5
1

ETh S 1

a11
,

1

a12
,

1

a22
,

1

a66
D ,

~D11,D12,D22,D66!5ETh3~d11,d12,d22,d66!, ~S44,S55!5
ETh3

a2 ~s44,s55!,

a5
a

b
, H5

h

a
, r x5

Rx

a
, r y5

Ry

a
.

It is to be noted that the nondimensional linear natural frequencyv i is related to the linear natural frequencyv̄ i by v i

5v̄ i(ra4/ETh3)1/2.
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Effect of Curved Bar Properties on
Bending of Curved Pipes
A general solution is presented for in-plane bending of a thin-walled short-radius cu
pipe. The problem is solved considering the properties of a curved bar—an actual ra
of curvature of longitudinal fibers and the neutral line displacement. The theory is de
oped using minimization of the total energy. The relationships of the theory of elastic
shells are used. The obtained results for the strains and stresses in curved short-
pipe bends are compared with published theoretical and experimental data. The pr
ties of a curved bar being taken into account enable to correct seriously the distribu
and peak values of the strains which take place in curved pipes of large curvature
jected to bending.@DOI: 10.1115/1.1357518#
i
n
r
f
h
c
g

g
h
n

o
a

b

t

d
c

n
a

are
uses
h-
ter-

lied
the
ade

ary
iler

ono
lted
the

he

ric-

gn
sed

e to

to
by

t a
s

dial

the
s-
itu-

r
a
t

Introduction
Bending of a curved pipe is accompanied by the flatten

forces. They transform initial circular cross sections of a pipe i
oval cross sections. As a result, longitudinal stresses in the cu
pipe increase and their distribution changes. The rigidity o
curved pipe subjected to bending decreases as compared to t
a straight pipe with the same cross section. It causes signifi
meridional bending stresses. The classical theory for bendin
curved pipes was developed by Karman@1#. He was the first who
analyzed the reasons for significant decrease of their bendin
gidity. His work and the majority of other studies assumed t
actual curvature of longitudinal fibers of a curved pipe should
be taken into account. This curvature was considered to be e
to the center line curvature. This assumption leads to an erro
results if applied to pipes with a small radius of curvature. T
study by Clark and Reissner@2# presents an example in which a
actual curvature of longitudinal fibers is given in problem form
lation but ignored in problem solution. A few works tried to tak
actual curvature of longitudinal fibers into account. The m
complete solution for this problem was developed by Cheng
Thailer @3,4#.

It is known that the approximate theory of bending of a curv
rigid bar deals with the two factors:

~1! actual curvature of longitudinal fibers;
~2! displacement of the neutral line from the center line of a

cross section.

The second factor was ignored in the theory of bending o
curved pipe. The appropriate question seems to be first raise
the study by Stasenko and Rakhmanova@5#. However, their paper
contains a mistaken hypothesis applied to the statics condition
a result, the neutral line displacement in a curved pipe was s
posed to be equal to that in a rigid curved tubular bar with
same cross section. It will be shown in the present paper that
way of solving the problem is incorrect.

The problem of in-plane bending of a curved short-radius p
bend solved in the present paper allows for both the actual ra
of curvature of longitudinal fibers and the neutral line displa
ment. The latter factor’s consideration provides the conditions
pure bending of a curved pipe since it meets the requirement
the longitudinal force equals zero. The neutral line displaceme
assumed to be unknown and is determined through the st

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 2
2000; final revision, Oct. 19, 2000. Associate Editor: S. Kyriakides. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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condition. The relationships of the theory of elastic thin shells
used for the displacements, strains, and stresses. The solution
the minimization of the total energy in the manner of Rayleig
Ritz. The strain energy and neutral line displacement are de
mined through integration in the closed form. The analysis app
to pipes of uniform thickness with a constant mean radius of
cross section and constant curvature of the center line, and m
of an isotropic material. Our solution is compared to the ordin
theory of curved pipes, the results of studies by Cheng and Tha
@3#, and the published experimental data by Vissat and Del Bu
@6#. As a whole, consideration of the new parameters has resu
in essential correction of the diagrams and peak values of
strains in short-radius curved pipes.

Formulation of Problem
Figure 1 shows a curved, circular thin-walled pipe with t

center line curvature radiusR, mean radius of cross sectionr and
wall thicknesst. It is assumed that the curved pipe has no rest
tions on size of the radius ratiol5r /R. The only condition isl
,1. This condition is both a natural limit for a curved pipe desi
and a sine qua non for existence of the certain integrals u
further in the paper. Thus, the presented theory is applicabl
pipes of any large curvature.

It is supposed that the theory of thin shells may be applied
the pipes in question. Under pure in-plane bending of the pipe
the momentsM, the central anglec has a changeDc. It is also
implied that the neutral line is displaced from the central line a
distance ofsn . The points on the middle line of the pipe cros
section are determined through the radiusr and angular coordinate
b. The vertical coordinate~in the direction of the OY-axis! is

y5r cosb. (1)

Flattening of the cross section is accompanied by the ra
displacementw and tangential displacementsv of the points on
the cross section middle line~Fig. 1!, and also by vertical dis-
placements~parallel to the axis OY! of the same pointswy . The
following geometrical formula describes their interrelations:

wy5w cosb2n sinb. (2)

Let the approximate theory of curved bars be applied to
‘‘bar’’ components of longitudinal strains in a curved pipe. It a
sumes that the hypothesis of flat cross sections is true. A long
dinal filamenta-a is located at a distance ofsn1y from the neu-
tral line. The ‘‘bar’’ component of the longitudinal strain fora-a
filament with a curvature radiusRy5R1y is equal to

~«1
0!a2a5

~sn1y!Dc

Ryc
5

r

R *
s1cosb

11l cosb *
Dc

c
, (3)

wheres5sn /r .
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A relative change of the central angle of the curved pipeDc/c
is expressed further through a curvature changek0 of the appro-
priate straight pipe with the same lengthL and the same cros
section. For this purpose we use the definition of rigidity factoK
for a curved pipe. Under influence of the identical bending m
mentsM on curved and straight pipes the rigidity factor is equal

K5
~Dc!0

Dc
, (4)

where (Dc)0 is the angle change in a straight pipe under bendi
According to the beam theory there are relationships wh

connect the curvature change of a straight pipe with the an
change and the bending moment:

~Dc!05k0L; k05M /EI, (5)

whereEI is the straight pipe rigidity under bending.
It also necessary to mention that the central angle of a cur

pipe is equal to

c5L/R. (6)

Putting the relations~4!–~6! together we have

Dc

c
5

R

r

1

K
~k0r !. (7)

Substituting~7! into ~3! we obtain the formula for longitudina
‘‘bar’’ strains:

Fig. 1 Bending of a curved circular pipe
Journal of Applied Mechanics
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«1
05

1

K

s1cosb

11l cosb
~k0r !. (8)

It should be noticed that the productk0r is a value convenient for
comparison because it means the maximal longitudinal strain
straight pipe subjected to bending by the momentM.

Longitudinal Strains
The total longitudinal strains consist of the bar strains~8! and

the strains caused by flattening the cross section contours
curved pipe:

«15
1

K

s1cosb

11l cosb
~k0r !1

wy

R1y
. (9)

Radial components of the displacements may be presented
series:

w5~k0r 2!(
n52

`

Xn cosnb, (10)

whereXn are unknown coefficients of the series.
The expression for tangential displacements may be obta

based on the thin shells theory hypothesis of inextensibility of
middle surface in the meridional direction:

]v
]b

1w'0: (11)

v52~k0r 2!(
n52

`

n21Xn sinnb. (12)

It is important to pay attention to the ‘‘inextensibility’’ concep
which means no as absence of lengthening of a mean line of c
section as a result of displacements in a curved pipe as a thin
only. However, there are meridional membrane stresses in cu
pipes, and this fact was mentioned, for example, by Cheng
Thailer @3,4#.

According to ~2!, ~10! and ~12! the expression~9! takes the
following form:

«15S 1

K

s1cosb

11l cosb
1

1

2

r

R (
n52

`

Xnwn* D ~k0r ! (13)

where

wn* 5
1

11l cosb Fn11

n
cos~n21!b1

n21

n
cos~n11!bG .

(14)

It should be emphasized that the radius ratiol is applied only to
those terms which refer to the actual curvature of longitudi
fibers. At the same time, the ratior /R is used in the same way a
in the ordinary theory of curved pipe bending.

A relative displacement of the neutral lines and rigidity factor
K can be found from the statics conditions:

N50: ErtE
0

2p

«1db50. (15)

M5ErtE
0

2p

«1ydb. (16)

The former condition~15! provides pure bending of a curve
pipe ~N is the longitudinal force!.

Hereinafter~in the definition of potential strain energy! the in-
tegration is carried out in the closed form. All certain integra
may be presented as a sum of integrals described by the follow
general formula:
JULY 2001, Vol. 68 Õ 651
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2p cosnb

11l cosb
db5~21!n

2en

a
p n50,1,2,3, . . . ; l,1,

(17)

where

e5
1

l
~12A12l2!; ~l,1!, (18)

a512le. (19)

From ~15! and ~16! it follows that

s5K
a

12e2 e, (20)

K5S a

12e22
1

2

r

R (
n52

`

CnXnD 21

, (21)

Cn5~21!n
1

n
en22@~n11!1~n21!e2#. (22)

The e value ~see~18!! has a quite certain physical interpret
tion. This is the neutral line displacement divided by radiusr for a
conditionally rigid curved pipe subjected to bending. This is eq
to the displacement in a curved bar with a tubular cross section
such rigid bar there is conditionally no flattening of cross sectio
The expression~18! for e is received by consideration of the sta
ics conditions~15! and ~16! for this curved bar.

Formulating the problem, Stasenko and Rakhmanova@5# as-
sume the parameters in the formula~9! for longitudinal strains in
a curved pipe to be equal to the parametere for a rigid curved bar
with a tubular cross section. As the ratio of the parameterss ande
is equal approximately to the rigidity factorK according to the
expression~20!, the results of Stasenko and Rakhmanova@5# are
rather far from reality.

Finally, with ~20! and~21!, the formula for longitudinal strains
~13! may be rewritten as

«15F a

12e2

e1cosb

11l cosb
1

1

2

r

R (
n52

`

XnS wn* 2Cn

cosb

11l cosD G
3~k0r !. (23)

The ratioa/(12e2) in the formula~23! is the rigidity factor of
a curved bar with a tubular cross section.

Determination of Unknown Coefficients
CoefficientsXn of the series~10! are determined through mini

mization of the total energyV

V5U2W, (24)

where
U is strain energy;
W is potential energy of end moments.

Strain energy is determined according to the expression:

U5
1

2
r ~Rc!E

0

2p

~11l cosb!~Et«1
21Dk2

2!db, (25)

where«1 is the longitudinal strain,k2 is the curvature change o
the middle line of a pipe cross section,E is the modulus of elas-
ticity, D5Et3/12(12n2), n is Poisson’s ratio.

Potential energy of end moments,

W52M* Dc52k0
2EI~Rc!S 1

12e22
1

2

r

R (
n52

`

CnXnD .

(26)

In ~26! the expressions~5!, ~7!, ~21! are used.
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The curvature change of the middle linek2 is determined ac-
cording to the theory of shells,

k252
1

r 2 S d2

db2 11Dw. (27)

If ~10! is taken into account, then

k25k0(
n52

`

~n221!Xn cosnb. (28)

The minimum of total energy may be obtained in the Rayleig
Ritz manner if

]V

]Xn
50. (29)

Substituting~25! and ~26! into ~24!, integrating it and meeting
the requirements~29! we have an infinite system of linear equ
tions describing unknown coefficients:

an,nXn1(
i 52
iÞn

`

an,iXi5bn , n52,3,4, . . . . (30)

The coefficientsan,n , an,i and free termsbn in the set of Eqs.
~30! are determined by the following expressions:

an,n54FUn,n* 1
~n221!2

3~12n2!
h2G

an,i54Un,i* 1d i ~n61!Fl
2

3~12n2!
~n221!~ i 221!h2G

bn528
R

r

12e2

a
Cn , (31)

whereh is the curved pipe parameter:h5Rt/r 2,

Un,n* 5~a21!F ~11e2n22!S 112
n21

n11
e2D S n11

n D 2

1~11e2n12!

3S n21

n D 2G2
11e2

a
Cn

2;

Un,i* 5
~21!n2 i

ani
@~n11!u11~n21!u2#2

11e2

a
CnCi ;

uk5~ i 11!ben1 i 12~k22!1eun2 i 12~k21!uc1~ i 21!ben1 i 12~k21!

1eun2 i 12~k22!uc; ~k51,2!

d i ~n61!5H 1 ~ i 5n61!

0 ~ iÞn61!.
(32)

TheCi values are calculated under the formula~22! in which n is
replaced withi.

Strains and Stresses
The longitudinal strains are determined under~23!. The expres-

sion for meridional bending strains follows from~28! ~the top
mark refers to the outer surface of a pipe!:

«256
1

2
h

r

R
k0r(

n52

`

~n221!Xn cosnb. (33)

The longitudinal stresses only are considered in this pa
They are described by the expression:

s15
E

12n2 ~«11n«2!. (34)
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From the Presented Theory to the Ordinary Theory of
Curved Pipes

We understand the term ‘‘ordinary theory of curved pipes’’ a
solution without regard to parametersl ands ~@1#!. The accuracy
of this solution is determinated by the number of terms in
series~10! (n52,3,4, . . . ). Theordinary theory can be receive
as a particular case of our solution provided thatl→0. In this
case, from~18! by applying L’Hopital’s rule we get

lim eul→050. (35)

Then according to~19! and ~20! we havea51; s50. From
~22! it follows that

lim Cnu
e→0
n5253/2. (36)

If n>3: Cn50.
Under the above conditions the ordinary theory of curved pipe
obtained.

Results and Discussion
We received numerical results for the curved pipes parameth

ranging from 0.05 to 0.30. This range practically covers the m
part of short-radius curved pipes.

The effect of the curved bar properties on the bending theor
curved pipes is estimated by comparison of our basic solu
(lÞ0, sÞ0! with the ordinary theory of curved pipes~l50, s
50! ~@1#!. Thus, the calculations are made for two values of
curvature parameter~l50.8 andl50.5!.

To evaluate the separate influence of the neutral line displ
ment on numerical results we also developed a solution, in wh
the actual curvature of longitudinal fibers is considered only~l
Þ0, s50!. This solution should be qualified as an intermedia
variant of our basic theory. The results of the basic solution
compared also to this intermediate variant.

Fig. 2 Displacements of the neutral line of curved pipes; „a…
s Õe „solid line …, „b… sÄs n Õr „dotted line …
Journal of Applied Mechanics
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The neutral line displacement~20! may be judged by the dia
grams for function of the ratioss/e ands5sn /r from the curved
pipe parameterh ~Fig. 2!. It follows from the diagrams that the
neutral line displacement in a curved pipe is rather little in co
parison with the displacemente in a rigid curved bar with a tubu-
lar cross section. However, it is shown further that the neutral
displacement if taken into account enables to revise the distr
tion and peak values of the strains.

In what follows the strains and stresses are presented as di
sionless ratios:

• for strains:

«~!
*5

«~ !

k0r
; (37)

• for stresses:

s~ !
* 5

s~ !

E~k0r!
. (38)

Figure 3 shows the longitudinal strain distribution for a curv
pipe with parametersh50.3, r /R50.8. The strain distribution is
found: ~a! under our basic solution,~b! under the intermediate
variant of our theory, and~c! under the ordinary theory of curve
pipes bending. The comparison shows that for the peak value
longitudinal strains the results of our basic theory are located
tween the results of the ordinary theory and our intermediate v
ant of the basic theory. The diagrams in Fig. 3 show that
neutral line displacement influences the longitudinal strains c
siderably.

The influence of the curvature parameterl on the longitudinal
strains distribution is reasonable. It is illustrated by the diagra
in Fig. 4 for a curved pipe withh50.3. The calculations are mad

Fig. 3 Longitudinal strain distribution; „a… presented theory
lÅ0, sÅ0 „solid line …, „b… intermediate variant lÅ0, sÄ0
„dashed line …, „c… ordinary theory lÄ0, sÄ0 „dotted line …
JULY 2001, Vol. 68 Õ 653
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line
under our basic theory and under the ordinary theory of cur
pipes. Increase of the parameterl causes consistent decrease
the longitudinal strains on the convex part of a curved pipe
increase of the strains on the concave part.

The divergences of peak values for the longitudinal strains
culated according to our basic theory for two values of param
l ~0.8 and 0.5! and two values ofh ~0.05 and 0.30! are given in
Table 1. Analysis of the table data shows that our theory es
tially revises the peak values of longitudinal strains in compari
with both the ordinary theory and the variant which takes in
account the actual curvature of longitudinal fibers only.

Meridional bending strain distributions under our basic solut
and under the ordinary theory differ insignificantly on the mo
part of a curved pipe cross section. The exception is constitute
the concave part of cross section at 130 deg<b<180 deg~see
Fig. 5!. For this part of cross section our theory presents esse
revision in the distribution and peak values of the meridio
bending strain.

Fig. 4 Longitudinal strain distribution; „a… lÄ0.8 „solid line …,
„b… lÄ0.5 „dashed line …, „c… ordinary theory lÄ0, sÄ0 „dotted
line …

Table 1 Differences „percent … in maximum values of the longi-
tudinal strains compared to the presented basic theory
654 Õ Vol. 68, JULY 2001
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The longitudinal stresses are compared with published theo
ical and experimental data. Figure 6 presents diagrams of lo
tudinal stresses for the outer surface of a curved pipe withh
50.071527,r /R50.512. The comparison shows that our soluti
is consistent with the experimental data received by Vissat
Del Buono@6#. In the same figure there is a diagram which pr
sents the theoretical results obtained by Cheng and Thailer@3#, in
which parameterl was taken into account only. The compariso
shows that our solution gives the better approximation to the
sults of experiment~Fig. 6! for the peak values of longitudina
stresses.

The calculations under our basic theory and under the ordin
theory have shown that the rigidity factors of curved pipes do
practically depend on the parametersl ands provided that these
parameters are used together. In the given range of parameth
andl the maximal divergence in the values of the rigidity facto
is 1.7 percent.

The calculations under our technique for the given examp
are executed by taking view of eight terms in initial expansi
into a series~10! ~to the 9th harmonic included!. The calculations
under the ordinary theory are executed including the 8th harmo
in ~10!. This way provided the high accuracy of calculations a
reliability of the compared results.

Conclusions
• The presented theory of in-plane bending of curved pip

takes into account the both factors describing longitudinal stra
in a curved bar:

• actual curvature of longitudinal fibers;
• displacement of the neutral line as related to the central

of a pipe.

Fig. 5 Meridional bending strain distribution; „a… lÄ0.8 „solid
line …, „b… lÄ0.5 „dashed line …, „c… ordinary theory lÄ0, sÄ0
„dotted line …
Transactions of the ASME
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• The neutral line displacement being taken into account p
vides the conditions for pure bending of a curved pipe. The d
placement is considered unknown and determined from the st
condition.

• The solution is developed using minimization of the to
energy in the manner of Rayleigh-Ritz. Basic relations of
theory of elastic thin shells are also used.

Fig. 6 Longitudinal stress distribution; „a… presented theory
lÅ0, sÅ0 „solid line …, „b… Cheng and Thailer †3‡ lÅ0, sÄ0
„dashed line …, „c… experimental data of Vissat and Del Buono †6‡
„solid circles …
Journal of Applied Mechanics
ro-
is-
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al
he

•The solution is presented as the infinite set of linear equatio
The formulas are given for the coefficients and free terms of
set of equations.

• The closed-form solution for integrals is obtained for t
strain energy and neutral line displacement. In the expression
integrals there are the parameters which characterize bendin
curved rigid bars with a tubular cross section.

• The presented theory is applicable to pipes of any large c
vature.

• It is shown that the ordinary theory of curved pipes can
obtained as a particular case of the presented solution.

• The formulas for the displacements, strains, stresses and
rigidity factor of curved pipes are obtained which include t
parameters describing the large curvature of pipes.

• The obtained results are compared to:

• the ordinary theory of curved pipes;
• the solution which takes into account an actual curvature

fibers only;
• the published experimental data.

• The rigidity factor does not materially depend on the para
eters describing bending of short-radius pipes provided that th
parameters are used together.

• The neutral line displacement and the actual curvature of l
gitudinal fibers have provided the essential correction of the
tribution and peak values of longitudinal strains in curved sho
radius pipes under bending.

• The presented theory essentially revises the meridional be
ing strains distribution for the concave part of cross sections
curved pipes.
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The Transient Motion of a
Ramp-Core Supersonic
Dislocation
The transient motion of a ramp-core dislocation spreading from2`,x,` and jumping
from rest to a supersonic speed in the x direction, is investigated by analysis o
complex transform plane. The new result of this analysis is that, instead of the Mach
of the Volterra dislocation, there are two lines of discontinuity (of the stress) propaga
in the 6z directions, inside of which there are arctan delta sequence («Þ0) radiated
supersonic fields, as well as subsonic fields. The lines of discontinuity arise at the ta
point of the Mach wavefront («50) to the cylinder with radius r5c2t.
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1 Introduction
The transient motion of a supersonic screw dislocation w

spread ramp-like core starting from rest and jumping to a cons
velocity with which it moves thereafter, is analyzed in detail. T
analysis extends previous analysis by the authors~Markenscoff
and Ni @1#! for subsonic motion starting from rest with consta
velocity. Recently, Gumbsch and Gao@2# showed by a molecula
dynamics simulation that dislocations can propagate supers
cally if they are created as such. The present analysis com
ments this molecular dynamics simulation. Previously, gen
transient supersonic motion of Volterra dislocations had been
lyzed by Callias and Markenscoff@3# and steady-state superson
motion for Peierls dislocations by Weertman@4#.

The new result of this analysis is that instead of the Mach c
of the Volterra dislocation there are two lines of discontinuity~of
the stress! propagating in the6z directions, inside of which there
are arctan delta sequence~«Þ0! radiated supersonic fields, as we
as subsonic fields. The lines of discontinuity arise at the tang
point of the Mach wavefront~«50! to the cylinder with radius
r 5c2t.

2 Governing Equations
The dislocation with ramp-like displacement-core function s

isfies the differential equation for the antiplane strain field:

]2u

]x2 1
]2u

]z2 5b2
]2u

]t2 (1)

with boundary conditions

u~x,0,t !5H B

2

1

p S arctanF x

«G1
p

« D t,0

B

2

1

p S arctanFx2 l ~ t !

« G1
p

2 D t>0

(2)

whereb is the shear wave slowness and B is the Burgers vec
By x5 l (t) is denoted the motion on the planez50.

The solution is obtained as before, by superposition of Prob
I and Problem II, which has the solution~Markenscoff and Ni@1#!

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
2000; final revision, Dec. 14, 2000. Associate Editor: J. R. Barber. Discussion o
paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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u~x,z,t !5 f ~x,z,t !*
1

p

«

«21x2 , (3)

where f (x,z,t) ~Markenscoff@5#! is the solution of the classica
Volterra dislocation with coreH(x2 l (t)), and* denotes convo-
lution. This solution is investigated in the sequel.

3 Analysis of the Supersonic Transient Motion
The solution of the Volterra dislocation jumping from rest to

supersonic speed is obtained by using Laplace transform in
and two-sided Laplace transform in space, analogously
Markenscoff@5# for subsonic motion. Following the same not
tion, we obtain the transform

]û

]z
~x,z,s!5

B

2

s

2p i EBr
eslx

b

s~a1l!
e2sbxdl, (4)

where bya is denoted the dislocation’s slowness. The inversion
the Bromwich contour is obtained by a Cagniard-de Hoop~C-H!
technique as in Markenscoff@5#. It follows, from ~4!, that there is
a pole atl52a if a is within the contour of integration. Consid
ering the C-H contour, we see that, if

~ i!
bx

r
,a,b there is no pole inside the contour (5

~ ii ! a,
bx

r
there is a pole atl52a. (6)

From ~i! it follows that, in particular, there is no pole for x,0.
Condition ~ii ! for the existence of a pole, which gives rise to
delta function in the solution, is written

x.
az

Ab22a2
(7)

where we consider onlyz.0. For z,0 the field is exactly sym-
metric. By inverting~4!, the contribution of the pole is

B

2
Ab22a2d~ t2ax2Ab22a2z!, (8)

which gives rise to the Mach wavefronts on the line

z5
2ax

Ab22a2
1

t

Ab22a2
. (9)
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Fig. 1 Lines of discontinuity of the radiated field from a moving supersonic dislocation with ramp-like core
e

i

l-

n
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,

Whena5x/r , the contribution is half of the value~8!.
It is easy to see that the Mach wave~see Fig. 1! meets the

cylindrical wavefrontx21z25(t/b)2 at the point (x,z)5(at/b2,
Ab22a2/b2t) which lies on the line defined by x
5az/Ab22a2, i.e., for equality in~7!.

The contribution to the solution of the ramp-dislocation fro
the pole atl52a is obtained by convolution of~8!, i.e.,

]u

]z
5

B

2p
Ab22a2E

az/Ab22a2

`

d~ t2aj2Ab22a2z!
«dj

«21~x2j!2

(10)

which yields

]u

]z
5

B

2p
Ab22a2

«

«21S x2
t

a
1

Ab22a2

a
zD 2

3HS t2
b2

Ab22a2
zD . (11)

The solution given by~11! is valid only for values ofj in ~10! that
satisfy

j.
az

Ab22a2
(12)

since in order to have nonzero contribution, the zero of the d
function must be bigger than the lower limit, i.e.,

j5
t

a
2

Ab22a2z

a
.

az

Ab22a2
(13)

inside which the solution exhibits the delta-sequence terms g
by ~11!. Physically the meaning of it is that to the supersonic fie
will contribute only to those points~in time! of the spread core
that lie on the Mach cone.
From ~13! follows that
of Applied Mechanics
m

lta

ven
ld

z,
tAb22a2

b2 (14)

which, by consideration of the symmetry inz, defines a strip~see
Fig. 1!,

2tAb22a2

b2 ,z,
tAb22a2

b2 . (15)

We thus see that the linesz56tAb22a2/b2 separate a region in
which the solution has a delta-sequence term given by~11! from a
region forz.tAb22a2/b2 ~andz,tAb22a2/b2, symmetrically!
in which this term is absent.

The solution for]u/]z(x,z,t) has, in addition to~11! which is
due to the pole, the contribution from the convolution of the Vo
terra field which is contained withint5rb. This differs in the
supersonic caseb.a from the subsonic casea,b treated by
Markenscoff and Ni@1#, since in the evaluation of the convolutio
integrals by integration in the complex plane, some poles are n
real. The convolution integral to be evaluated is given by Eq.~54!
of Markenscoff and Ni@1#, i.e., but now witha,b

E
2 l

l G~j,z,t !

Al 22j2~z21j2!

«

«21~x2j!2 dj (16)

where

G~x,z,t !5
g1~x,z,t !

bg2~x,z,t !

g1~x,z,t !5t2btx1a~z22x2!c1b2xbar 2x2t~2z21x2!c

g2~x,z,t !5@ax2t1Ab22a2z#@ax2t2zAb22a2#.

In order to evaluate~16! by integration in the complex plane
we find the poles ofG(j,x,t)/@(z21j2)(«21(x2j)2)# which
are
JULY 2001, Vol. 68 Õ 657
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~ i! j56zi,

~ ii ! j5x6« i ,

~iii ! the zeros ofg2~j,z,t !:

j5
t

a
6z

Ab22a2

a
.

Note that in the supersonic case, the poles~iii ! are now real
numbers, as contrasted with those of Eq.~56! of Markenscoff and
Ni @1#. We then evaluate the residues as follows:
~i! From the polesj56zi the contribution to the solution
]u/]z (x,z,t) is

B

2p
H~ t2bz!

b«

tz
ReH G~zi,z,t !

«21~x2zi!2J
5

2Bxz«H~ t2bz!

~x21~z1«!2!~x21~z2«!2!
. (18)

~ii ! From the polesj5x6« i the contribution to]u/]z(x,z,t) is
as in the subsonic case

B

2p
H~ t2bz!

1

Ar 1r 2

ReH G~x1« i ,z,t !

z21~x1« i !2 e1/2~u12u2!i J (19)

where

r 15@~ l 2x!21«2#1/2, r 25@~ l 1x!21«2#1/2,

l 5@~ t/b!22z2#1/2

cos
1

2
~u12u2!5F r 1r 21 l 22x21«2

2r 1r 2
G1/2

,

sin
1

2
~u12u2!5

&«x

Ar 1r 2@r 1r 21 l 22x21«2
.

However, the value of~19! differs from its subsonic counterpar
We define

G~x1« i ,z,t !

z21~x1« i !2 5
1

A3
@R31M3i # (20)

where

R31M3i[g1~x1« i ,z,t !@~z21x22«2!22x« i #

3@~a~x2« i !2t !22z2~b22a2!#

A35b2@x21~z1«!2#@x21~z2«!2#@~ax2t1zAb22a2!2

1a2«2#•@~ax2t2zAb22a2!21a2«2#.

By comparison to the subsonic case, we observe thatR35R1 ,
M35M1 whereR1 andM1 are given in the Appendix of Marken
scoff and Ni~2000!.

We thus have for the contribution in~19!:

ReFG~x1« i ,z,t !

z21~x1« i !2 e1/2~u12u2!i G
5

1

A3
FR1 cos

1

2
~u12u2!2M1 sin

1

2
~u12u2!G . (21)

To O(«) Eq. ~21! yields
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p

a2bAr 1r 2

g1~x,z,t !F S x2
t

a D 2

2
z2D2

a2 Gcos
1

2
~u12u2!

~x21z2!F«21S x2
t

a
1

zD

a D 2GF«21S x2
t

a
2

zD

a D 2G

1

p sin
1

2
~u12u2!

azDbAr 1r 2

g1~x,z,t !

x21z2 F «

«21S x2
t

a
2

zD

a D 2

2
«

«21S x2
t

a
1

zD

a D 2G
2

p sin
1

2
~u12u2!

azDbAr 1r 2

F]g1

]x
~x21z2!22xg1G
~x21z2!2

3F «S x2
t

a
2

zD

a D
«21S x2

t

a
2

zD

a D 22

«S x2
t

a
1

zD

a D
«21S x2

t

a
1

zD

a D 2G (22)

with

D5Ab22a2.

~iii ! We analyze the contribution from the polesj5t/a
6zAb22a2/a, which unlike the subsonic case are now real a
lie outside the branch cut interval (l ,2 l ), where l and 2 l are
branch points of the integrand in~16!. Their contribution is

p

2zbD

1

Ar 1r 2
U

x5t/a2zD/a

g1~~ t2zD!/a,z,t !

S z21S t

a
2

zD

a D 2D
«2

«21S x2
t

a
1

zD

a D 2

2
p

azbD

1

Ar 1r 2
U

x t/a1zD/a

g1S ~ t1zD!

a
,z,t D

S z21S x2
t

a
1

zD

a D 2D
3

«

«21S x2
t

a
1

zD

a D 2 . (23)

Whenz→tD/b2 the first term in~23!→0, since from~16!,

lim
z→tD/b2

g1S t2zD

a
,z,t D52

zD2

a
~ tD2zb2!F S t

a
2

zD

a D 2

1z2G→0

~in which case the pole coincides with the branch cut!.
The total solution toO(«) is
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DH~ tD2b2z!«

2 2 2 1
B

2p
H~ t2bz!

22x«z

x21 z1«!2 x21 z2«!2 1
1

2

g1~x1t1t !

x21z2!

«21S x2

t

a
1

Ab 2a

a
zD 5 @ ~ #@ ~ # Ar 1r 2a b ~

3

F ~x2t/a!22
z2D2

a2 Gcosu

F«21S x2
t
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2

zD
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D 2GF«21S x2

t

a
1

zD

a
D 2G 2

1

azDb
FsinuF~x,z,t !2FS t

a
2

zD

a
,z,t D G

3
«

«21S x
t

a
1

zD

a
D 2 1

1

azDb
FsinuF~x,z,t !2FS t

a
1

zD

a
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zD
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1
sinu

Ar 1r 2azDb

]g1
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~x21z2!2 •F «S x2
t

a
2

zD

a
D
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whereu5
1
2(u12u2) and

F~x,z,t !5
g1~x,z,t !

Ar 1r 2~x21z2!
.

We see from the above solution that in the limit as«→0 there is
no contribution outside the subsonic wavefrontt5rb except from
the delta function which is the first term in~24!, since, inside the
circle, i.e., foruxu, l , as:«→0:cosu→1,sinu→0 and

]u

]z
→

p

a2bAS t

b
D 2

2z22x2

g1~x,z,t !

~x21z2!F S x2
t

a
D 2

2z2~b22a2!G
and outside the circle, i.e., foruxu. l , as«→0: cosu→0,sinu→1
and

]u

]z
→ B

2p
DH~ tD2b2z!d~ t2ax2Ab22a2z!

which coincides with the Volterra dislocation solution~Callias and
Markenscoff@3#!.

The steady-state limit may be studied by settingx→X1T/a,
t→t1T and letting T→`. The wavefront t5rb is now (x
1T/a)21z25(t1T/b)2 and is centered at (2T/a) with radius
(t1T/b)2. As T→`, the center→~2`,0! and the radius→`. The
lines z56t2ax/Ab22a256t2ax/Ab22a2 remain the same
but asX→`, the two lines approach6, respectively. The point
(x,z)5(at/b2,Ab22a2/b2t)→(a(t1T)/b2,Ab22a2/b2(t1T))
→(`,`) and thus only the delta-sequence fronts remain and t
extend from the current position of the dislocation, all the way
infinity ~as in Weertman@4#!.

4. Conclusion
We have thus analyzed a ramp dislocation starting from rest

jumping to a supersonic speed. As a result of the transient mo
Journal of Applied Mechanics
hey
to

and
ion,

the radiated stress field consists of delta-sequence stresses a
the two linesx5t/a6Ab22a2/az, confined within a stripz5

6tAb22a2/b2 and a radiated subsonic field between the wa
front z6t/b and the linesz56tAb22a2/b2. In the steady-state
limit, only the delta-sequence fronts remain. The lines of disc
tinuity at z5tAb22a2t/b2 appear because of the point (x,t)
5(at/b2,Ab22a2t/b2) ~where the tangent meets the subson
wavefrontr 5c2t having a special physical meaning in the sol
tion of the Volterra dislocation~step function discontinuity!. At
this point, the Mach wavefront that starts at the current position
the dislocation (t/a,0) ends. The Mach wavefront, i.e., the ta
gent line from the dislocation to the circle with radiusr 5c2t, can
be considered as the envelope of the wavelets of radiusc2t emit-
ted by the dislocation from every point on its path. Thus, t
wavefront starts at the tangent point to the circle~with center at
the origin and radiusr 5c2t! and ends at the current position o
the dislocation. As the core becomes spread, the effect of
tangent point is carried as a line of discontinuity.
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The Contradicting Assumptions of Zero
Transverse Normal Stress and Strain in
the Thin Plate Theory: A Justification

K. Bhaskar and T. K. Varadan
Department of Aerospace Engineering, Indian Institute
Technology, Madras, Chennai 600 036, India

The need and validity of the contradicting assumptions of z
transverse normal stress and the corresponding strain in the c
sical plate theory are critically examined here. This is done
studying the relative magnitudes of these quantities with respe
other stresses and strains for a test problem amenable to an e
elasticity solution.@DOI: 10.1115/1.1352061#

Introduction
The thin plate theory~@1,2#! is a two-dimensional simplification

of the three-dimensional problem based on the following assu
tions:

~a! normals to the midplane of the undeformed plate rem
normal to the midsurface after deformation, i.e., the transve
shear strains are negligible;

~b! normals to the midplane of the undeformed plate suffer
change in length during deformation, i.e., the transverse nor
strain is negligible; and

~c! the transverse normal stress is negligible.

The second assumption is not consistent with the third assu
tion, since as per the three-dimensional constitutive law, the
mal strain and the normal stress in any direction cannot be sim
taneously zero~unless the problem is one of pure shear!. The
objective of this Note is to critically examine why these two co
tradicting assumptions are required in plate theory and to w
extent they are reasonable; this is done in the light of an elast
solution for a simple test case. A discussion of the need and
lidity of both these contradicting assumptions is not availab
either in historical accounts of the development of the thin pl
theory ~for example, see@3#! or in references wherein the equ

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 1
1999; final revision, Nov. 6, 1999. Associate Editor: J. W. Ju.
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tions of three-dimensional elasticity are systematically reduce
a set of two-dimensional equations of various orders with
lowest order equations corresponding to the thin plate~see, for
example,@4–6#!.

The Elasticity Solution
The problem considered is that of an infinitely long slab

rectangular cross section undergoing cylindrical bending due
transverse sinusoidal loading~Fig. 1!. The two longitudinal edges
are assumed to be supported by shear diaphragms such that

at x50,a: w50, sx50 for all y and z. (1)

The Navier equations of equilibrium, for the plane strain pro
lem, are

~2G1l!u,xx1Gu,zz1~G1l!w,xz50
(2)

~G1l!u,xz1~2G1l!w,zz1Gw,xx50

whereG and l are Lame’s constants, dependent on the Youn
modulusE and the Poisson’s ratiom.

The lateral surface conditions are

sz52qo sin
px

a
and txz50 at z52h/2,

for all x and y
(3)

sz5txz50 at z5h/2, for all x and y.

The problem admits to a closed-form solution as follows. C
responding to the sinusoidal load, the displacements can be
sumed to vary harmonically withx as

u5U~z!cosS px

a D
(4)

0,
Fig. 1 The test problem
01 by ASME Transactions of the ASME
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w5W~z!sinS px

a D .

These variations satisfy the shear diaphragm conditions of Eq~1!
and reduce Eq.~2! to a set of ordinary differential equations a
given by

2~2G1l!b2U1GU,zz1~G1l!bW,z50
(5)

2~G1l!bU ,z1~2G1l!W,zz2Gb2W50

where b5p/a. The lateral surface conditions can also be e
pressed in terms ofU andW. The solution for the resulting two
point boundary value problem is straightforward and is

U5A coshbz1B sinhbz1Czcoshbz1Dz sinhbz
(6)

W5FB2
C~324m!

b Gcoshbz1FA2
D~324m!

b Gsinhbz

1Dz coshbz1Czsinhbz

where

D5

qo~11m!sinh
bh

2

E~bh1sinhbh!
A5

DS 122m2
bh

2
coth

bh

2 D
b

C5

D coth
bh

2 S bh

2
1sinh

bh

2
cosh

bh

2 D
S bh

2
2sinh

bh

2
cosh

bh

2 D

B5

CS 122m2
bh

2
tanh

bh

2 D
b

.

The Particular Case of a Thin Slab
To arrive at a comprehensive understanding of the behavio

the structure, especially as it becomes thinner and thinner,
necessary to consider the components of the total strain en
due to bending, transverse shear and thickness-stretch~or contrac-
tion! separately. These denoted, respectively, asUb , Us , andUt ,
are defined as

Ub5
1

2 E sx«xdVol Us5
1

2 E txzgxzdVol
(7)

Ut5
1

2 E sz«zdVol.

These, for the present problem, turn out to be

Fig. 2 Variation of strain energy components with respect to
thickness
Journal of Applied Mechanics
s

x-

r of
t is
ergy

Ub5
qo

2a2

384pEG
@3~12m22m2!~sinh 4bh22 sinh 2bh!

112bh~12m22m2!~cosh 2bh21!

212~bh!2~12m22m2!sinh 2bh18~bh!3$21012m

112m21~71m26m2!cosh 2bh%

28~bh!4~11m!sinh 2bh116~bh!5~11m!# (8a)

Us5
qo

2a2~11m!

192pEG
@~3 sinh 4bh26 sinh 2bh!

112bh~cosh 2bh21!212~bh!2 sinh 2bh28~bh!3

3~21cosh 2bh!18~bh!4 sinh 2bh216~bh!5# (8b)

Ut5
qo

2a2

384pEG
@3~52m26m2!~sinh 4bh22 sinh 2bh!

112bh~52m26m2!~cosh 2bh21!

212~bh!2~52m26m2!sinh 2bh28~bh!3~52m26m2!

3~21 cosh 2bh!28~bh!4~11m!sinh 2bh

116~11m!~bh!5# (8c)

whereG5@sinh2 bh2(bh)2#2.
A plot of the three energy components versus the thickn

parameter is as shown in Fig. 2. From this figure, it is clear t
the bending action is more predominant compared to those
transverse shear and thickness-stretch as long as the thickne
the slab is small compared to the span; this is, of course, as ca
expected. What is of greater interest is to find out how the ra
Us /Ub , Ut /Ub , andUt /Us vary with the thickness. This is eas
ily accomplished by obtaining the Taylor expansions correspo
ing to these ratios after substitution from Eqs.~8!, as given by

Us /Ub52.82~h/a!211.06~h/a!41 . . .

Ut /Ub520.423~h/a!212.86~h/a!41 . . . (9)

Ut /Us520.15011.07~h/a!21 . . .

for m50.3. Thus, for small thickness-to-span ratios~say, up to
1/20!, both Us /Ub and Ut /Ub grow nearly quadratically with
h/a; further,Ut /Us remains a constant for such thin plates with
value of 0.15~i.e., m/2 for arbitrarym!.

Considering the limiting case of an extremely thin plate, i.e.,
h/a tends to zero, it is immediately seen that bothUs /Ub and
Ut /Ub tend to zero. This, then, is the starting point for the dev
opment of the thin plate theory. In other words, a ‘‘thin’’ plate
one for which the strain energy corresponding to transverse s
or thickness-stretch is zero. A look at Eq.~7! reveals that the
energy componentsUs and Ut can be made zero by neglectin
eithergxz or txz , and either«z or sz . Since the shear stress an
shear strain are directly proportional to each other, the neglec
the shear strain, by virtue of assumption~a! stated earlier, implies
that the corresponding shear stress is also absent. As far a
other two assumptions are concerned, it is clear that only on
them would have been sufficient and the other appears to b
unnecessary, redundant constraint.

It is now necessary to examine which of these tw
assumptions—namely one that neglects«z and the one that ne
glectssz—is really reasonable. For this purpose, it is enough
consider the relative magnitudes of these quantities with respe
their in-plane counterparts. For the present problem, the maxim
value of sz occurs on the loaded surface (z52h/2) at midspan
and is equal to2qo . Comparing this with the value ofsx max,
which occurs at the same point, one obtains, for the case of
ishing h/a,
JULY 2001, Vol. 68 Õ 661
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h/a→0

S sz max

sx max
D50. (10)

Similarly, at the same point, one gets

lim
h/a→0

S «z max

«x max
D52

m

~12m!
>20.43 for m50.3. (11)

Thus,while sz does turn out to be negligible, «z is not really so.
However, it is«z that needs to be neglected to keep the thin pl
theory simple, as explained below.

Justification of the Contradicting Assumptions of Thin
Plate Theory

The displacement field of the thin plate theory, obtained
direct integration of the transverse shear strain and transverse
mal strain which have been taken as zero, is

u~x,z!52zw,x (12)
w~x,z!5w~x!

where the special case of cylindrical bending is considered o
again, for the sake of simplicity. If the assumption of zero«z is
not employed, it is clear thatw would also depend onz, and its
variation with z has to be assumed to obtain a two-dimensio
theory; such a theory would obviously be more complicated t
the conventional thin plate theory. Thus, though not really ne
gible, «z has to be ignored fromthe viewpoint of simplicity.

Having thus justified the need for the zero-«z assumption, one
may be curious to find out whether the zero-sz assumption in the
thin plate theory can be dispensed with so as to avoid a viola
of the material constitutive law. This question can be answered
comparison of a two-dimensional theory based on the assump
of zero-«z and nonzerosz ~to be designated as NPT—New Pla
Theory!, with the conventional thin plate theory based on negl
of both «z and sz ~referred to as CPT!. While a plane-stress re
duced constitutive law as given by

sx5
E

~12m2!
«x (13)

is used in CPT, the three-dimensional constitutive law given b

sx52G«x1l«x (14)

is used in NPT. Thicknesswise integration would result in
following expressions forMx :

CPT: Mx52Dw,xx where D5
Eh3

12~12m2!
(15)

NPT: Mx52D8w,xx where D85
~2G1l!h3

12
5

~12m!2D

~122m!
.

The equation of equilibrium for the case of cylindrical bendi
is given by

Mx,xx1q50 (16)

which is valid for both CPT and NPT. Substitution forMx from
Eq. ~15! results in the following governing equations:

CPT: Dw,xxxx5q
(17)

NPT: D8w,xxxx5q.

It can easily be verified thatD8 is greater thanD for all possible
values ofm, except whenm50 in which case bothD8 andD are
equal. If one keeps in mind that CPT is known to yield a stif
approximation of the three-dimensional structure and hence
lead to underestimates of deflections~@7#!, then it is clear from Eq.
~17! that NPT would only be worse. Thus, from theviewpoint of
662 Õ Vol. 68, JULY 2001 Copyright © 20
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accuracy, the zero-sz assumption, though inconsistent with th
zero-«z assumption, is necessary in the thin plate theory.

Conclusion
An exact elasticity solution has been presented for the sim

case of cylindrical bending of an infinite strip. The magnitudes
various energy components, and of the transverse normal s
and the corresponding strain with respect to their in-plane co
terparts, are studied. The relaxation of the zero-transverse-nor
stress and the zero-transverse-normal-strain assumptions in
plate theory are critically examined. On the basis of these stud
one can conclude that:

~a! the transverse normal stress is certainly negligibly sm
compared to the in-plane stresses. However, the transverse no
strain is not negligible, but has magnitudes comparable to thos
the in-plane strains;

~b! neglect of the transverse normal strain in thin plate the
is necessary only to effect simplicity, it cannot be justified oth
wise.

~c! having reconciled to the above fact, one should not ende
our to adopt the three-dimensional constitutive law as being c
sistent with it rather than the plane-stress reduced law. Thi
because the resulting theory would then become more errone

~d! finally, the assumption of zero-transverse-shear is quite
sonable for thin plates because the corresponding strain en
component does become negligibly small for a thin plate.
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On Dynamics of Bar of Rectangular
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The propagation of nonstationary waves in semi-infinite elas
rectangular bars is studied. It is assumed that two opposite late
surfaces of the body are free of forces, while the two others
subjects to cross conditions. By introducing three new poten
functions, the author succeeded in getting closed-form solution
Laplace and Fourier transform parameters. Inversion of t
transform solutions, carried out by an original method of inve
sion, is suggested herein.@DOI: 10.1115/1.1352063#
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Introduction
This paper deals with the three-dimensional problems of

namics of elastic bodies for the semi-infinite rectangular bar
contrast to the previous work~@1#! where this problem was con
sidered only for mixed boundary conditions, we now investig
the solution for the case of free surfaces.

Statement and Solution of the Problem
We consider a semi-infinite rectangular prism occupying

space2a<x<a; 2b<y<b; z>0, where 2a and 2b are the
sizes of cross section of the prism. At timet50, the end-section of
the prism is affected by the applied forces. The process tak
place in an elastic prism initially in a nondeformed state, is
scribed by a three-dimensional system of Lame equation whic
vector form is as follows:

r
]2U

]t2 5~l1m!graddivU1mDU
(1)

U5U~u,v,w!

whereU is the displacement vector, andr is the density of mate-
rial.

As is known from~@1#! the system~1! under the end-section
conditions

szz5s0~x,y! f ~ t !
u50
v50

J for z50 (2)

and under initial zero data is reduced to a simpler form:

mqH2c25~l12m!H1w

H2c150 (3)

H0H2c252
s~x,y!

m
f̄ ~p!

where

Hi5
]2

]x2 1
]2

]y22S p2

ci
2 1q2D , i 51,2

H05
]2

]x2 1
]2

]y22q2

are the Helmholtz operators;c15A(l12m)/r; c25Am/r; and
the functionsw, c1 , andc2 are related to twofold integral trans
forms ~the Laplace transform with respect tot and the Fourier
transform with respect toz! of the displacement functions by th
following formulas:

ūs5
]w

]x
1

]c1

]y
2q

]c2

]x

v̄s5
]w

]y
2

]c1

]x
2q

]c2

]y
(4)

w̄c5qw2
]2c2

]x2 2
]2c2

]y2

Here, the indices ‘‘s’’ and ‘‘ c’’ indicate sin and cos Fourier
transforms, andp andq are the parameters of Laplace and Four
transforms, respectively.

Analogously, it can be proved, that the same system~1! for
another variant of end-section conditions:
Journal of Applied Mechanics
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szx5t1~y! f ~ t !
szy5t2~x! f ~ t !
w50

J on z50

corresponding to the tangent impact, is reduced to the follow
system:

~l12m!H1w52mqH2c2

H0H2c250

H2c15
f̄ ~p!

m
F E t1~y!dy2E t2~x!dxGJ (5)

via the use of the following formulas:

ūc5
]w

]x
1

]c1

]y
1q

]c2

]x
;

v̄c5
]w

]y
2

]c1

]x
1q

]c2

]y
; (6)

w̄s52qw2
]2c2

]x2 2
]2c2

]y2 .

The systems~3! and ~5! are simpler than the input system~1!
and they easily yield to obtain solutions of the problem.

In the present paper we investigated the system~3!, where
s0(x,y) is a function of axial forces, distributed at end section
the bar.

This system has to be integrated according to the lateral co
tions, which are chosen here as follows:

• two opposite surfacesx56a are free of forces:

sxx5sxy5sxz50 (7)

• the other two lateral surfacesy56b assume one of the follow-
ing variants of cross conditions:

~a!
syy50
u5w50J on y56b

(8)

~b!

syx50
syz50
v50

J on y56b.

It is evident, that the solution of the considered problem ex
only on the class~set! of functions with separated variables wit
respect tox andy. Taking into account this fact, the conditions~8!
easily have been satisfied by choosing the corresponding solu
in the following form:

w5(
k

f k~x!cosbky

c15(
k

l k~x!sinbky (9)

c25(
k

gk~x!cosbky

where the parameterbk is different in each variant:

~a! bk5S 1

2
1kD p

b
;

~b! bk5
pk

b
, k50,1, . . . .
JULY 2001, Vol. 68 Õ 663
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The functionsf k(x), l k(x), andgk(x) can be determined from
the system~3!. Skipping the details, we arrive at the followin
solution:

f k~x!5Ck coshn1kx1V1k~x!

l k~x!5 l k sinhn2kx (10)

gk~x!5Ak coshn2kx1V2k~x!

Here V1k(x) and V2k(x) are particular solutions of the corre
sponding differential equations. It can be shown that for the s
plest case whens0(x,y)5s05const or s0(x,y)5s0(y) these
particular solutions are as follows:
e

a

,

i

f

664 Õ Vol. 68, JULY 2001
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V1k52
sk f̄ ~p!q

~l12m!n1k
2 ~bk

21q2!
; V2k52

sk f̄ ~p!

mn2k
2 ~bk

21q2!
(11)

where sk(x)51/2b*2b
b so(x,y)cosbkydy and n ik

5Ap2/ci
21q21bk; i 51,2; k50,̀ .

ConstantsCk , Ak , l k are the solutions of the following linea
algebraic system:

FCk

Ak

l k

G3Dk5F d1

d2

d3

G (12)

where the third-rank matrixDk is as follows:
Dk5F @n1k
2 ~l12m!2l~bk

21q2!#coshn1ka 22mqn2k
2 coshn2ka 2mbkn2k coshn2ka

22bkn1k sinhn1ka 22bkqn2k sinhn2ka 2~bk
21n2k

2 !sinhn2ka

2qn1k sinhn1ka 2n2k~q21n2k
2 2bk

2!sinhn2ka qbk sinhn2ka
G (13)
r.
and for constantV ik

d15lV1k~bk
21q2!, d250, d350.

Final solutions are presented in the form of~9! and considering
the solution to the system~12!, one can assert that the conve
gence of these series up to the third-order derivatives is evid

Note, that ifs0(x,y)5s05const and in the case~b!, i.e., when
the sidesy56b are in contact with ideal smooth surface, th
solution takes a simplest form:

f 0~x!5
ls0 f̄ ~p!n20~q21n20

2 !q

D0n10
2 ~l12m!

sinhn20a•coshn10x

2
s0f ~p!

qn10
2 ~l12m!

(14)

g0~x!5
ls0 f̄ ~p!q2 sinhn10a

D0n10~l12m!
coshn20x2

s0f ~p!

mq2n20
2 (15)

l k~x!50, k50,̀

f k~x!5gk~x!50, k51,̀

D052@n10
2 ~l12m!2lq2#@q21n20

2 #n20 coshn10a• sinhn20a

14mq2n10n20
2 coshn20a• sinhn10a. (16)

Thus, the problem is completely solved at transforms. Retu
ing to real variables comprises a great difficulty. All existin
methods are unpromising to find the inverse transforms to obt
ing general solutions.

Only for the simplest solutions~14! and ~15! can we use the
‘‘The Second Theorem of Expansion’’~@2#! because as a whole
these functions are meromorphic inp complex plane. However
even in this case, this method does not reduce to the des
results, because it is impossible to obtain the roots of the equa
D0(p)50 for arbitrary value ofq.

Now, we propose the original method, which makes it poss
to find the inverse functions, even for transforms of general so
tions. For visualization purposes, we show this method for
simplest case of solution,~14! and ~15!, and construct graphs o
certain quantities to verify the validity of the proposed method
r-
nt.

e

rn-
g
in-

,

ired
tion
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lu-

the

.

For simplicity, assume thatf̄ (p)51/p ~this corresponds to
f (t)5H(t), whereH is the Heaviside function!. Then according
to ~4!, we can define the functionẆ ~the velocity of central axis
alongz!:

WG c52q2
ls0

m~l12m!
•Fq21n20

2

n20
3 •

sinhn20a

coshn20a
•

1

n10
2 •

coshn10x

coshn10a

22
coshn20x

n20
2 coshn20a

•

sinhn10a

n10 coshn10a
G

3
n20

4

D0*
2

s0

l12m
•

1

n10
2 (17)

where

D0* 5@n10
2 ~l12m!2lq2#@q21n20

2 #n20 tanhn10a

24mq2n10n20
2 tanhn10a.

Following @3#, we can presentn20
4 /D0* in the form of the power

series:

n20
4

D0*
5(

n51

`

en

1

n20
n (18)

whose elements are transforms both in Laplace and in Fourie
If we consider the solutions for the small values oft, it is

sufficient to keep first few terms:

n20
4

D0*
'

1

m S 1

n20
2

eq2

n20
3 D , where e512

c12c2

2c2
1

l

l12m
.

Similarly, for the functionsUG s ~the velocity of particles on a
free surface along theox-axis! we obtain

U̇sux56a52
ls0q

m~l12m! F 1

n10
•

sinhn10a

coshn10a
•

1

n20

sinhn20a

coshn20a
G

3S 1

n20
2

eq2

n20
3 D . (19)

The inverse Laplace transform of the functions~17! and ~19!
~taking into account~18!!, could be obtained as follows:
Transactions of the ASME



~1!
q21n20

2

n20
3 •

sinhn20a

coshn20a

↔
L

c2aq sin~qc2t !22(
k

c2

a

~q22ak
2!sin~c2tAq21ak

2!

ak
2Aq21ak

2

~2!
1

n i0
2 •

coshn i l 0x

coshn i0a

↔L
ci

q
sin~qci t !22(

m

ci

a

3
~21!mcos~amx!sin~ci tAq21am

2 !

amAq21am
2

, i 51,2

Fig. 1 Graphs of Ẇ at times: „a… tÄ1.5 aÕc 1 , „b… tÄ2 aÕc 1 , „c…
tÄ2.5 aÕc 1 , „d… tÄ3 aÕc 1
Journal of Applied Mechanics
~3!
sinhn i0a

n i0 coshn i0a
↔
L 2ci

a (
k

sin~ci tAq21ak
2!

Aq21ak
2

i 51,2

~4!
1

n20
F12

eq2

n20
2 G↔L c2J0~c2qt!2

eApc2
2tq

G~3/2!
J1~c2qt!

ak5S 1

2
1kD p

a
; k50,̀ , n i05Ap2

ci
2 1q2, i 51,2.

And finally

Fig. 2 Graphs of U̇ at times: „a… tÄaÕc 1 , „b… tÄ1.5 aÕc 1 , „c… t
Ä2 aÕc 1 , „d… tÄ2.5 aÕc 1
JULY 2001, Vol. 68 Õ 665
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Hamilton Principle and Generalized
Variational Principles of Linear
Thermopiezoelectricity

Ji-Huan He
Shanghai Institute of Applied Mathematics and
Mechanics, Shanghai University, Shanghai 200072,
P. R. China

Via the semi-inverse method, a family of various variational prin-
ciples is established for thermopiezoelectricity, including a Hamil-
ton principle and a minimum complementary energy
principle. @DOI: 10.1115/1.1352067#

Introduction
Recent interest in piezoelectric materials stems from their po-

tential applications in intelligent structural systems. Chan-
drasekharaiah@1# proposed a generalized linear thermoelasticity
theory for piezoelectric media, and He@2# applied the Lagrange
multiplier method in search for a variational partner to the Chan-
drasekharaiah model. This revealed that the traditional approaches
failed due to the variational crisis~some of multipliers become
zero during the identification of the multipliers!. Liu @3# obtained
a unified variational principle for thermoelasticity. In this Note,
applying the semi-inverse method~He @4,5#!, we obtain two gen-
eralized variational principles for generalized linear thermopiezo-
electricity. By constraining the obtained generalized functionals,
two minimum energy principles are deduced, one of which is
proved to be of Hamiltonian type.

Generalized Variational Principles
The essence of the semi-inverse method is to construct an

energy-like functional with a certain unknown function, which can
be identified step by step. An energy-like trial functional for the
discussed problem can be constructed in the following form:

J~s i j ,g i j ,ui ,u,qi ,Di ,Ei ,F!5E
t~n21!

t~n! E LdVdt1BI, (1)

where stresss i j , straing i j , displacementui , temperatureu, heat
flux qi , electric displacementDi , electric fieldEi , and electric
potentialF are treated as independent variations,L is a trial La-
grangian andBI is the ‘‘boundary’’ integral, which are defined,
respectively, as

L5~s i j , j1 f i !ui1
1
2rui ,tui ,t1F, (2)

BI5(
k51

7 E
t~n21!

t~n! E
Ak

GkdAdt1E
V
G8dV. (3)

In the above expressions,F andGi ~i51–8! are unknowns which
can be determined in the manner described in the author’s previ-
ous papers~He @2,4,5#!. Using a sequence of manipulations, we

0;
s0

~l12m!n10
2 ↔

L,F s0c1

l12m
HS t2

z

c1
D . ~* !

The calculations ofẆ andU̇ are made for the following values o
parameters and time intervals.~Graphs are attached at the en
Figs. 1–2.!

c152c256200 m/c

l52m51.531010 kg/m2

s05223106 kg/m2

a50.2 m

t15ka/c1 ; k51;1.5;2;2.5 . . . .

Discussion of the Results
Up to the momentt5a/c1 , the solutions on theoz-axis will be

presented by the plane wave~* !, representing longitudinal wave
propagating in the infinite elastic medium. Although this fact
known from physical considerations, it can be proved rigorou
from the mathematical point of view.

The forepart of perturbations propagating with the velocityc1
corresponds to the region where the reflected waves do not a
the behavior. Here the solution~* ! takes place, and the width o
the peak decreases according to the law:

d05c1t2Ac1
2t22a2.

Next to the forefront, there is a front of low-energy diffractio
waves and a well, appearing as time progresses, between the
front of waves and ‘‘quasi-front’’AA8 of the rising new wave.
~Fig. 1! This wave can, without any doubt, only be the rod wa
propagating with the velocityc35AE/r. The back part of this
wave will correspond, on average, to the solution given by
elementary theory of rods. The possible variations around
above solution can be related to the cross section inertia.

Simultaneously, in order to clearly demonstrate the advant
of exact theory over the elementary theory, the calculation
normal velocities of free surface particlesx56a has also been
carried out.

The results are shown in Fig. 2. The given graphs are m
significant as compared to any arguments. The breakpointA of
those curves corresponds to the transverse shear wave front.
ably, a detailed investigation of the roots of equationD050 for
the higher values of time would show the possibility of diffractio
wave degeneration~partly! into the Rayleigh wave concentratin
the main energy of motion near the free surfaces.

Conclusions
1 The existence of three new potential functions~one longi-

tudinal and two transverse! describing a three-dimensional motio
of a linearly elastic rectangular bar has been proved. The sys
of the Laméequations in these potential functions is simpler a
is easily solved.

2 The method of inverse integral transform for low and fin
values of time has been proposed. The validity of this metho
proved once more by the logical results obtained.
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L5~s i j , j1 f i !ui1
1
2rui ,tui ,t1s i j g i j 2

1
2g i j ai jkl gkl

1g i j emi jEm1g i j bi j u1
1
2cu0u21uciEi2ut8qi ,i2au

1
1
2~Ki j t1t8!qiqj2bqi2EiDi1

1
2Ei« i j Ej1DiF ,i1gF.

(4)

The unknowns appearing in the boundary integralBI can be writ-
ten as follows:

G152s i j nj ūi ,G252ui~s i j nj2 p̄i !,G35F̄Dini ,

G45F~Dini2D̄n!,G552t8qi~u2 ū !,

G652t8uq̄n ,G752t8Biu~
1
2u2Q!,

2G85
1
2@ f 1ui1~ui2 f 2i !ui ,t#

~n21!1r@uiũi ,t#
~n!. (5)

Here the bar~for exampleūi) indicates that the variable is pre
scribed on the boundary,f’s are given functions of the coordinate
xi ~i51–3!, ũi ,t is considered as a restricted variation, i.e.,dũi ,t
50, the timet is semi-discrete, and the time difference is defin
ast85t2t (n21), where the subscriptn denotesnth time step,n>1
and t (0)50. So we can obtain the analytical solution fort
P@ t (n21),t (n21)1t8#. The variablesa and b in Eq. ~4! are de-
fined, respectively, as

a5cu0u~n21!1bi j g i j
~n21!1ciEi

~n21!1t8rQ, (6)

b5Ki j tqi
~n21! . (7)

The definitions of the other variables in the above equations
be found in Chandrasekharaiah@1#.

It is easy to prove that the stationary conditions of the obtai
variational principle satisfy all the field equations and bounda
initial conditions. Further, it should be pointed out that the Eu
equations with respect tou andqi read

cu0u1bi j g i j 1ciEi2t8qi ,i5a, (8)

t8u i1~Ki j t1t8!qi5b. (9)

If the caset8→0, the above difference equations turn out to be
Fourier’s laws for heat conduction:

cu0

]u

]t
1bi j

]g i j

]t
1ci

]Ei

]t
5qi ,i1rQ, (10)

u ,i52Ki j S t
]qi

]t
1qi D . (11)

Equation~11! can be written in a more convenient form:

t
]qi

]t
1qi52ki j u j , (12)

whereKi j is the inverse ofki j .
Next, we introduce a generalized thermo-strain-piezoelec

energy density defined as

P5
1
2g i j ai jkl gkl2g i j emi jEm2g i j bi j u

2
1
2cu0u22uciEi2

1
2Ei« i j Ej . (13)

From ~13!, we have the following relations:

]P

]g i j
5s i j ,

]P

]Em
52Dm ,

]P

]u
52rS. (14)
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Constraining the generalized Lagrangian~4!, we obtain the fol-
lowing Lagrangian with only two independent variationsui
andF:

L̃~ui ,F!5s i j g i j 2P1gF1
1
2rui ,tui ,t . (15)

We introduce a new variableV defined as

V5s i j r i j 2P, (16)

and we callV the complementary energy density of thermopiez
electricity. So we have the following functional:

J̃~ui ,F!5E
t~n21!

t~n! E S V2gF1
1

2
rui ,tui ,tDdVdt1BI, (17)

which is proved to be a minimum principle, and we name it t
minimum complementary energy principle of thermopiezoel
tricity.

We can also begin with the following trial Lagrangian:

L15s i j ~g i j 2
1
2ui , j2

1
2uj ,i !1F. (18)

Using the same sequence of manipulations as before, we can
tain the following generalized Lagrangian:

L15
1
2rui ,tui ,t2P1s i j ~g i j 2

1
2ui , j2

1
2uj ,i !1u~ t8qi ,i1a!

1qi@
1
2~Ki j t1t8!qj2b#2F~Di ,i2g!. (19)

Constraining the Lagrangian~19! results in

L̃15T2P, (20)

whereT5
1
2rui ,tui ,t . Clearly, Eq.~20! has the form of a Hamil-

tonian.

Conclusions
In this Note, we have succeeded in obtaining a family of ge

eralized variational principles for linear thermopiezoelectrici
from which various variational principles can be obtained by co
straining the functional through the choice of field equations
boundary/initial conditions. All the obtained variational functio
als can be reduced to the known variational principles of elasti
if the thermal and electrical effects are ignored. The present
mulation provides a more comprehensive theoretical basis fo
nite element applications, and other modern numerical techniq
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Stability of Beams on Bi-Moduli
Elastic Foundation

Z. H. Liu

L. Wang
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This paper adopts the newly structuredd function and displace-
ment function. Using two adjacent transition points as two int
val terminals while beams buckle makes the interval@xi21 ,xi#.
According to the Winkler’s beam buckling theory on elastic fou
dation, we present the energy solutions of beams and then
exact solutions of buckling load of simple supported beams
bi-moduli elastic foundation.@DOI: 10.1115/1.1360181#

1 Introduction
The bi-moduli elastic foundation model assumes that when

foundation is compressed or tensioned, the reaction that the f
dation gives its above construction is expressed by

P~x,y!5H K1W~x,y!, W>0

K2W~x,y!, W,0

in which k1 , k2 are the non-negative reaction coefficients. Wh
k1 equals tok2 , the bi-moduli elastic foundation model becom
the Winkler elastic foundation model. Because the variation of
tension and pressure reaction of the foundation leads to the
linear of governing equation, the mechanical problems of str
tures on bi-moduli elastic foundation becomes more complica
Even if relatively simple conditions, it is very difficult to get th
solutions of the nonlinear differential equations. In 1967, Tsai a
Westmann first made the analysis of bending of beams on tens
less foundation~k1 or k2 is zero! ~@1#!. Since that, many scholar
have always studied the bending of beams on tensionless fou
tion ~@2#!. In 1985, Adin first made the analysis of bending
beams on relatively common bi-moduli elastic foundation~@3#!.
At present, no one has presented the analysis of the beam sta
on bi-moduli elastic foundation. In this paper, authors present
exact solutions of buckling load of simple supported beams
bi-moduli elastic foundation~See Fig. 1!.

2 The Solution of the Stability of Beams on Bi-Moduli
Elastic Foundation

If k15k anda5k2 /k, then the potential energy of beams is

P̄5
1

2 E0

1FEI~W̄9!22 P̄~W̄8!21
11a

2
KW̄21

12a

2
KW̄uW̄uGdx̄.

(1)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb.
2000; final revision, Dec. 22, 2000. Associate Editor: S. Kyriakides.
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Induct the following changes into~1!:

x5 x̄/ l̄ , W5W̄/ l̄ , l5 l̄ A4 K/EI,
(2)

P5P̄/AEIK, P5P̄ l̄ /AEIK.

Then

P5
1

2 E0

1F 1

l2 ~W9!22P~W8!21
11a

2
l2W2

1
12a

2
l2WuWuGdx. (3)

The interval @0, 1# is divided into n small intervals:
@x0 ,x1#,@x1 ,x2#, . . . ,@xn21 ,xn#. The displacement function
made in the interval@xi 21 ,xi # is

Wi~x!5Ai Sin
x2xi 21

xi2xi 21
p i 51,2,¯ ,n (4)

Wi8~x!5
p

Dxi
Ai Cos

x2xi 21

Dxi
i 51,2,¯ ,n. (5)

Equation~4! should be subjected to the following conditions:

Wi 118 ~xi !5Wi8~xi ! i 51,2,¯ ,n21, (6)

for ~5! and ~6! yield

2
Ai

Dxi
5

Ai 11

Dxi 11
i 51,2,¯ ,n. (7)

Then

A1

Dx1
5

~21!221A2

Dx2
5

~21!321A3

Dx3
5¯5

~21!n21An

Dxn
(8)

A11~21!221A21¯~21!n21An

Dx11Dx21¯1Dxn
5

~21! i 21Ai

Dxi
. (9)

Thus

Dxi5
~21! i 21Ai

(
j 51

n

~21! j 21Aj

i 51,2,¯ ,n, (10)

for ~10! yield

~21! i 21Ai5ADxi i 51,2,¯ ,n. (11)

Then

Ai
25A2~Dxi !

2 i 51,2,¯ ,n (12)

in which

Dxi5xi2xi 21 i 51,2,¯ ,n

A5A12A21A32A41¯1~21!n21An .

For ~12!, three following integral solutions are

3,
Fig. 1
01 by ASME Transactions of the ASME
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Fig. 2
5
E

xi 21

xi

~Wi9!2dx5
1

2
p4A2~Dxi !

21

E
xi 21

xi

~Wi8!2dx5
1

2
p2A2Dxi

E
xi 21

xi

Wi
2dx5

1

2
A2~Dxi !

3 i 51,2,¯ ,n

. (13)

In the interval@xi 21 ,xi #, P is signed asP i ,

P i5
1

2 Exi 21

xi F 1

l2 ~Wi9!22P~Wi8!21l2d i
4Wi

2Gdx i51,2,¯ ,n

(14)

where

d i5a11~21! i /8 i 51,2,¯ ,n (15)

P5(
i 51

n

P i i 51,2,¯ ,n. (16)

For ~13!, ~14!, and~16! yield

4P5A2Fp2

l2 (
i 51

n

~Dxi !
212p2P(

i 51

n

Dxi1l2(
i 51

n

d i
4~Dxi !

3G
(17)
anics
For ]P/]AJ50 j 51,2,¯ ,n, and( i 51
n Dxi51, thus

P5
p2

l2 (
i 51

n

~Dxi !
211

l2

p2 (
i 51

n

@d i
4~Dxi !

3# (18)

]P

]Dxi
52

p2

l2 ~Dxi !
2213

l2

p2 d i
4~Dxi !

2 i 51,2,¯ ,n. (19)

To find the minimum ofP, solve the equation]P/]Dxi50, thus

Dxi5
p

A4 3ld i
i 51,2,¯ ,n (20)

Dxi /Dx15d i
21 i 51,2,¯ ,n. (21)

For

(
i 51

n

Dxi5(
i 51

n

@Dx1d i
21#5Dx1(

i 51

n

d i
2151,

thus

Dx15
1

(
i 51

n

d i
21

(22)
Fig. 3
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2,
Dxi5Fd i(
j 51

n

d j
21G21

. (23)

Substituting~23! into ~18!, thus

P5
p2

l2 S (
i 51

n

d i D S (
j 51

n

d j
21D 1

l2

p2 S (
i 51

n

d i D S (
j 51

n

d j
21D 23

.

(24)
If n is an even number, then

P5
n2p2

l2

~11a1/4!~11a21/4!

4
1

l2

n2p2

4~11a1/4!

~11a21/4!3 (25)

for ]P/]l50, thus

l5
1
2 ~11a21/4!np (26)

Pmin52a1/4. (27)
If n is an odd number, then

P5
n2p2

4l2 F ~11a1/4!1
1

n
~12a1/4!G•F ~11a21/4!1

1

n
~12a21/4!G

1
l2

n2p2 F ~11a1/4!1
1

n
~12a1/4!G

•F ~11a21/4!1
1

n
~12a21/4!G23

(28)

for ]P/]l50, thus

l5
1

2 F ~11a21/4!1
1

n
~12a21/4!Gnp (29)

Pmin52F ~11a1/4!1
1

n
~12a1/4!GF ~11a21/4!1

1

n
~12a21/4!G21

.

(30)

According to ~25!, ~26!, ~27! or ~28!, ~29!, ~30!, the following
curves are plotted. In Fig. 2, Fig. 3, and Fig. 4, the curvesp-l are
shown fora51, 2 and 5 when the half-wave numbern is 4. The
solid line represents for the real curvesp-l. Whenl exceeds the
critical l corresponding to the point of intersection of two ad
cent curves, the half-wave number will be increased one.

3 Conclusions and Discussion
The dividing point of any two adjacent half-waves can be g

ten by ~22! and ~23! when the buckling of beams on bi-modu
elastic foundation happens. Assumea51 in ~25! and ~28!, then
yields the equation of buckling load of beams on the Wink
foundation. The equation is
01 Copyright © 20
a-

t-
li

er

P5
n2p2

l2 1
l2

n2p2 .

And its curvep-l is Fig. 2. Comparing Fig. 2 with Fig. 3 and Fig
4, it can be gotten that morea increases, farther the minimum
points of the curvesp-l deviate from the linep52. The buckling
of beams on bi-moduli elastic foundation first occurs along
direction of the least reaction coefficient of the foundation. Soa
>1 is adopted in~25! and ~28!. But the displacement function
adopted by this paper does not adapt to the analysis of stabilit
simply supported beams on tensionless foundation, namelyaÞ0
in ~25! and ~28!. This special condition needs more study.
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Period-Doubling Bifurcation and Non-
Typical Route to Chaos of a Two-
Degree-Of-Freedom Vibro-
Impact System

G. L. Wen and J. H. Xie
Department of Applied Mechanics and Engineering,
Southwestern Jiaotong University, Chengdu 610031,
P. R. China

A nontypical route to chaos of a two-degree-of-freedom vib
impact system is investigated. That is, the period-doubling bi
cations, and then the system turns out to the stable quasi-peri
response while the period 4-4 impact motion fails to be stab
Finally, the system converts into chaos through phrase locking
the corresponding four Hopf circles or through a finite number
times of torus-doubling.@DOI: 10.1115/1.1379035#
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Introduction
Vibro-impacting phenomena exist in many areas of applied m

chanics and engineering. Because the noncontinuity property
ists in the differential equations of vibro-impact systems, to inv
tigate the Poincare´ maps of vibro-impact systems is more suitab
for the exhibition of complicated dynamic behaviors of the syst
than to do directly for the differential equations of the motio
~see Shaw and Shaw@1#, Luo and Xie@2#, and Xie,@3#!. Unfor-
tunately, the Poincare´ maps of vibro-impact systems can only b
written as implicit forms. Therefore, some enormous difficult
exist unavoidably in the study of dynamic behavior of vibr
impact systems, especially for multiple-degree-of-freedom vib
impact systems. Even though a large amount of results on
dynamics of one-degree-of-freedom vibro-impact system h
been presented, there is still more work to be done in multip
degree-of-freedom vibro-impact systems. The existence of qu
periodic impact motions of a two-degree-of-freedom vibro-imp
system similar to the one herein was still recently investigated
Luo and Xie~see@2#!.

It is well known that the routes to chaos from period-doubli
cascades and from a finite number of times of torus-doubling b
are typical. In this brief note, after the period-doubling bifurcati
of the two-degree-of-freedom vibro-impact system aforesaid
verified by analytical method, we briefly reported a nontypic
route to chaos for the multiparameter vibro-impact system. T
is, the period-doubling cascades occur cease after two time
period-doubling bifurcations, and then the system turns out to
stable quasi-periodic response while the period 4-4 impact mo
fails to be stable. Finally, after the simultaneously appearing f
Hopf circles fail to stable, the system converts into chaos dire
through phrase locking of the corresponding four Hopf circles
through a finite number of times of torus-doubling.

However, though it is perhaps easy to investigate by theore
analysis the process of period-doubling cascade for some sim
map systems, few proper analytical methods could be employe
investigate the whole process of period-doubling cascade
some quite complex dynamic system such as multi-degree
freedom vibro-impact systems so far. Usually, one may take it
granted a route from period-doubling cascades to chaos existin
a very complex system after the arduous analyses of one or tw
period-doubling bifurcations and a seemly reasonable plot
period-doubling bifurcation cascades are made. According to
results presented this brief note, it is very possible for those c
plicated vibro-impact systems with multiple degree-of-freed
that the long period motions, quasi-periodic responses, and
otic responses are quite easily be confused each other.

Analysis of Period-Doubling Bifurcation of the System
The mechanical model of a two-degree-of-freedom vib

impact system with a gapB is shown in Fig. 1. The massM1
impacts against a rigid surface when its displacementX1 equals
the gapB. The impact is described by a coefficient of restituti
R, and it is assumed that the duration of impact is negligi
compared to the period of the force.

Between two consecutive impacts, forX1,B, the equations of
motion of the vibro-impact system with proportional damping
the Rayleigh type are written in nondimensional form

5 F1 0

0 mm
G H ẍ1

ẍ2
J 1F 2z 22z

22z 2z~11mc!
G H ẋ1

ẋ2
J

1F 1 21

21 11mk
G H x1

x2
J 5H 12 f 2

f 2
J sin~vt1t!, ~x1,b!

ẋ1152Rẋ12 , ~x15b!
(1)

where the nondimensional quantities are in forms
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M1
, mk5

K2

K1
, mc5mk , f 25

P2

P11P2
,

v5VAM1

K1
, z5

C1

2AK1M1

, t5TAK1

M1
, b5

BK1

P11P2
,

xi5
XiK1

P11P2
, ẋ115

Ẋ11K1

P11P2
, ẋ125

Ẋ12K1

P11P2
i 51,2.

In Eq. ~1!, a dot denotes differentiation with respect to the non
mensional timet, the phase anglet is used only to make a suitabl
choice for the origin of time in the calculation between two co
secutive impacts,ẋ11 and ẋ12 represent the impacting mass v
locities of approach and departure, respectively.

Choosing a Poincare´ section s,R43S, where s
5(x1 ,ẋ1 ,x2 ,ẋ2 ,u)PR43S, x15b, ẋ15 ẋ11 , we can establish
the Poincare´ map of the system~see@2#! and express it briefly as

X85 f̃ ~v,X! (2)

where u5vt, f̃ 5( f̃ 1 , f̃ 2 , f̃ 3 , f̃ 4)T, XPR4, X5X* 1DX, X8
5X* 1DX8, vPR1. X* 5( ẋ11 ,x20,ẋ20,t0)T is a fixed point in
the hyperplanes. DX andDX8 are the disturbed vectors ofX, X8,
respectively.v5v is the bifurcation parameter.

With a change of variables, the map~2! is given by

DX85 f̃ ~v,X!2X* 5
Def

f ~v,DX!. (3)

Map ~3! is C`. Suppose that there exists fixed pointX* for v in
some neighborhood of the critical parameter valuesv5vc , at
which D f DX(v,0) satisfies the following hypotheses:

H1 D f DX(v,0) has an eigenvaluel1(vc)521, and the other
eigenvalues stay inside the unit circle;

H2 dul1(v)u/dvuv5vc
.0.

Subject to the hypotheses H1 and H2, the fixed pointX* , which
is stable forv,vc , becomes unstable forv.vc , whereas there
may exist period-doubling bifurcation in the map~2! for v5vc .

To determine the existence of period-doubling bifurcation in
four dimensional map~3!, a center manifold reduction~see, for
example,@4#! and a normal form technique~see@5,6#! are applied
to reduce the Poincare´ map ~3! to a normal form, as follows:

x85g~m,x!52x1N~m,x!52x1n11mx1n03x
31¯ (4)

wherem5v2vc . Let g2(m,x)5g(m,g(m,x)). It follows that the
period-two points of Eq.~4! satisfy

g2~m,x!2x50. (5)

Supposing now

n11•n03Þ0, (6)

one can easily obtain by the implicit function theorem that

m5m~x!52
n03

n11
x21O~x2!. (7)

Fig. 1 The mechanics model
JULY 2001, Vol. 68 Õ 671
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In other words, the implicit function theorem guarantees the e
tence of period-doubling bifurcation of map~2! for v in a neigh-
borhood ofvc ~corresponding tom in a neighborhood of zero!
when ~6! holds.

The stability of the theoretical fixed point and the period-tw
points may be determined, respectively, from

5
]g

]xU
x50,m5m

5211n11m1O~m!

]g2

]x U
x5x,m5m~x!

5114n11m1O~m!

. (8)

Nontypical Routes to Chaos
In this section the interesting dynamic characters of the vib

impact system given in Fig. 1 involve a sort of a nontypical rou
to chaos.

Fig. 2 vÄ0.75, stable period 2 fixed points

Fig. 3 vÄ0.7554, stable period 4 fixed points
672 Õ Vol. 68, JULY 2001
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~1! The system with parameters:mm52, mk56.1, f 250, z50,
b51.6, R50.82 has been chosen for analysis.v is taken as the
bifurcation parameter; that is,v5v. When v is at vc
'0.745716, find that the eigenvalues ofD f DX(v,0) in ~3! l1
521.000003, l2520.893354 l3,4520.1836946 i0.835633.
Then, with v increases throughvc on the interval v
P@0.744,0.751#, l1(v) will cross the unit circle and the othe
eigenvalues will still stay inside the unit circle.vc is a period-
doubling bifurcation critical value.

The map~3! satisfying the hypotheses H1 is reduced to t
normal form ~4!. It then follows that n11520.572016, n03
50.009147, and a stable supercritical period-doubling bifurcat
occurs. Numerical simulations of original four-dimensional m
~2! are carried out for determining dynamics near the bifurcat
value vc . The dynamic behavior of the vibro-impact system
shown in the projected Poincare´ section in Figs. 2–6. The Poin

Fig. 4 vÄ0.7563, four stable Hopf circles

Fig. 5 vÄ0.75685, four stable 2 T-torus
Transactions of the ASME
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caré section is taken in the forms, which will be four-
dimensional. Here, the numerical results is projected to
(t,x2)-plane, which is called the projected Poincare´ section, but
the other the projected Poincare´ sections are not shown herein fo
the sake of succinctness. The theoretical fixed point of fo
dimensional map~4! corresponds to the 1-1 periodic impact m
tion of the system~1!. We take it as an initial map point in nu
merical simulations and denote its location byh. The vibro-
impact system ~1! exhibits stable 1-1 orbits asv
P@0.744,0.745676). Asv passes throughvc , there exists a family
of stable period-two fixed points~i.e., stable period 2-2 impac
motion! bifurcating from the theoretical fixed point. As an e
ample, the theoretical fixed point corresponding tov50.75 is
taken as initial map point, and it is attracted to the stable perio
fixed points after 1500 impacts, as shown in Fig. 2. The result i
agreement with the one obtained by the analytical treatmen

Fig. 6 vÄ0.75705, chaos

Fig. 7 vÄ0.7515, stable period 2 fixed points
Journal of Applied Mechanics
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Section 2. Asv keeps on increasing, find stable period-four poin
shown in Fig. 3. After then, it is surprising that the perio
doubling cascade stops and four Hopf circles appear simu
neously by the Hopf bifurcations of the corresponding period-fo
points as seen in Fig. 4. As the values ofv moves further away
from vc , the system evolutes to chaos~in Fig. 6! through a finite
number of times of torus-doubling process ‘‘4 Hopf circles~in
Fig. 4!→432T torus ~in Fig. 5!→434T torus→438T
torus→the breaking of 438T torus→Chaos~in Fig. 6!’’. With
further increase in the value ofv, the system will be drawn ou
from chaotic motions, and stable quasi-periodic impacts oc
which is represented as the more complex torus. Finally, transi
again to chaos through once torus-doubling bifurcation of
complex torus occurs.

~2! Consider another family of system parameters:mm52, mk
56, f 250, z50, b51.5, R50.7. v5v is still taken as the bifur-

Fig. 8 vÄ0.754, stable period 4 fixed points

Fig. 9 vÄ0.7552, four stable Hopf circles
JULY 2001, Vol. 68 Õ 673
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cation parameter. Whenv is atvc'0.7444904, the eigenvalues o
D f DX(v,0) is l1521.000001, l2520.8505967 l3,4
520.1487466 i0.732957. Withv increases throughvc , a stable
supercritical period-doubling bifurcation occurs. The dynam
evolution of the vibro-impact system~1! is shown in Figs. 7–11,
in which the phrase locking in Fig. 10 is obtained by ignoring t
first 500 impacts among 5000 impacts. It is remarkably mentio
the fate of the simultaneously appearing four Hopf circles diff
from that of the first family of system parameters.

Conclusions and Discussion
The dynamic responses of the two-degree-of-freedom vib

impact system in Fig. 1 have been considered in this note. If
bifurcation plots (v,t2) of this system under the two families o
parameters was presented out respectively, one can find su
ingly the plots very alike to those usual period-doubling bifurc

Fig. 10 vÄ0.755965, phase locking

Fig. 11 vÄ0.755971, chaos
674 Õ Vol. 68, JULY 2001 Copyright © 20
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tion cascades plots emerging in well-known classical syste
such asFm(x)5mx(12x). As a matter of fact, the real dynami
evolution of the vibro-impact system, however, is different at
to only from period-doubling bifurcation cascades to chaos. T
significance of the nontypical route to chaos presented in this b
note is just located in the information of easily confusing lo
period motions, quasi-periodic responses, and chaotic respons
complicated multiparameter vibro-impact systems.
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Analysis of Anisotropic Beams: An
Analytic Approach

V. Rovenski
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Associate Professor

Faculty of Aerospace Engineering, Technion-ITT,
Haifa 32000, Israel

An analytic solution for the elastic response of anisotropic co
posite beams of rectangular cross section is presented. The
mulation is based on the expression of the stress tensor com
nents as trigonometric series and exponential functions. T
ability to predict the elastic response and the corresponding e
tic coupling mechanisms is well demonstrated and discussed
@DOI: 10.1115/1.1360183#

Introduction
For the last three decades, the analysis of composite beam

been the focal point of many research efforts, and the rap
growing interest in this area during the last decade testify for
potential in a vast range of engineering applications.

One of the classical approaches to the analysis of anisotr
beams has been presented by Lekhnitskii@1#, who expressed the
stress functions and the stress tensor in terms of complex po
tials, developed a rigorous derivation of the associated govern
equations and boundary conditions, and presented analytic s
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tions for some specific cases. In this note, an exact solution
generic anisotropic beams is derived and discussed in term
Lekhnitskii’s formulation.

The linear problem may be divided into smaller subproble
and classified with respect to three main categories. Thefirst cat-
egory deals the nature of the applied loads. Here, it is conven
to obtain first the solution for the case where the stresses do
vary along the length of the beam, and subsequently extend
the general case of nonuniformly distributed surface loads.
secondaspect for which classification of the problem is required
the number of laminae. The basic level with that respect cont
the case of a single lamina~i.e., a homogeneous beam!. Such a
solution may be extended for cases of two or more laminae u
interlaminar compatibility equations, see also Rand and Rove
@2#. The third aspect of classification is the shape of a secti
Since the present methodology is closely related to the solutio
Dirichlet problem for the domain occupied by lamina, it is fir
convenient to apply the analysis to rectangular cross section.

The present approach employs analytic techniques and doe
include numerical approximations~such as predetermined shap
functions, iterative schemes, numerical integration and/or dif
entiation, etc.!. Subsequently, the model is free of simplified a
sumptions regarding the solution, and therefore all global and
nor effects and details~including all stress and strain componen!
are simultaneously kept. For that reason the accuracy of
present approach is well analytically established. For other an
sis techniques, the reader is referred to Savoia and Reddy@3#,
Whitney @4#, and Makeev and Armanios@5#.

The core solution presented in this note is focused on the
of a homogeneous beam where the loads create stresses wh
not vary along its span. The associated complex potentials,
stress functions, the stress and the strain vectors, and the disp
ments are presented as trigonometric series, the coefficien
which are the solutions of a linear system of algebraic equatio
The method may handle both tip and surface loads. The abilit
predict the elastic coupling mechanisms is also presented.
generality of the core solution enables a direct extension of
method to several cases that include laminate beams, span
dependent loads, polar anisotropy, and additional solid and t
walled cross section geometries. The analytic derivation and
illustrative examples have been carried out using MAPLE sy
bolic manipulations software.

Formulation of the Problem
Consider an uniform composite beam~i.e., a solid slender struc

ture having two kind of boundaries: the two end cross secti
and the outer cylindrical surface!, as shown in Fig. 1~a!. In the
present note, the case of a rectangular cross section of widthd and
heighth will be under discussion, and for the sake of convenien
the origin of the Cartesian coordinate system is placed at the
ner of the rectangularP5$0<x<d, 0<y<h%, see Fig. 1~b!.
The material possesses anisotropy which is obtained by a rota
of orthotropic material by the angle2t about the y-axis,
and therefore, thex2z planes exhibit elastic symmetry. Du
to the above defined anisotropy, the constitutive relatio
«5@a#s are defined using a symmetric compliance mat
@a#5$ai j %1< i , j <6 , containing 13 nonzero constants nine
which are independent.s5$sx ,sy ,sz ,tyz ,txz ,txy%

T, and
«5$«x ,«y ,«z ,gyz ,gxz ,gxy%

T are the stress and the strain vecto
respectively.

The end loads are assumed to be given only by their residu
tip momentsM5$M1 ,M2 ,Mt% ~about the2x, y, and2z direc-
tions!, and an axial forcePz ~in the2z direction!, see Fig. 1~a!. In
addition, distributed loadsFs5$X̄,Ȳ,Z̄% ~per unit area! along the
outer surface of the beam and body forcesFb5$X,Y,Z% ~per unit
volume! are applied. For simplicity we assume belowFb50. To
comply with the basic assumption that states that the stresse
Journal of Applied Mechanics
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s do

not vary along the beam, the loads are limited to the case wh
they are not functions ofz and they create no force or mome
residual,

E
]P

$X̄,Ȳ,Z̄,x̃Ȳ2 ỹX̄,x̃Z̄,ỹZ̄%ds50, (1)

where x̃5x2d/2 and ỹ5y2h/2. The above described loadin
leads to a state where the beam curvature componentsk15
2u,zz and k252v ,zz, the axial strain«05w,z(d/2,h/2) and the
twist u51/2(v ,x2u,y) ,z(d/2,h/2), are all constants. The curvatur
characteristics and the axial strain are related to the tip and sur
loads by the equalities1

¦

k1I 15a33M2

1E
]P

F1

2
~a13x̃

22a23ỹ
2!X̄1a23x̃ỹȲ1

1

2
a35x̃ỹZ̄Gds,

«0hd5a33Pz

1E
]P

~a13x̃X̄1a23ỹȲ1a35x̃Z̄!ds,

k2I 15a33M12
a35

2
Mt

1E
]P

Fa13x̃ỹX̄1
1

2
~a23ỹ

22a13x̃
2!Ȳ1

1

2
a35x̃ỹZ̄Gds,

(2)

where I 151/12dh3, I 251/12hd3 are the principal moments o
inertia of P. The twist can be derived using the solution of th
linear system as will be shown in what follows.

The derivation of the displacementsu,v,w in the x,y,z direc-
tions, respectively, is aimed towards the determination of
warping functionsU, V, andW of x, y for a given set ofk1 , k2 ,
«0 , andu. Thestress functions FandC are defined so that equi
librium equations are satisfied identically. They are linear com
nations~with known coefficientsmk ,lk! of thecomplex potentials
Fk(zk)5Pk(zk)1 iQk(zk), k51,2,3, and analytic functions of the
complex variableszk5xk1 iyk5x1mky in the rectanglesPk
5$0<xk<d, 0<yk<hbk%. Here mk ,m̄k are six roots of the

1These formulas in absence of force projectionZ are given in Lekhnitskii@1#.

Fig. 1 Composite beam notation; „a… general view, „b… a rect-
angular cross section
JULY 2001, Vol. 68 Õ 675
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polynomiall 6(m) associated with the compatibility equations, d
pending on t and on the reduced elastic constantsbi j 5ai j
2ai3a3 j /a33 ( i , j 51,2,4,5,6), see Lekhnitskii@1#. For the cases
considered in the present note~and for the materials discussed
Makeev and Armanios@5#! mk5 ibk , (bk.0), andlk5 ivk are
purely imaginary. In the isotropic case,bk51, lk50.

The stresses, strains, and displacements may be express
terms of complex potentials as well. The stresses have to sa
the 12 boundary conditions

$sx ,txy ,txz%~0,y!52$X̄3 ,Ȳ3 ,Z̄3%~y!,

$sx ,txy ,txz%~d,y!5$X̄4 ,Ȳ4 ,Z̄4%~y!,
(3)

$txy ,sy ,tyz%~x,0!52$X̄1 ,Ȳ1 ,Z̄1%~x!,

$txy ,sy ,tyz%~x,h!5$X̄2 ,Ȳ2 ,Z̄2%~x!,

from which the complex potentials can be found. HereX̄i ,Ȳi ,Z̄i ,
1< i<4 are the distributed surface loads along the edges of
rectangular cross section.

Method of Solution
Each of harmonic functionsPk ~andQk! is uniquely determined

in Pk by its boundary values, as a sum of four harmonic fun
tions. We represent these boundary values as the standard Fo
series with coefficients$Akn ,Bkn ,Ckn ,Dkn%. For example,

P3~x,y3!5(
n51

` H S A3n sinhS pny3

d D2B3n sinhS pn~y32hb3!

d D D
3sinS pnx

d D1S C3n sinhS pnx

hb3
D

2D3n sinhS pn~x2d!

hb3
D D sinS pny3

hb3
D J , (4)

where y35yb3 . Hence the stresses are expressed as 12 te
series. For example,

txz5 t̃xz1
f ỹ

2b55
12p(

n51

` H F2A1n coshS pnyb1

d D v1b1

1B1n coshS pn~y2h!b1

d D v1b12A2n coshS pnyb2

d D v2b2

1B2n coshS pn~y2h!b2

d D v2b21A3n coshS pnyb3

d Db3

2B3n coshS pn~y2h!b3

d Db3G n

d
sinS pnx

d D
1F2C1n sinhS pnx

hb1
D v11D1n sinhS pn~x2d!

hb1
D v1

2C2n sinhS pnx

hb2
D v21D2n sinhS pn~x2d!

hb2
D v2

1C3n sinhS pnx

hb3
D2D3n sinhS pn~x2d!

hb3
D G n

h
cosS pny

h D J ,

(5)

where t̄xz51/h*0
hZ̄4dy and f 522u2a35/a33k2 . Therefore, us-

ing the boundary conditions~5!, we define the 12 series of linea
equations with the unknowns$Akn ,Bkn ,Ckn ,Dkn%, see details in
Rovenski and Rand@6#. For example, txz(0,y)52Z̄3(y),
txy(0,y)52Y3(y) yield
676 Õ Vol. 68, JULY 2001
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v1D1n sinhS pnd

hb1
D1v2D2n sinhS pnd

hb2
D2D3n sinhS pnd

hb3
D

5 f
h2~~21!n21!

2p3n3b55
1

hZ3n

2np
,

h

d (
j 51

`
j

n
@b1~A1 j2~21!nB1 j !H jn

1 1b2~A2 j2~21!nB2 j !H jn
2

1b3v3~A3 j2~21!nB3 j !H jn
3 #2D1n coshS pnd

hb1
D2D2n

3coshS pnd

hb2
D2v3D3n coshS pnd

hb3
D1C1n1C2n1v3C3n

5 t̄xy

h~~21!n21!

n2p2 2
hY3n

2np
, (6)

where t̄xy51/d*0
dX̄2dx, H jn

i 522d2n(21)n sinh(phjbi /d)/
p(h2j2bi

21d2n2), and the surface loadsZ̄3 ,Ȳ3 are represented a
series

Z̄352 t̄xz1(
n51

`

Z3n cosS pny

h D , Ȳ35(
n51

`

Y3n sinS pny

h D .

(7)

By truncating the infinite series usingm terms only, we write the
above linear system of equations in a matrix form as

Mx̄52
f

2
V̄1Ṽ, (8)

where the vectorx̄ contains 12m variables$Akn ,Bkn ,Ckn ,Dkn%,
M is a square matrix ~generally nonsingular!. Note that
V̄50 when M50, Pz50, and Ṽ50 when Fs50. The known
vectors M 21V̄ and M 21Ṽ are expressed in terms of th
coefficients $Ākn ,B̄kn ,C̄kn ,D̄kn% and $Ãkn ,B̃kn ,C̃kn ,D̃kn%. In
other words, $Akn ,Bkn ,Ckn ,Dkn%52 f /2$Ākn ,B̄kn ,C̄kn ,D̄kn%
1$Ãkn ,B̃kn ,C̃kn ,D̃kn% hold. Hence, the stress functions are e
pressed as

C52
f

2
C̄1C̃1C0 , F52

f

2
F̄1F̃1F0 , (9)

whereC0 ,F0 are known functions. In a similar form, the stresse
the strains, and the displacements are expressed.

The proper integration of the stress components over the cr
sectional area yields

Mt52
f

2
C̄1C̃. (10)

The quantities C̄5(I 2/b44)1(I 1/b55)1**P( x̃t̄yz2 ỹt̄xz), C̃
5**P( x̃t̃yz2 ỹt̃xz) in ~10! may be expressed as series as we
For obvious reasons, the quantityC̄ ~integral of the stress function
C in casef 522 andFs50! may be referred to as thetorsional
rigidity, see also Lekhnitskii@1#. OnceC̄, C̃, and k2 are calcu-
lated,f and the twistu may be determined in terms of the applie
moments and surface loads. One may verify thatĀkn5B̄kn , C̄kn

5D̄kn hold, moreover,Ākn5B̄kn5C̄kn5D̄kn50 hold for evenn.
Therefore, in the absence of external surface loads the numb
equations is considerably smaller.

It should be emphasized that the present approach offers a
neric solution methodology for orthotropic material. Note that t
application of the general formulation presented in Lekhnitskii@1#
was confined to special rectangular orthotropic configuration~i.e.,
the case where the angle of rotation is zero! in which the stress
function F50 and the stress functionC satisfies the following
PDE:
Transactions of the ASME
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a44C ,xx1a55C ,yy5 f . (11)

Therefore, the Fourier series in Lekhnitskii@1# are applied to sim-
pler cases. The following example shows the above capabilit
the present methodology.

Example 1. An Orthotropic Beam. To solve the specia
orthotropic configuration case by the present approach, wet
50 ~or 90 deg! andFs50. Thenlk50, andb35Aa44/a55. Ex-
amination of the system~8! shows thatAkn5Bkn5Ckn5Dkn
50, k51,2, and

A3n5B3n52
f d2~~21!221!

2p3n3a44 sinhS pnhb3

d D ,

(12)

C3n5D3n52
fh2~~21!n21!

2p3n3a55 sinhS pnd

hb3
D .

HenceF50, andC has the following form~equivalent to solution
in Lekhnitskii’s @1#!:

C5 f
x~x2d!

4a44

2
f d2

p3a44
(

n51,3,5, . . .

`
1

n3

sinhS pnyb3

d D2sinhS pn~y2h!b3

d D
sinhS pnhb3

d D
3sinS pnx

d D1 f
y~y2h!

4a55
2

f h2

p3a55
(

n51,3,5, . . .

`
1

n3

3

sinhS pnx

hb3
D2sinhS pn~x2d!

hb3
D

sinhS pnd

hb3
D sinhS pny

h D . (13)

For isotropic beam one obtainsa445a55, a3550, f 522u, bk
51, vk50 ~for all t!, while ~12!, ~13! are still applicable.

Solution Implementation
The solution contains two main stages.First the initial data

~i.e., engineering constants, shape parameters, lay-up angle
surface loads! is used to carry out the following steps:~1! calcu-
lation of the reduced elastic constants;~2! determination of the
compatibility equations polynomials roots;~3! solution of the
boundary equations~a linear system!. In thesecondstage, the end
loads ~tip axial force, bending, and torsional tip moments! are

Fig. 2 The twist, u, and the bending curvature k 2 , as functions
of the layup angle, t , due to torsional moment
Journal of Applied Mechanics
of

et

and

used for~4! calculation of the deformation measuresk1 , k2 , «0
and u; ~5! series representation of the stress functions, the st
and the strain vectors, the displacements.

In the examples presented in this note, a homogeneous b
with h5d51m, made of graphite/epoxy orthotropic material
the following characteristics is used:

E35129.1•109 N/m2, E15E259.4•109 N/m2,

G2354.3•109 N/m2, G1355.5•109 N/m2, (14)

G1252.5•109 N/m2, v1250.5, v135v2350.02.

Here we transformed the data of Rand@7# when the axes are
replaced according to the rule:X→2Z, Y→Z, Z→2Y.

Steps 1–2. For t515 deg we calculate matrices$ai j % and
$bi j %. The roots of the polynomiall 6 and the coefficientsvk are
obtained as

b151.80, b250.661, b351.49,
(15)

v152.71, v250.0573, v351.40.

Step 3. The linear system of equations is solved for the u
knowns $Akn ,Bkn ,Ckn ,Dkn%, see Section 2. The inverse matr
M 21 and the vectorsM 21V̄,M 21Ṽ are determined. Then,C̄ and
C̃ are calculated. For the present case,m54 was found to be
sufficient for determining the value of the torsional rigidity o
0.861•109 N/m2.

Step 4. Assuming thatMt51 N•m, M15M25Pz50 and
Fs50, ~2! is used to derive the curvaturesk150, k250.23
•1029/m and the axial strain«050. Then, using the torsiona
rigidity ~see Step 3!, and~10!, we derivef 522.32•1029/m and
the twist u51.40•1029/m. By varying the anglet, the function
u(t) andk2(t) are derived and presented in Fig. 2 in a nondime
sional form.k2 represents the induced elastic coupling~i.e., the
bending due to the torsional moment!.

Step 5. At this stage, the expressions in the form of truncat
series~with the coefficients obtained in Steps 3,4! for the stress
functions, the stress and the strain vectors, and for the displ
ment components are used. Due to the relatively lengthy exp
sions for functions, stresses, displacements, and warping f
tions, only graphical results are provided in Figs. 3–4~these
illustrative examples have been obtained form514!.

The convergence properties of the present methodology
demonstrated by Fig. 5 in terms of the ratio of the twist and
stressestyz(d/4,h/4),txy(d/4,h/4) for m52,4, . . . ,16 to the limit
value. As shown, the global quantity,u converges rapidly, and the
large stress components converge faster than the small ones

Fig. 3 The stress component txz „MtÄ1 NÕm…
JULY 2001, Vol. 68 Õ 677
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Remark 1. For the case considered here, the three stress c
ponentssx ,sy ,txy are significantly smaller then the other stre
components~see Figs. 3, 4!. This fact was the basis for the ana
lytic solutions presented by Rand@7,8#. Accordingly, by assuming
sx5sy5txy50, the strain-stress relations may be simplified t

«z5a33sz1a35txz , gyz5a44tyz , gxz5a35«z1a55txz .
(16)

Fig. 4 The stress component txy „MtÄ1 NÕm…

Fig. 5 Convergence path as a function of the number of terms,
m , „tÄ15 deg torsional moment …

Fig. 6 The stress component txy for X̄2Äcos „2pxÕd…
Àcos „4pxÕd…
678 Õ Vol. 68, JULY 2001 Copyright © 20
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The derivation in Rand@8# shows that for this casek150, k25
2Mt /I 1a35 ~identical to the present results!, and in addition

u5
Mt

2I 1a33
F 1

r z
~a33a552a35

2 !1
1

2
a35

2 G , (17)

where

r z522
192

qp4 (
n50

`
~21!n

~2n11!4 tanh~m̄q!Fsin~m̄!

m̄
2cos~m̄!G ,

(18)

andm̄5(2n11)/2p, q5d/hAa33a552a35
2 /a33a44. The above ex-

pressions correlate perfectly and are practically identical to
results presented in Fig. 2.

Continuing series of examples, and assuming that the only
ternal load is X̄ which acts along the facey5h, as X̄2

5cos(2px/d)2cos(4px/d), we obtain C̃520.97•10218 N/m, u
50.11•10226/m, k150.71•10212/m, k25«050. The solutiontxy
is presented in Fig. 6.
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In this paper, the paradox on the elastic wedge is restudied un
the Hamiltonian system. This research shows that a special p
dox in Euclidean space under the Lagrange system is just
Jordan form solutions in symplectic space under the Hamilton
system, so they can be solved directly and rationally by norm
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Introduction
For an elastic wedge subjected to tractions proportiona

r m21(m>1) on the surfaces, the classical solution becomes i
nite when the vertex angle and constantm satisfy certain definite
relationships. Dempsey@1#, Ting @2#, and Wang@3# have given
solution of this paradox in special case. Ding et al.@4# recently
restudied the paradox, and discovered the secondary parado
of these methods above are limited in the Euclidean space
information on the characteristics of the paradox is incomple
Looking from the analogy theory between computational str
tural mechanics and optimal control~@5#!, the Hamiltonian system
theory can be introduced into the theory of elasticity~@6#!, so the
powerful methods, such as the separation of variables, etc., ca
applied directly~@7#!.

Hamiltonian System in Polar Coordinate
In a polar coordinate system (r ,u), let an elastic wedge o

vertex angle 2a occupy the region 0<R1<r<R2,`, 2a<u
<a. We denote byu, v the radial and circumferential displace
ment, and bys r , su , t ru the stress components. By introducin
variables

j5 ln r , r 5exp~j!; Sr5rs r , Su5rsu , Sru5r t ru
(1)

the Hellinger-Reissner variational principle~see, e.g.,@8#! can be
rewritten as

dE
2a

a E
ln R1

ln R2H Sr

]u

]j
1SuS u1

]v
]u D1SruS ]v

]j
2v1

]u

]u D
2

1

2E
@Sr

21Su
222nSrSu12~11n!Sru

2 #J djdu50. (2)

Now a dot denotes the differential with respect toj. Maximizing
~2! with respect toSu gives

Su5nSr1E~u1]v/]u!. (3)

The substituting of Eq.~3! in Eq. ~2! then yields

dE
2a

a E
ln R1

ln R2H Sru̇1Sruv̇1nSr S u1
]v
]u D1SruS ]u

]u
2v D

1
E

2 S u1
]v
]u D 2

2
1

2E
@~12n2!Sr

212~11n!Sru
2 #J djdu50.

(4)

The dual variables ofu, v areSr , Sru , respectively, and togethe
they constitute the state function-vectorv5$u,v,Sr ,Sru%

T in sym-
plectic space. Expanding the variational Eq.~4! gives dual equa-
tions

v̇5Hv;

where

H5F 2n 2n]/]u ~12n2!/E 0

2]/]u 1 0 2~11n!/E

E E]/]u n 2]/]u

2E]/]u 2E]2/]u2 2n]/]u 21

G .

(5)

Besides, the free boundary conditions on the surfacesu56a are

nSr1E~u1]v/]u!50, Sru50; when u56a. (6)

The dual Eqs.~5! with the boundary conditions~6! can be
solved by the method of separation of variables:

v5exp~mj!C~u!5r m$ū~u!, v̄~u!, S̄r~u!, S̄ru~u!%T (7)
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wherem is the eigenvalue,C is eigenfunction vector dependin
only on u. C must satisfy equation

HC5mC (8)

and the boundary conditions~6!.
In this paper, we will only discuss symmetric deformations. T

symmetric boundary conditions are

v50, Sru50 when u50. (9)

For convenience, let

s~m,a!5sin 2ma1m sin 2a;
(10)

s1~m,a!5]s~m,a!/]m52a cos 2ma1sin 2a

Ã1~m,a!52m cos 2a2cos 2ma;
(11)

Ã2~m,a!522ma sin 2a2~cos 2a1cos 2ma!/~12m!

By solving Eq.~8! with boundary conditions~6! and ~9!, the
nonzero eigenvalue equation can be given ass(m,a)50, that is,
whens(m,a)50 ands1(m,a)Þ0, m is a single eigenvalue; when
s(m,a)5s1(m,a)50, m is a double eigenvalue.

An Elastic Wedge Subjected to Tractions Proportional
to r µÀ1

„µÐ1…
On the surfaceu5a, we assume the load as

nSr1E~u1]v/]u!5prm5p exp~mj!,
(12)

Sru5qrm5q exp~mj! when u5a.

And on the other surfaceu52a, the load is symmetric with~12!.
Due to the fact that the load on surfacesu56a is proportional to
exp(mj), the original problem can be solved by the method
separation of variables, see Eq.~7!. So boundary conditions~12!
can be rewritten as

nS̄r1E~ ū1dv̄/du!5p, S̄ru5q when u5a. (13)

~a! Whenm isn’t the eigenvalue. To solve Eq.~8! with condi-
tions ~9!, we can give its general solution as

Cm
~0!55

[ 2~11n!A1 cos~11m!u1~32n2m2nm!A
3cos~12m!u]/Em

[ ~11n!A1 sin~11m!u2~32n1m1nm!A
3sin~12m!u]/Em

2A1 cos~11m!u1~32m!A cos~12m!u
A1 sin~11m!u1~12m!A sin~12m!u

(14)

the substitution of~14! into the boundary conditions~13! results in
equations

HA1 cos~11m!a1~11m!A cos~12m!a5p
A1 sin~11m!a1~12m!A sin~12m!a5q . (15)

The solution of~15! is

H A15[ 2p~12m!sin~12m!a1q~11m!

3cos~12m!a]/s~m,a!

A5[ p sin~11m!a2q cos~11m!a]/s~m,a!

[Ã~m,a!/s~m,a!

. (16)

So we can give the classical solutionvm
(0)5r mCm

(0) of a wedge
subjected to traditions proportional tor m21. It is the same as the
results of Dempsey@1#, etc.

~b! Whenm(Þ1) is a single eigenvalue. In this case, due to the
vanishing of the determinant of~15!, no solution exists in general
and so initial paradox occurs. However, the eigenfunction vec
for m exists. Substituting~14! into free boundary conditions~6!,
we can give as
JULY 2001, Vol. 68 Õ 679
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HA1 cos~11m!a1~11m!A cos~12m!a50
A1 sin~11m!a1~12m!A sin~12m!a50 . (17)

Becausem is an eigenvalue@s(m,a)50#, nontrivial solutions
of ~17! is A15Ã1(m,a)A. For simplicity, let A51 and A1

5Ã1(m,a) in expression~14!, we can write the eigenfunction
vector C̃m

(0) for eigenvaluem. With the load eigenvalue being
equal to natural eigenvalue, its solution must be a Jordan f
one. The governing equation for the Jordan form solution is

HCm
~1!5mCm

~1!1AC̃m
~0! (18)

whereA is a constant. According to~18!, we can give the first-
order Jordan form general solution

Cm
~1!5$ū~1!, v̄ ~1!, S̄r

~1! , S̄ru
~1!%T (19)

where

ū~1!5
1

Em H 2~11n!A2 cos~11m!u1~11n!Ã1Au sin~11m!u

1
11n

m
Ã1A cos~11m!u1~32m2n2nm!Au sin~1

2m!u2
326m1m22n12nm1nm2

m~12m!
A cos~12m!uJ

(20a)

ṽ ~1!5
1

Em H ~11n!A2 sin~11m!u1~11n!Ã1Au cos~11m!u

2
11n

m
Ã1A sin~11m!u1~31m2n1nm!Au cos~1

2m!u1
326m2m22n12nm2nm2

m~12m!
A sin~12m!uJ

(20b)

S̄r
~1!52A2 cos~11m!u1Ã1Au sin~11m!u

1~32m!Au sin~12m!u1
2

12m
A cos~12m!u (20c)

S̄ru
~1!5A2 sin~11m!u1Ã1Au cos~11m!u

2~12m!Au cos~12m!u. (20d)

Substituting~20! into ~13! and using relationships(m,a)50,
we can give

5 A2 cos~11m!a12Aa sin~12m!a1
2

12m
A

3cos~12m!a5p

A2 sin~11m!a22Aa cos~12m!a5q.

(21)

Its solution is

A25
2

s1~m,a! H pa cos~12m!a1qFa sin~12m!a

1
cos~12m!a

12m G J ; A5
Ã~m,a!

s1~m,a!
. (22)

So the solution for the initial paradox can be solved as
680 Õ Vol. 68, JULY 2001
rm

vm
~1!5exp~mj!@Cm

~1!1AjC̃m
~0!1C0C̃m

~0!#

5r m@Cm
~1!1A ln r C̃m

~0!1C0C̃m
~0!# (23)

where constantsA2 andA are defined upon~22!. C0 is an arbitrary
constant. The solution~23! is the same as the result of Ding et a
@4#.

~c! Whenm is a double eigenvalue. In this case, due to the
vanishing of the determinant of~21!, no solution exists, and so
secondary paradox occurs. Becausem is a double eigenvalue, non
trivial solutions A25Ã2(m,a)A of the homogeneous equation
for ~21! exist. For simplicity, letA51 andA25Ã2(m,a) in ex-
pressions~20!, we can write the first-order Jordan form eigenfun
tion vectorC̃m

(1) .
Because load eigenvalue is equal to a double natural eig

value, its solution must be of the second-order Jordan form.
governing equation isHCm

(2)5mCm
(2)1AC̃m

(1) . To solve these
equations with conditions~9!, we can give a second-order Jorda
form general solution as

Cm
~2!5$ū~2!, v̄ ~2!, S̄r

~2! , S̄ru
~2!%T (24)

where

ū~2!5
1

Em H 2~11n!A3 cos~11m!u1~11n!Ã2Au sin~11m!u

1
11n

m
Ã2 A cos~11m!u1

11n

2
Ã1Au2 cos~11m!u

2
11n

m
Ã1Au sin~11m!u2

11n

m2 Ã1A cos~11m!u

2
32m2n2nm

2
Au2 cos~12m!u

2
326m1m22n~122m2m2!

m~12m!
Au sin~12m!u

1
329m19m22m32n~123m13m21m3!

m2~12m!2

3A cos~12m!uJ (25a)

v̄ ~2!5
1

Em H ~11n!A3 sin~11m!u1~11n!Ã2 Au cos~11m!u

2
11n

m
Ã2A sin~11m!u2

11n

2
Ã1Au2 sin~11m!u

2
11n

m
Ã1Au cos~11m!u1

11n

m2 Ã1A sin~11m!u

1
31m2n1nm

2
Au2 sin~12m!u

2
326m2m22n~12m!2

m~12m!
Au cos~12m!u

2
329m19m21m32n~12m!3

m2~12m!2 A sin~12m!uJ (25b)
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Chaotic Motion of a Symmetric Gyro
Subjected to a Harmonic Base
Excitation

X. Tong
Lucent Technologies, 480 Red Hill Road, Middletown,
NJ 07724

N. Mrad
Structures, Materials, and Propulsion Laboratory, Institute
for Aerospace Research, National Research Council
Canada, 1500 Montreal Road, Building M-3, Ottawa,
Ontario K1A 0R6, Canada

Chaotic motion of a symmetric gyro subjected to a harmonic base
excitation is investigated in this note. The Melnikov method is
applied to show that the system possesses a Smale horse when it is
subjected to small excitation. The transition from regular motion
to chaotic motion is investigated through numerical integration in
conjunction with Poincare´ map. It is shown that as the spin ve-
locity increases, the chaotic motion turns into a regular motion.
@DOI: 10.1115/1.1379036#

Introduction
In recent years, several researchers have conducted studies in-

vestigating the chaotic motion in rigid-body systems~@1–6#!. Re-
cently, Ge et al.@7# conducted a detailed study evaluating the
nonlinear behavior of a symmetric heavy gyroscope mounted on a
vibrating base. In their study, the chaotic motion of the system
with linear damping was investigated by using a variety of tech-
niques, such as the Melnikov method, Poincare´ map, power spec-
trum analysis, and Liapunov exponents.

In this note, the motion of a symmetric gyro~Fig. 1! subjected
to a harmonic vertical base excitation is studied, with particular
emphasis on its nonlinear dynamic behavior without taking into
account the damping effect. The symmetric gyro can be used to
model a variety of physical systems, ranging from a child’s top to
a modern gyroscopic navigational instrument. The Melnikov
method is applied to predict the transversal intersections of stable
and unstable manifolds for the system when subjected to small
base excitation. The transition from regular motion to chaotic mo-
tion is investigated through numerical integration in conjunction
with the Poincare´ map. The effect of the gyro’s spin velocity on its
global motion is also investigated. It is shown that the gyro’s spin
velocity has a significant effect on dynamic behavior of the sys-
tem.

Equations of Motion
Consider a symmetric gyro mounted on a harmonically oscil-

lating base, as shown in Fig. 1. The motion of the gyro can be
described using Euler’s anglesu ~nutation!, f ~precession!, andc
~spin!. The Lagrangian of the gyro system can be written as

L5
1

2
I 1~ u̇21ḟ2 sin2 u!1

1

2
I 3~ḟ2 cosu1ċ2!2

2,
S̄r
~2!52A3 cos~11m!u1Ã2Au sin~11m!u

1
1

2
Ã1Au2 cos~11m!u2

1

2
~32m!Au2 cos~12m!u

1
2

12m
Au sin~12m!u1

2

~12m!2 A cos~12m!u

(25c)

S̄ru
~2!5A3 sin~11m!u1Ã2Au cos~11m!u2@Ã1 sin~11m!u

1~12m!sin~12m!u#Au2/2. (25d)

Substituting ~25! into ~13! and using relationshipss(m,a)
5s1(m,a)50, we can solve

5
A35

1

m sin 2a H pFsin~12m!a1
cos~12m!a

~12m!a G
2qFcos~12m!a2

sin~12m!a

~12m!a
2

cos~12m!a

~12m!2a2 G J
A5Ã~m,a!/~2ma2 sin 2a!

.

(26)

So the solution for the secondary paradox can be given as

vm
~2!5r mH Cm

~2!1A ln r C̃m
~1!1

1

2
A ln2r C̃m

~0!1C0@C̃m
~1!1 ln r C̃m

~0!#

1C1C̃m
~0!J . (27)

It is the same as the result of Ding et al.@4#.

Conclusion
This approach is different from the traditional semi-inverse

lutions and it gives rationally all solutions of the paradox, and
result reveals that such a special paradox in Euclidean spa
just the Jordan form solution in symplectic space. For a we
subjected to tractions proportional tor m21(m>1) on the surfaces
the following conclusion can be drawn:~1! the paradox does no
exist whenm is not the eigenvalue;~2! the initial paradox occurs
when m is a single eigenvalue, and its solution is one which
composed of the first-order Jordan form;~3! the secondary para
dox occurs whenm is a double eigenvalue, and its solution is o
which is composed of the second-order Jordan form.
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whereI 1 andI 3 are the polar and equatorial moments of inertia
the symmetric gyro,Mg is the gravity force,l is the distance
between the center of gravity and pointO, l̄ andv are the ampli-
tude and frequency of the base excitation, respectively.

Letting

x15u and x25
pu

I 1
5

1

I 1

]L

]u̇
(2a)

g5
pf

I 1
5

1

I 1

]L

]ḟ
and d5

pc

I 1
5

1

I 1

]L

]ċ
, (2b)

the normalized canonical Equations of Motion~EOM! of the gyro
employing the time invariant generalized angular momentag and
d can be written as

ẋ15x2 (3a)

ẋ252
~g2d cosx1!~d2g cosx1!

sin3 x1
1F sinx11«F̄ sinvt sinx1

(3b)

where

F5
Mgl

I 1
«F̄5

Mgl̄

I 1
. (4)

Application of the Melnikov Method
For the symmetric gyro of Fig. 1, without base excitation~«

50!, the normalized canonical EOM~3! can be reduced to

ẋ15x2 (5a)

ẋ252
~g2d cosx1!~d2g cosx1!

sin3 x1
1F sinx1 (5b)

for which the normalized time invariant Hamiltonian can be e
pressed as

h5
H

I 1
5

x2
2

2
1

~g2d cosx1!2

2 sin2 x1
1y

d2

2
1F cosx1 (6)

Fig. 1 A symmetric gyro subjected to a harmonic base
excitation
682 Õ Vol. 68, JULY 2001
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wherey5I 1 /I 3 . Although the right-hand side of Eq.~5b! appears
to be singular atx150 where g5d, a careful application of
l’Hopital’s rule reveals that it is regular at that point; namel
whenx150, x250. The above system representation is one of f
rigid-body systems for which analytical solutions were foun
~e.g., see@8#!. For 0,g,2AMgl/I 1 andg5d, the vertically spin-
ning state~x150, x250! of the gyro is unstable~saddle!. The
homoclinic orbit~separatrix! connecting the saddle to itself~Fig.
2! is given by@8# as

cosx1512b sec2SAab

2
t D (7)

where

b522g2/a g5d a52Mgl/I 1 .

However, for the symmetric gyro subjected to a small base ex
tation ~«Þ0!, the highly degenerate homoclinic orbit is expecte
to break and perhaps to intersect transversely. In such a case
~6! can be viewed as a Hamiltonian with a time variant perturb
tion,

ẋ5f~x!1«g~x,t ! (8)

where

x5~x1 ,x2!

f~x!5~x2 ,2~g2d cosx1!~d2g cosx1!/sin3 x11F sinx1!

g~x,t !5~0,F̄ sinvt sinx1!. (9)

The existence of the transversal intersections of homoclinic
bits implies complex dynamic behavior in the sense of the Sm
horseshoe and provides a necessary condition for chaotic mo
to occur. Due to Melnikov@9#, analytical technique exists for de
tecting the transversal intersections of homoclinic orbits in t
Poincare´ map of a perturbed system. The detection of these tra
versal intersection is accomplished by calculating the appropr
Melnikov integral, which is the first-order~in the perturbation
parameter«! measure of the distance between the stable and
stable manifolds associated with the saddle point on the Poin´
map. A convenient form of the Melnikov method for computatio
purposes is expressed as~@10#!

M ~ t0!5E
2`

`

f~q0~ t !!∧g~q0~ t !,t1t0!dt (10)

Fig. 2 The phase plane of a symmetric gyro
Transactions of the ASME
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tions. Throughout this analysis, computations were performed for
where the wedge product is of the typef∧g5 f 1g22 f 2g1 , andt is
time. The homoclinic orbit of the unperturbed symmetric gy
system is then given by

q0~ t !5S cos21@12b sec2~Aabt/2!#,

3
bAab sec2~Aabt/2!tanh~Aabt/2!

A12~12b sec2 ~Aabt/2!!2
D . (11)

By substituting Eqs.~9! and~11! into ~10!, The Melnikov inte-
gral is reduced to

M ~ t0!5E
2`

`

F̄bAab sec2SAab

2
t D tanhSAab

2
t D sinv~ t1t0!dt

5E
2`

`

F̄bAab sec2SAab

2
t D tanhSAab

2
t D

3~sinvt cosvt01cosvt sinvt0!dt. (12)

Since the odd part of the above integral is zero, the Melnik
function M (t0) can be simply reduced to
Journal of Applied Mechanics
ro

ov

M ~ t0!5H E
2`

`

F̄bAab sec2SAab

2
t D tanhSAab

2
t D sinvtdtJ

3cosvt0 . (13)

The integral in Eq.~13! can be evaluated by the residu
method, to yield

M ~ t0!5
1

2
F̄bAab coshS pv

2 D cosvt0

5
1

4

F̄

F
~A4F2g2!3 coshS pv

2 D cosvt0 . (14)

It can be deduced from~14! that the Melnikov function has simple
zeros. Thus the motion of the symmetric gyro subjected to sm
base excitation is chaotic in the sense that the system posses
Smale horseshoe.

Numerical Analysis
To investigate the transition from regular motion to chaotic m

tion as the amplitude of the base excitation is varied, the pertur
EOM ~8! is integrated numerically for 14 different initial cond
Fig. 3 „a… The Poincaré map of a symmetric gyro „«Ä0.01…; „b… the Poincare´ map of a symmetric gyro „«Ä0.1…; „c… the Poincare´ map
of a symmetric gyro „«Ä0.5…; „d… the Poincare´ map of a symmetric gyro „«Ä1.0…
JULY 2001, Vol. 68 Õ 683
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a symmetric gyro with the following parameters:g5d50.3, F
51.0, andv51.0. Results are presented on Poincare´ maps that
were generated by looking at the system stroboscopically wi
periodT52p/v. The two observed different types of motion o
Poincare´ maps, regular and chaotic, are readily distinguished.
regular motion, successive points describe smooth curves or s
rate points. For chaotic motion, the points fill an area on the P
carémap in an apparently random manner.

For a fairly small perturbation~«50.01!, Fig. 3~a!, one ob-
serves that the Poincare´ map is covered by resonant and nonres
nant quasi-periodic trajectories. For a resonant quasi-periodic
jectory, successive points in Poincare´ map trace a simple curve
which covers only a fraction of the interval fromx150 to x1
5180 deg. For a nonresonant quasi-periodic trajectory, succes

Fig. 4 „a… The Poincaré map of a symmetric gyro „dÄ2.0 and
«Ä1.0…; „b… the Poincare´ map of a symmetric gyro „dÄ5.0 and
«Ä1.0…
684 Õ Vol. 68, JULY 2001
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points in Poincare´ map covers all values ofx1 between 0 and 180
deg. This result agrees with the celebrated KAM theorem~after
Kolmogorov, Arnold, and Moser! ~@11#!. This theorem states tha
for a sufficiently small perturbation, most of periodic and qua
periodic motions existing in the unperturbed system, will
slightly distorted but still preserved. In addition, it is observed th
a small region that is close to the separatrix is covered by cha
trajectories. This feature corroborates the results obtained in
previous section by means of the Melnikov method.

If the amplitude of the perturbation is increased by sm
amounts~«50.1 and«50.5!, as shown in Figs. 3~b! and 3~c!, one
can observe that on the Poincare´ map some regions are covered b
regular trajectories and some by chaotic ones. If the amplitud
further increased to a relative large value, as shown in Fig. 3~d!
~«51.0!, one observes that the whole Poincare´ map is covered by
chaotic trajectories except for few islands. This result indica
that an onset of global chaos has occurred.

It is important to realize under what conditions a nonline
system will become chaotic but more important to realize h
chaotic motion can be prevented. To investigate the effect of
gyro’s spin velocity on the various dynamic behavior of the s
tem, the amplitude and frequency of the base excitation, (F5v
51.0), and the amplitude of the perturbation~«51.0! were fixed,
and the parameterg5d5(I 3 /I 1)v3 ~v3 is the gyro’s spin veloc-
ity! is varied. Asd is increased from 0.3 to 2.0, one can obser
from Fig. 4~a! that more and more chaotic motion has disa
peared. Asd is further increased to 5.0, Fig. 4~b!, the whole Poin-
carémap is covered by regular motion. These results indicate
the gyro’s spin velocity has a significant effect on the gyro’s d
namic behavior, i.e., a chaotic motion will turn into a regul
motion as the spin velocity increases. This can be explained by
fact that for F51.0, the homoclinic orbit does not exist in th
unperturbed system ford.2.0. This finding has practical impor
tance for the design of gyroscope instruments. For instance,
desirable to set the gyro in more stable spinning state by sim
giving higher initial spinning velocity.
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Closure to ‘‘Discussion of
‘Combinations for the Free-Vibration
Behavior of Anisotropic
Rectangular Plates Under General
Edge Conditions’ ’’ „2001,
ASME J. Appl. Mech. 68, p. 685…

Y. Narita
Department of Mechanical Engineering, Hokkaido
Institute of Technology, 7-15 Maeda, Teine-ku, Sapporo,
006-8585, Japan
e-mail: narita@hit.ac.jp

Although the main idea of the paper is an introduction of the
Polya counting theory to an engineering counting problem that
may be encountered in applied mechanics, this author equally
appreciates the interest shown by Professor Bert in the proposed
Ritz method to calculate natural frequencies of anisotropic plates
with arbitrary boundary conditions. Professor Bert raised two con-
structive comments that are answered in order.

The first comment is that the present author took up only three
classical boundary conditions~i.e., free, simply supported, and
clamped edges! in numerical examples and did not consider the
fourth boundary condition of a guided or sliding edge with zero
effective shear force and bending moment. The function~20! in
thex andy-direction~@1#! is not applicable in its direct form to the
fourth boundary condition but it is widely accepted that the fourth
condition is not as important as the first three ones. It may be
possible to apply the present function to the fourth boundary con-
dition by adding a constant term to give a constant displacement
caused by the guided or sliding edge and also constraining the
slope at the edge.

The second comment, which is more important, is on conver-
gence rates of the present solution applied to anisotropic plates.
Before commenting on that, I have to make it clear that the cap-
tion in Table 2 of@1# was erroneous. The convergence result in the
table was for a specially orthotropic square plate.~i.e., anisotropic
plate with a fiber orientation angleu50 deg!, not for skew ortho-
Discussion: ‘‘Combinations for the
Free-Vibration Behavior of Anisotropic
Rectangular Plates Under General
Edge Conditions’’ „Narita, Y.,
2000, ASME J. Appl. Mech., 67, pp.
568–573…

C. W. Bert
Perkinson Chair Professor, School of Aerospace and
Mechanical Engineering, The University of Oklahoma
Norman, OK 73019-1052. Life Fellow ASME

The author is to be commended for his new approach to
important problem of calculation of natural frequencies for ani
tropic plates. However, two comments are in order.

First, the paper lists only three classical boundary conditio
simply supported, clamped, and free. Actually, there is a fou
one: guided or sliding~Bert and Malik @1#!. For this boundary
condition, the effective shear force and the bending slope are
zero. Exact natural frequency results were given for a variety
such cases of isotropic plates in@1#.

The second comment is that, although the Ritz method is
upper bound solution, it converges rather slowly in the case
anisotropic plates. For design purposes, a lower bound to a
quency is often more important than an upper bound. The con
gence of the Ritz method, a Fourier series method~Whitney @2#!,
and the differential quadrature method were studied by Bert e
@3# for free vibration of simply supported plates of highly anis
tropic material~EL /ET525, compared to 15.4 in the present p
per!. The latter two methods provided lower bounds.
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144.
tropic square plates~u530 deg!. This was obvious that the con-
verged values in Table 2 are in exact agreement with those of
specially orthotropic plates in Table 5 of@1#.

Professor Bert stated that ‘‘it~Ritz method! converges rather
slowly in the case of anisotropic plates.’’ I agree that the Ritz
method tends to give slower convergence for anisotropic plates
than for isotropic and specially orthotropic plates, but this ten-
dency is also found for other methods and the important question
is how slow the solution becomes. To see this, another test is
conducted here to observe convergence rates of the present
method for highly anisotropic material.

Q11/Q22525, Q12/Q2250.25 and Q66/Q2250.5

Copyright © 2001 by ASMEJournal of Applied Mechanics JULY 2001, Vol. 68 Õ 685
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used in reference@2#. This material has stronger anisotrop
(EL /ET525) than that (EL /ET515.4) used in~@1#!.

Table 1 presents convergence test results of diagonally or
tropic square plates~u545 deg! with such material for boundary
conditions of FFFF~free plate!. SSSS~simply supported plate!,
CCCC ~clamped plate!, and CFFF~cantilever plate!. Frequency
parameters

V5va2~rh/D0!1/2 with a reference stiffnessD0

5ETh2/12~12vLTvTL! (1)

are presented with four significant figures for the number of te
M3N5636;14314 (434;16316 for SSSS! in Eq. ~15! of
@1#, and underlined figures are converged values within the ra
of our significant figures. It is seen that two extreme cases of
FFFF ~totally free plate with only natural boundary condition!
and the CCCC~the most constrained plate with only geometric
boundary conditions! plates do yield fast convergence, while th
SSSS plate with both natural and geometrical boundary condit
does slower convergence, particularly for the fundamental mo

The convergence behaviors of some different solutions
compared for the fundamental frequency of the SSSS plat
reference@2#. The present values are converted to their freque
parameter

Table 1 Convergence of frequency parameters V of diago-
nally orthotropic square plates „uÄ45 deg, Q11 ÕQ22
Ä25, Q12 ÕQ22Ä0.25, and Q66 ÕQ22Ä0.5…
686 Õ Vol. 68, JULY 2001 Copyright © 20
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W5vb2~r/Q22h
2!1/2 (2)

and are shown in Fig. 1 with those presented in Fig. 4 of@2#. It is
observed that the present Ritz method gives much better u
bound than the Ritz result of Ashton and approaches closely to
lower bound of the Fourier analysis and DQ method. This fig
therefore indicates that the convergence rate of the Ritz metho
rather dependent on the choice of displacement functions.

The present author has an opinion that use of the Ritz met
with ~modified! polynomial functions yields very accurate upp
bounds with advantages in applying to arbitrary boundary con
tions and in computation time, when it is used with the followin
points in mind~@3#!.

• The first few terms of the polynomial~say, ten! give rapid
convergence of the solution, but the use of higher order poly
mials ~say, 20 or more terms! tends to make the eigenvalue equ
tion numerically unstable, unless it is somehow modified.

• The plate region considered should have a regular plan, s
as rectangular and elliptical plates. For plates of irregular geo
etry, e.g., with cutouts or L-shaped plates, the solution accur
deteriorates.

In summary, the Ritz method with modified polynomials is
valuable and recommendable approach. The only problem is
because it is very easy to use and guarantees good accuracy
cannot escape this easiness and does not create new method
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Fig. 1 Convergence of the fundamental frequency parameter
WÄVb 2

„rÕ„Q22h
2
…

1Õ2 by Ashton’s Ritz method. Whiteney’s
Fourier, Bert’s DQM, and the present Ritz method. „Data are
replotted from Fig. 4 in †2‡.…
01 by ASME Transactions of the ASME
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Discussion: ‘‘Common Errors on
Mapping of Nonelliptic Curves in
Anisotropic Elasticity’’ „Ting, T. C. T.,
2000, ASME J. Appl. Mech., 67,
pp. 655–657…

C. Q. Ru
Department of Mechanical Engineering, University of
Alberta, Edmonton, AB T6G 2GB, Canada
e-mail: c.ru@ualberta.ca

Professor Ting’s paper~@1#! clearly clarifies several simple bu
important concepts on conformal mapping techniques applie
anisotropic plane elasticity. Here, I would like to add my ow
comments on these interesting issues.

~1! First, it should be stated that conformal mapping techniqu
combined with the Stroh’s method, have been successfully app
in some important cases to anisotropic elasticity with nonellipti
curves. An example is the Eshelby’s problem for an inclusion
arbitrary shape in an anisotropic medium~@2#!, or in a piezoelec-
tric medium@3#, of the same material constants. As stated by P
Ting in @1#, and also by some other authors elsewhere, becau
point z on G will be transformed, under three different mappin
wa(j) (a51,2,3), to three different pointsja on the unit circle
in z-plane, the transformed boundary conditions on the unit cir
in thez-plane will contain three unknown Stroh’s functions whic
take values at three different points. Therefore, unless the bo
ary conditions are decoupled for the three Stroh’s functions,
cannot solve the transformed boundary value problem in
z-plane. The key fact associated with the problem studied in@2# is
that the three interface conditions~in complex form! for an arbi-
trarily shaped inclusion, surrounded by an anisotropic medium
the same material constants, can be written in a decoupled for
which the three unknown Stroh’s functions are completely dec
pled to each other. It is this fact that allows one to apply conf
mal mapping techniques to each of the three Stroh’s functions
the associated curve independently of the other two. For a sim
result for piezoelectric materials, see@3#.

The second key result of~@2#! is that for each of the three
closed curvesGa (a51,2,3) ~that is Ga defined in @1#!, one
can construct an auxiliary functionDa(z) which satisfies the
condition

z̄5Da~z!, zPGa (1)

and is analytic and single-valued in the exterior of the curveGa ,
except at infinity whereDa(z) tends to a polynomialPa(z). As
shown in@2# ~and@3# for piezoelectric materials!, with aid of these
auxiliary functions, the techniques of analytic continuation can
applied to the inclusion of arbitrary shape to get an analytic so
tion for the Stroh’s functions.

The above key result~which has been questioned by someon!
can be shown, clearly and rigorously, as follows. Assume that
exterior ofGa is mapped onto the exterior of the unit circle in th
j-plane by a polynomial conformal mapping

z5wa~j!5laj1(
k50

N

cakj
2k, a51,2,3 (2)

wherela is a real number,cak are some complex constants, andN
is a finite integer. It is emphasized that the definition of the c
formal mapping~2! implies that it has a unique inverse conform
mapping wa

21(z) which is well defined on the exterior of th
curve Ga and maps the exterior of the curveGa ~without any
branch cut!! on to the exterior of the unit circle. Evidently, thi
Copyright © 2Journal of Applied Mechanics
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means that the inverse mappingwa
21(z) is analytic, single-valued

and nonzero in the exterior of the curveGa . This is just part of
the definition~2!—not any further ‘‘proof’’ is needed. Here, simi
lar to all other conformal mapping methods, the inverse mapp
wa

21(z) is treated as the known, and we need not discuss how
construct an explicit expression for the inverse mappingwa

21(z)
from the single-valued branches of the multivalued inverse fu
tion of ~2!. In particular, all branch points of the inverse functio
of ~2! fall inside the interior of the curveGa in the z-plane, or
inside the interior of the unit circle in thej-plane. For example,
for a hypotrochoidal curve, it is readily seen from~A11! of @4#
that all singularity points of the conformal mapping~at which the
derivative of the mapping function vanishes, as described by
condition~3! or ~6! of @1#! fall inside the interior of the unit circle
in the j-plane and thus do not trouble the single-valued inve
mapping for the exterior.

Based on these facts, it is easily verified that the desired fu
tion Da(z) is given by

Da~z!5waS 1

wa
21~z! D 5

la

wa
21~z!

1(
k50

N

cak@wa
21~z!#k (3)

wherewa
21(z) is the~unique! inverse mapping of the polynomia

mapping~2!. First,Da(z) given by~3! meets the condition~1! on
the curveGa . Second, becausewa

21(z) is analytic, single-valued
and nonzero outside the curveGa , 1/wa

21(z) and @wa
21(z)#k (k

is any integer not larger thanN! are analytic and single-value
outside the curveGa . Thus,Da(z) given by the right-hand side o
~3! is obviously analytic and single-valued in the exterior of t
curveGa , except at infinity whereDa(z) tends to a polynomial of
degreeN. Therefore, the auxiliary functionDa(z) complying with
the conditions~1! can be constructed by~3! in terms of the asso-
ciated polynomial mapping which maps the exterior to the cu
Ga onto the exterior of the unit circle. Similar auxiliary function
have been applied to isotropic elasticity@4# and piezoelectric
materials@3#.

~2! Finally, as stated in@1#, the mapping~15! of @1#, although
provides a one-to-one mapping for the boundaries, does no
ways offer a one-to-one mapping for the exteriors of the bou
aries. Regarding this issue, as stated in@2,3#, the boundary corre-
spondence principle of conformal mappings for exterior doma
~@5#! can be used to identify the conditions under which a one
one mapping for the boundaries automatically offers a one-to-
mapping for the exteriors. For instance, for an elliptical bound
G, because the right-hand side of~15! of @1# is analytic outside the
unit circle and has a simple pole~of degree one! at infinity in the
j-plane, it follows from the boundary correspondence princi
@5# that the expression~15! of @1# provides a one-to-one conforma
mapping between the exterior of the curveGa and the exterior of
the unit circle in thej-plane, not any pointwise verification i
needed. I believe that this comment offers a valuable insigh
this interesting issue.
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Contrary to what Professor Ru stated in his first sentence, the
paper did not discuss ‘‘conformal mapping’’ techniques applied to
anisotropic plane elasticity. The paper discussed ‘‘mapping’’ in
anisotropic elasticity. As emphasized in Section 4 of the paper,
mapping in anisotropic elasticity is not conformal. Many papers
that dealt with mapping in anisotropic elasticity used the word
conformal mapping indiscriminately.

I have presented clearly what I wanted to say in the paper. I
have no further comments.
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F. E. Udwadia and R. E. Kalaba

In this paper, item~S2! of Section 3, page 464, should read

2 f(q,t)50, c(q,q̇,t)50, with f(q0,0)50, ḟ(q0,0)50, andc(q0 ,q̇0,0)50.
Copyright © 2001 by ASMEJournal of Applied Mechanics JULY 2001, Vol. 68 Õ 689
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