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Progressive Cracking of a
Multilayer System Upon Thermal
M. R. Begley cvcnng

Mem. ASME
Department of Civil Engineering, . . ) ) ) ) . .
University of Virginia, This article considers progressive cracking upon thermal cycling of a thin multilayer on a
Charlottesville, VA 22904 thick substrate. The prototypical system comprises a thin elastic layer of a dielectric
g-mail: begley@virginia.edu material above another thin metal interconnect layer attached to a silicon substrate.
Residual stresses exist because of the thermal expansion misfit and due to deposition.
A. G. Evans Putative fabrication flaws are presumed to be present in the dielectric. When activated by
Materials Institute, residual stresses these flaws can induce cracks that channel along the dielectric. Condi-
Princeton University, tions that induce yielding of the metal upon initial cooling are shown to exacerbate this
Princeton, NJ 08540 phenomenon. Moreover, subsequent thermal cycling may induce ratcheting, wherein
cracks develop progressively due to repeated yielding of the metal layer. The roles of
initial stress, cyclic temperature amplitude, and interconnect yield strength in these phe-
nomena are investigated using finite element models which explicitly account for cyclic
yielding. The most deleterious situation is found to be that wherein the entire metal layer
reaches yield at some stage during the temperature cycle. Several scenarios relevant to
semiconductor devices are considergldOl: 10.1115/1.1379529
1 Introduction nucleated and upon thermal cycling, the cracks channel along the

Unon thermal cveling during fabrication and qualification tes dielectric, as illustrated schematically in Fig. 2. Such cracks are
_wpont ycling 9 - 1and g treferred to as steady-state, because the associated energy release
ing, multilayers comprised of materials with disparate thermom

chanical properties are susceptible to complex mechanical ?age 's independent of their length. They propagate in a manner

] verned by the opening displacement profile through the film
sponses. These cyclic phenomena are most pronounced whent N&ness. in the wake of the crack
of the constituents is susceptible to yieldifsyich as a metal in- ' )

d when th b ial diff in th ITo address the problem, the tri-layer model illustrated in Fig. 3
terconnedtand when there are substantial differences in thermal\seq |t is comprised of two thin layers on a semi-infinite elastic
expansion coefficient among the constituents. One of the m

) . LRfpstrate. The top layer is elasti@presentative of a dielectric
important of these responses, referred to as ratcheting, has §%) and the second is elastic/plasiiepresentative of metal

subject to the least analysis. It is characterized by material difterconnects Where specific properties are needed for analysis,
placements that increase systematically with each cycle. The pligsse summarized on Table 1 are used. Initially, the effect of plas-
nomenon is dictated by cyclic yielding, biased by an applied gty in the metal layer on the behavior during the first cycle is
residual stress. ) addressed and related to effects that occur in thin elastic films
Related behaviors have been found in pressure vessels subjgtnsited on elastic-plastic substratfg]). The multilayer sce-
to thermal cycling([1-7)); this prompted both theoretical andpayig differs in two important ways from that for the semi-infinite
experimental studies on model systems consisting of two barsGstic-plastic substratéi) the residual stress in the metal layer
unequal length and cross sections. These “two-bar structurésphances plastic deformation, afit) the finite thickness of the
have proven effective in identifying various regimes of behaviometal layer(between the dielectric and substjaprovides con-
including the unusual phenomenon of “compressive ratchetingsiraint that limits plastic deformation. The focus of this paper is on
wherein the barshortenduring temperature cycling despite theihe first of these effects. The second will be explored in a com-
present of a steadgnsileload. For systems with disparate matepanjon papet[10]). It will be shown here that, when the residual
rials (such as those considered hera more recent and well- stress is sufficiently low such that the plastic zone is small relative
known example of similar behavior occurs in particle-reinforcegh the thickness of the metal layer, the present results for crack

metals, which elongate along the load axis with each thern\%ening reduce to those derived by Beuth and K||ngml|
cycle, resulting in large deformations after multiple cyclgs)).
Bree diagrams are used to characterize the beh&i@mples of
which are provided as Fig.)lby indicating the combination of 2 Numerical Model
thermal expansion misfit, yield strength, and applied stress thatFOr scenarios where the crack face opens monotonically. the
activate ratcheting. Outside this domain, the system exhibits b aady-state eneray release r@e. is relate(ljoto work done b t?\/,e
nign behavior, designated as shakedown, wherein the cyclic pl?‘eéiduyal Stress t%?r/ou h the cﬁrgéck opening. Eor unif0r¥n film
tic straining is limited to the first few cycles. thi bg d p 9-

The present article explores one manifestation of ratcheting rg}_ressesa, IS may be expressed as
evant to some electronic devices. It involves plastic deformations o
that occur in a metal layefAl or Cu), when encapsulated in a Gss J
dielectric (such as Sily) containing an incipient crack. Once

S(o)do (1a)
0

where é is the integral of the crack opening displacements over

Contributed by the Applied Mechanics Division off AMERICAN SocleTy o the crack face, as in
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Decem- 1(h
ber 22, 1999; final revision, November 7, 2000. Associate Editor: K. Ravi-Chandar. o= H
Discussion on the paper should be addressed to the Editor, Professor Lewis T.
Wheeler, Department of Mechanical Engineering, University of Houston, Houston, . . . .
TX 77204-4792, and will be accepted until four months after final publication of tt@hereh is the layer thickness. Note that crack-opening displace-
paper itself in the ASME QURNAL OF APPLIED MECHANICS. ments are used here, which are one-half of the total crack opening

u(z)dz (1b)
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Table 1 Properties of the representative system

E (GPa a (ppm/°Q v ey
Top, SiN, 100 6 0.2 -
Middle, Al 70 25 0.3 0.002
Substrate, Si 200 4 0.2 -
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Fig. 1 Bree diagrams for a metal-matrix composite (left) and a
two-bar model used for studying pressure vessels (right), illus-
trating the relationship between thermal loading, applied ten-

sile loading, and regions of ratcheting and shakedown

Fig. 2 Schematic of a channeling crack in a multilayer depos-
ited on an elastic substrate. The middle layer represents an
elastic-plastic interconnect, while the top layer is representa-
tive of an elastic dielectric; N is the number of thermal cycles.

Xz

Crack tip _—" |

radius << h4

Q QO «

Q

/ Channeling crack

(measured from crack face to crack fadeor monotonic opening

of channeling cracks, the difficulty in accounting for plastic dis-
sipation can be avoided by considering the work done by an
equivalent pressure acting on the crack f&). The key result

is that plasticity increases the crack openings, resulting in higher
crack driving forces.

Determining the corresponding response upon cyclic loading
requires a plasticity flow theory. Simply applying a cyclic pressure
to the crack faces does not accurately capture the near-tip defor-
mations. Nevertheless, since the film is elastic, the opening profile
of the crack still provides the correct measure of the energy re-
lease rate. Moreover, the steady-state opening in the wake, calcu-
lated from a plastic analysis, provides a driving force estimate that
reveals important trends. This estimaBt?,

Gsi=09, @

is believed to be an upper boun@or an elastic system, this
expression is exagt.Full three-dimensional calculations of the
near-tip deformations for a channeling crack are currently under
way to determine the extent to whi¢B) overestimates the crack
driving force ([10]).

While direct evaluation ofG44 is not possible using2), it is
still apparent that increases in crack openings correspond to larger
crack driving forces. Accordingly, as the opening displacement
increases during thermal cycling, the cracks can reach criticality
and channel. This happens whég reaches the fracture tough-
ness of the dielectric layeF,. The ratcheting effect is reflected in
increases ins with thermal cycling, in the presence of a dielectric
subject to an initial tension. The focus here is on conditions which
cause the crack opening to increase with thermal cyclihg.
should be emphasized that, for the present scenarios, the crack

Metal (elastic-plastic)

Q)

Q Q)

Q 0O O

-] Substrate thickness - O(500h,)
Multi-layer width - O(500h,)

Substrate (elastic)

k Symmetry boundary conditions

Fig. 3 Schematic of tri-layer system used to define the finite element model
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opens systematically and plastic deformation prohibits crack clgayer ando$ for the metal layer. These misfit stresses can be
sure. Crack face contact does not occur at any point during thelated to thermal expansions and intiinstresses by
loading cycle It will be shown in Section 3 that, through proper

choice of normalization, the results for crack openings and the Ei(a;—ag)ATS

0 |

upper boundsP are identical. ST (2a)
The model characterizes the deformations that occur in a rep- !

resentative slice in the wake of the crack, which is modeled as Ey(ap—a )ATd

plane-strainSee Fig. 3. The substrate is taken to be semi-infinite. ag:$ +ob (2b)

The top layer (Sily) and substrat€Si) are modeled using isotro- (1=v,)

pic elasticity, while the middle layefAl) is modeled as elastic- . -
perfectly plastic, using conventional isotropls flow theory. The Wheréai, a, andas are the thermal expansion coefflméants for
finite element models are developed using the commercial cdié dielectric, metal and substrate, respectivalfy andATS are
ABAQUS. Plane-strain eight-noded reduced-integration hybrid éf€ cooling ranges from “deposition” to ambiertf; andE, refer
ements are used; these elements, which include the hydrosti¢he respective Young's moduli; and v, to the Poisson’s ra-
pressure as an additional elemental variable, are most effectivdigs, ando; and o to the intrinsic stress in the two layers. Note
handling the nearly incompressible behavior of the plastic zomieat in some scenariasy exceeds the yield strength of the metal
near the crack tip. Convergence tests illustrate that acceptablelegrer, o . In such cases, the actual stress in this layer remains at
sults are obtained when the dimensions of the outer boundaries @g except near the crack tip, where hydrostatic stresses are
at least 100 times the combined thickness of the top two layergresent.

Special care has been taken to accurately capture the behaviofhe results of the calculations are expressed in terms of the
near the crack tip. Cyclic loading represents a complication frofollowing nondimensional quantities. The crack opening is nor-
monotonic scenarios, as compressive stresses may develop whietlized by the value that results from a purely elastic analysis of
act to reduce the crack opening. Furthermore, the large geomedrysystem comprised of layers with identical elastic properties,
changes at the tip must be accurately accounted for. Singularifiyen by ([11])
elements can lead to numerical difficulties upon load reversal,
including ambiguous tip deformations that arise when the elastic 1.971— vf)a(l’hl
layer penetrates the plastically deformed elements. To circumvent 50=E— (3)
this, the crack tip at the interface was modeled as a semi- !
cylindrical cavity with a tip radius about two orders of magnitudgyhereh, is the thickness of the dielectric layer. The factor 1.97
smaller than the thickness of the top elastic layer. Convergenggses from the integration of the corresponding crack opening
tests have indicated that the crack-opening integrals calculated ¥igfile, as in Eq(1b). For such a system, the residual stress in the
(1b) (and the energy release rate estimate calculatedjeare metal layer has no effect on the crack-opening displacement

independent of the initial tip radius. Moreover, the crack opening11]). The nondimensional crack opening is thus
at the surface is independent of the numerical details. Again, it

should be noted that for the problems of present interest, the initial S )

opening experienced during the fabrication/cooling stage is large A= 3 - 1om1=2a% (4a)
enough such that the crack does not close at any point during the o 1.971-w})oihy

cycling.

As noted earlier, an upper bound estimate of the crack driving
ce may be obtained by assuming that the initial misfit stress
s through the current crack opening from the elastic-plastic
alysis. Thus, the parametdralso represents the normalized
per-bound estimate for the energy release rate, as in

The initial stresses in the layers exert a substantial influence
the behavior. These are introduced into the model by assignig
nominal, initial temperature changes to the layers prior to therm
cycling. In all cases, the dielectric is given a temperature ian
that causes it to be in residual tension prior to cyclisge the

Appendi¥. The metal layer is given a range of initial conditions G 405 E.Gub
that simulate most of the expected practical scenarios, as outlined A=—SS-17_ = — 5 (4b)
in the Appendix. One extreme, scenario A, allows the metal to Go Go 1.971-v})(o7)"hy

have fully yielded in tension before cycling: the most likely sce-
nario. Scenario B permits the metal to be stress-free before ayhere Go=0935, and represents the energy release rate for the
cling: This would happen if the system were cooled below ambfomogeneous elastic case where the layers have identical elastic
ent prior to cycling. Scenario C examines an intermediate cageoperties. In the cases considered here, the adjacent metal layer is
wherein the layer is in residual tension at a stress below the yié&$s stiff than the dielectric, whereupon the elastic crack opening
strength. In the following analyses, initial cooling is first exam¢and thus the energy release jageslightly larger than that for the
ined, in order to characterize the influence of residual stress in themogenougase. For an elastic system with material properties
metal on the initial energy release rate before cycling. listed in Table 1A=1.08. Plastic deformation further increases in
this value, as elaborated below. Several normalized stress mea-
sures are used to elicit understanding. The first of these is the ratio
3 The Effect of Residual Stress in the Metal Layer of the misfit stress in the dielectric to the yield strength of the

. . L ST metal, given as
Cracking of thin elastic films on &tress-freesemi-infinite

elastic-plastic substrate has been previously addrég8pdThese ol
results are applicable to the initial cooling of the layered system, S=—. (5)
provided thati(i) the plastic zone is smaller than the thickness of

the metal layer, andii) the residual stresses in theetallayer ., gacified metativen o), and a dielectric with no intrinsic
are too small to significantly enhance plastic deformation. Th

present calculations explore domains where the prior results z?éess(al_o in (Za)), 2, s exphutly depgndent on the tempera-
inappropriate. ure change experienced by the dielectric from deposition to am-

The calculations are performed to simulate fabrication situQ—'ent' That is
tions that encompass all practical scenarios, as elaborated upon in
the Appendix. These scenarios induce bi-axial misfit stresses in s
the dielectric and metal layers, designat@%i for the dielectric !

_El(al_ as)AT(lj

oy(1—vy)

(6)
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Fig. 4 (a) Crack-opening as a function of stress in the dielec-

tric (monotonic loading ), for constant ratios of stress in the
metal layer to stress in the dielectric. The result is also an up-

per bound estimate for the energy release rate. (b) Crack-
opening (or upper bound estimate of the energy release rate )
as a function of stress in the metal layer  (monotonic loading ),
for constant ratios of stress in the metal layer to stress in the
dielectric.

Table 2 Cyclic loading cases in Fig. 7

Temperature Stress range, Initial Scenario
Case range(°C) A3, stressX, 37 (see Appendix
a —40,80 2.1t00.3 1 1.07 A
b —40,100 2.1t0 0.0 1 1.07 A
c -50,100 0.75to-1.5 0 1.09 B
d —50,100 2.25,0 1 1.09 A
e —75,150 1.1to-2.2 0 1.13 Cc

temperature change experienced by the metal from deposition to
ambient, via an expression identical 6), with an appropriate
change in subscripts.

Somewhat different insight into the role of material properties
can be gained by using the ratio of the misfit stresses:

0
_72_22
ER:G'_E)_E]_. (8)

This quantity is used primarily to assess the role of the fabrication
sequencéor initial cooling), since it reflects the explicit influence

of the thermal expansion mismatch. This can be seen by consid-
ering a system with no intrinsic stresses, whereupon

. Ex(ap— ag)(1—vy)ATS
R Ei(a;—ag)(1—vp) ATY

9)

For a multilayer wherein both layers experience the same initial
temperature changeAT¢=AT3=ATY), it should be emphasized
that X is purely a function of the elastic properties and the ther-
mal expansion coefficients of the system. In this scenario, the
temperature chang&T® can be thought of as an alternative inde-
pendent variable, as it does not enter into the expressioB for

The first results are obtained for a system cooled from a uni-
form temperature, such thatz remains constan®), while . is
varied (Fig. 4(a)). The corresponding misfit stress in the metal
layer is dictated byX,=3x-3,. Absent intrinsic stresses, the
abscissa can be re-expressed as the temperature change from
“deposition” to ambient for an Al layer, using the properties in-
dicated in Table 2 and E@6). The limit wherein the misfit stress
in the metal layer is smalB,g— 0, corresponds to the case previ-
ously considered by Beuth and Klingb¢d]. Thus, these results
express the history of the crack opening as the system is cooled,
as well an upper bound estimate for the crack driving force. The
critical temperature at which the entire metal layer yields in bi-
axial tension is labeled in the figure for ea®h . Note that when
the stress nears this level, the crack opening increases substan-
tially. This effect represents an increase in energy release rate due
to plastic deformation enhanced by the misfit stress in the metal
layer.

The abrupt increase crack opening when the metal layer be-
comes fully plastic is illustrated more vividly by Fig(3). The
results in this figure are generated by converting the abscissa in
the previous figureY,) into the stress in the metal lay€e¥ §) via
the misfit stress rati@,g . Since this procedure implies a different

A second useful measure is the ratio of the misfit stress in thgs|ing for each curvédictated by the value oE ), the abscissa

metal layer to its yield strength, given as

225_- (7)

cannotbe reinterpreted using a single temperature scale as was
done in Fig. 4a). (Put another way, the coefficient that dictates
the temperature scal () depends oZ in Fig. 4(b), while in

Fig. 4(a) it does not) Nevertheless, a single temperature scale can

This measure is the normalized magnitude of the stress in the determined for each of the curves in Figb)dusing the prop-
metal layer that would result from a purely elastic analysis. Recalties outlined in Table 1, Eq6), and Eq.(8).

that plasticity limits the actual stress in the metal layer, such thatWith this in mind, the curves can again be thought of as the
(o] ov)>=<1' even though , exceeds unity. Again, for a metal history of the crack openingand the energy release rate estimate
layer with no intrinsic stresseg,, is explicitly dependent on the as the system is cooled. It is obvious from Figb)that general

yielding of the metal layer results in a dramatic increase in crack

Hydrostatic stresses cause this inequality to be violated in a small zone near 82€NING, and rationally, the crack driving force. Moreover, the

tip.

516 / Vol. 68, JULY 2001

increase is more pronounced when the stress in the dielectric ex-

Transactions of the ASME



4 7 7]
o § %,=0 \/ ]
o 2 -50°C < T < 100°C ]
5 8 ]
s 3 ]
1l ]
< E 1
2 g A
S 5] O
w t N e "; b4 l.\ -" 9
=% ] % > <]
] ] ® %,=15 ]
3 218 -40°C < T <80°C
5 z ]
o i (=] E
2 Metal [ ] £ 1 ]
= | Fully Plastic g S : :
: ] Q e i o o : ]
§ = 5 ] @] ~  j«— Yielding of the entire metal layer, for © ]
z : 1 x
s 05F ]
: ] o ]
e ] iy oy Ay (&) . . k
3 4 Initial cooling 1
0 PSSR T SRR [N ST SRR SN SN TN SN T N TR ST T SN T T
Relative misfit stress in the metal, %, = 6,/c,, 0 2 4 6 8 10
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Fig. 5 Crack-opening as a function of stress in the metal layer ] ) ) )
for several values of stress in the dielectric  (monotonic load- ~ Fig. 6 Crack-opening displacements at the surface of the di-
ing). The stress ratio during the loading stage (X ) is dictated  electric as a function of time  (or thermal cycles ) for two repre-

by the ratio of 3, and X,. sentative cases; the cases are the same as those labeled in Fig.
7 and described in Table 2

ceeds the yield strength of the metal. The curves in Figs.ahd
4(b) represent a general monotonic loading scenario that highetween—40 and 80°C. The other result is for a scenario wherein
lights the increase in energy release rate due to residual stressebénmetal layer is taken to be stress-free before temperature cy-
the metal layer. The results remain valid for nonzero intrinsicling, with subsequent temperatures ranging betwe&® and
stresses and different temperature changes for each layer. For sL@®rC.(The two cases also correspond to those considered in Fig.
cases, the figures cannot be interpreted either in terms of a singleBoth of these temperature ranges are representative of qualifi-
temperature change, or as the history of the crack driving force @ation testing. Ratcheting of the crack is obvious for the case
the system is cooled. Rather, each point in Figs) 4nd 4b) involving the larger cyclic temperature range; during cycling, the
represents the energy release rate at the end of a fabricationrsetal layer experiences yielding in compressiomAdi~67°C,
guence characterized i and ;. and develops tensidfelow the yield strengihat the temperature
Alternatively, the fabrication sequence can be characterized tnimum. This case corresponds to Scenario B in the Appendix.
simply specifying the stresses in the layers after cooling. Then, tRer the other case, the metal layer yields repeatedly in tension, but
energy release rate after cooling can be plotted for various firddes not experience compression; this case corresponds to Sce-
values of3; and 3,, as illustrated in Fig. 5. The curves arenario A in the Appendix. These two situations illustrate that yield-
terminated at misfit ratios for materials with properties similar tong of the metal layer prior to cycling influences ratcheting prima-
those listed in Table 2: that Bg=1.5. When the misfit stress in rily by shifting the stress range experienced by the metal layer. As
the metal layer is larger than its yield strength, the stress in thigll be discussed in detail, unidirectional yielding alone, either
layer plays a more significant role than the misfit stress in theefore or during cycling, is not sufficient to cause ratcheting.
dielectric. The most probable scenarios fall in the shaded region ofThe crack openings and upper-bound energy release rates de-
Fig. 5, dictated by the thermal expansion mismatch between ttegmined using?2), are summarized on Fig. 7, wherein the maxi-
metal layer and substrate. The limit of no residual stress in the
metal layer(i.e., %,— 0) represents the scenario previous consid-

ered by Beuth and Klingbe9]. L Initial misfit stress in the dielectric - Z, = 1
Some fabrication sequences do not correspond to steadily ir

creasing the layer stresses with a fixed rafig). Then, strictly, o L RN BT B B

the energy release rate at the end of the cooling stage is affect¢s Scenario C:~ / Scena_rig B: @

by the details of the sequence, since the material behavior is patlf ¢ =0 L=

dependent. For example, slightly different results are obtained i -
the stress in one layer is increased in one loading step, and the.g
held fixed while the stress in the second layer is increased to thg 4
final value. However, numerical calculations for several scenario©
have illustrated that the energy release rate is relatively insensitiv
to these details. That is, the system behaves in a nearly patlg 3

L e o e e e B e  LAL I e
s b o by v b e b gy

independentmanner, and acceptable results are obtained for a verg
wide range of fabrication scenarios merely by specifying the final}’_j , N Scenario A:
values of%; and3,. g 2 z//’ I=15
6 i
. . . =z End of initial cooling period
4 Cyclic Loading and Ratcheting ) R S S A Eol O ES R
. ) ) ) ) 12 4 6 8 10 12
All cyclic calculations are conducted using the properties given Number of cycles - N

in Table 1. The effect of constant amplitude temperature cycling

on the crack opening at the surface of the dielectric as a functipy. 7 crack-opening (or upper bound estimate of the energy
of time is illustrated in Fig. 6. One result is for a metal layer thaklease rate ) as a function of time  (or thermal cycles ) for rep-
yields upon initial cooling, and experiences temperature cyclingsentative cases outlined in Table 2
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Fig. 8 Fractional increase in crack opening from the first ther-
mal cycle to the tenth thermal cycle, plotted as a function of Fig. 9 Crack opening as a function of initial stress in the di-
total stress amplitude range in the metal layer electric layer, for two scenarios. Because of the small differ-
ence in thermal expansion between the dielectric and sub-
strate, the mean stress in the dielectric remains close to the

. . initial value.
mum values during each temperature cycle, are normalized by the

elastic result. In this manner, the fractional increase in crack open-

ing (or energy release ratelue to plastic deformation is high- - .
lighted. The scenarios considered are summarized in Table 2. #guld play @ similar role. However, the predictiofisg. 9) reveal

each case, the initial misfit stress in the dielectric is equated to th@l: While this stress influences the magnitude of the magnitude
yield strength of the metdll40 MPa. The starting point for each © the crack opening, it has relatively little effect on the ratcheting
curve (N=1) represents the crack opening at the end of the initi@enavior. In the figure, the dashed lines correspond to scenario A
cooling period. Note that the cases shown in the figure cover tABd the solid lines to scenario B. In all cases, the temperature
extreme range of scenarios outlined in the Appendix. Céges anges from—-50°C to 100°C. Because the curves are normalized
(b), and(d) in Fig. 7 represent scenario A, which is characterizefy 0. they would remain constant for a purely elastic system.
by fully yielding the metal layer prior to cycling. Case) repre- hus, _the curves represent the_growmg importance of plastic de-
sents scenario B, which is characterized by an initially stress-frifmation as the stress in the dielectric increases. Note that ratch-
layer: in this case the metal layer experiences unidirectional yief@ing occurs forll values of%, : but the ratchetingate is inde-

ing. Case(e) represents scenario B as well, but with the metdendent of the mean stress. For the entire rang&,oh Fig. 9,
layer experiencing fully reversed yielding. Cases with initiaine fractional increase from the first to tenth cycles is between

stresses in the metal layer that are below the layer’s yield stren .5 and 2'(.)0' This implies that @he CUrves sh.own in. Fig.. 8 are
(scenario @ show similar behavior. alid for a wide range of stresses in the dielectric. Again, yielding

gg/the metal layer prior to cycling is shown to slightly raise the

These cases illustrate that ratcheting is affected most stron . .
by the temperature amplitude and the corresponding misfit str&@@gnitude of the energy release rate, but has almost no effect in

rangein the metal layer. The level of initial misfit has only a smalPn the ratcheting. This weak dependence is consistent with that

effect, as illustrated by casée) and (d), which experience the !lustrated in Fig. 8(which plots results fo;=1), since all of
same temperature range and differ only in the initial stress. Yielg-e cases shown in Fig. 9 correspond to a misfit stress amplitude:
ing in the metal layer prior to cycling merely serves to increa 2p~2.25.
slightly the overall crack driving force. Moreover, fully reversed
yielding causes a dramatic increase in the ratcheting (cse L .
(e)). The increases in crack opening from the first to the tent"l-71 Implications and Conclusions
cycle, plotted on Fig. 8, verify that the misfit stress range experi- When the stress amplitudes in the dielectric are on the order of
enced by the metal layer dominates ratcheting. For two of thiee yield strength in the metal, the preceding conditions for ratch-
lines plotted, the temperature is prescribed such that the minimating and shakedown can be used to construct a modified Bree
temperature was equal to minus one-half of the maximum; thisdsagram(Fig. 10(a)), where the initial stress in the metal layer and
representative of qualification testing. The third liteppropri- the stress range in the metal are used as coordinates. The shake-
ately labeled is for cases wherein the maximum temperature down limit is defined by the fact the minimum stress must be less
held fixed at 100°C, and the minimum is adjusted accordinglthan zero and the maximum stress must exceed yield. The onset of
The horizontal axis may be reinterpreted as one of the relevdstrong ratcheting” is defined by the requirement that the metal
temperaturegsmean, minimum or maximujrby using the proper- layer experience fully reversed yielding. An initial stress in the
ties outlined in Table 1, with a different scaling for each curve. metal layer affects ratcheting by determining whether a specified
Although the curves correspond to a variety of combinations temperature change is large enough to satisfy both ratcheting cri-
the minimum, maximum, and mean misfit stresses, the consistéria. This diagram may be used for the preliminary design of
finding is that ratcheting only becomes significant when the totaystems that resist ratcheting. When the stress amplitude in the
amplitude of the misfit stress in the metal is approximately twicdielectric are significantly larger than the yield strength of the
the yield strength. The calculations presented on these figuresnaal, the diagram must be modified. There is some evidence
well as others conducted for a wide range of cases, have demfrom the calculations that large stress amplitudes shift the ratch-
strated two necessary criteria for ratchetiiiig:the entire metal eting boundaries to lower temperature amplitudes, as sketched in
layer must yield(or come close to yieldingat some stage during Fig. 1Qb).
the cycle, andii) the misfit stress in the metal layer must become It should be noted that the structural ratcheting exhibited in this
less than or equal to zero at some stage during the cycle. analysis is not a result of crack face interactions, since the crack
It had been expected that the misfit stress in the dielectopens upon cooling and plastic deformation prohibits crack clo-
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- (1-vy)e
Ei=ll ATS= - 2°Y (A1)
Strong Ratcheting (ay—ag)
O, /Oy>1
O /Gy -1 Thereafter, the temperatuamplitude which would cause fully
2 reversed cyclic yielding is
Ratcheting
O',WIO' >1 1— Vo )E
01i5,<0 ATg=2 (A~ ra)ey _ (A2)
1 (ay—ag)

Shakedown

Scenario B: Initially Stress-Free Metal LayerAfter initial
Omax/Oy<1

cooling, the metal layer is taken to be stress free, with the stress in

" |£ the dielectric given b)(2a)_, with ;he intrinsic stress equal to zero.
—J‘ Then, the entire system is subject to the same temperature cycle,
AT, such the change in stress in the dielectric is given by

2F Ei(a/i—ozs)AT
‘ Agj=——i——

— AZp=Ep(0lo-0l)AT/(1-v2)Oy |—

(A3)

The cyclic temperature amplitude that would cause general yield-
ing of the metal layer is given by

(1-vy)ey
0 ; . ATy=— 22X (A4)
1 2 3 (ar—ay)

2,=05/Cy

. / For the properties given in Table 1, this critical temperature am-
(Prior To Cycling)

plitude isATy~67°C. Since the initial stress in the metal is zero,

larger cyclic temperature amplitudes would cause fully reversed
Fig. 10 Modified Bree diagram for a trilayer: (a) for moderate yielding

values of mean stress in the dielectric, (b) for high levels of ) ) )

mean stress in the dielectric Scenario C: Residual Stress in the Both LayerBoth layers
experience the same initial cooling from the “deposition” tem-
perature. The initial stresses are then given (By with AT‘l‘

sure. Rather, the ratcheting behavior is a result of repeated plastid T5 - If this temperature change is greater than that given by
straining near the crack tip due to the presence of a biased strésb), the metal would have fully yielded and the behavior is iden-
in the top elastic layer. Such ratcheting is generally understoodtigal to scenario A. The entire system is subject to the same tem-
be dependent on strain-hardening and whether it is kinematic Rgrature changed T, so that the change in stress in the top layer
isotropic. The former is manifest as a Bauschinger effect, wherdfagain given by(A3). The temperaturamplitudewhich would

the yield strength in compression is reduced by prior yielding igause general yielding upon cycling is then

tension. Calculations for the present problem incorporating strain-

hardening reveal that such material hardening can limit the mag- AT (1= Vz)sv_ATd A5
nitude of the crack openingand hence, energy release jateut Y7 (ap— a) 1 (AS)
does not eliminate the ratcheting deformation over the first five to

ten cycles. Full details of these simulations are availab[@@ A  Fully reversed cyclic yielding occurs if the temperature amplitude
brief summary is given of results obtained for hardening describéigreater than

by a Ramberg-Osgood law=o/E+ (3/7)(c/ov)". With low to

moderate hardeningné& 10), the differences between kinematic (1—-vyey
and isotropic behavior are negligible; moreover, the reduction in ATRY=W+AT1. (AS)
energy release rate due to hardenifrglative to the elastic- s

perfectly plastic resultis on the order of ten percent after ten there is no initial temperature changee., AT¢=AT3=0), this

cycles. For stronger hardeningi<5), the difference between genario s identical to scenario B. Thus, the distinction between
kinematic and isotropic behavior is substantial, with significanfe scenarios is whether or not there is an initial stress in the metal
reductions in crack driving force. For example, consider ¢dse |4y er prior to cycling.

in Fig. 7; using the same loading, modulus and yield strain, anoy

taking n=5, the kinematic hardening calculation predics

=4.4 after ten cycles, as opposed #0=5.4 for the elastic-

perfectly plastic case. The isotropic strain-hardening predictidheferences

(with the same propertieyields A= 3.2. Further calculations for [1] Bree, J., 1989, “Plastic Deformation of a Closed Tube due to Interaction of

moderate to high levels of strain-hardening demonstrate that Pressure Stresses and Cyclic Thermal Stresses,” [nt. J. Mech.33cpp.
_Shal,(edown occurs after six or so cycles, wherein the crack oper[—z] Ponter, A. R. S., and Cocks, A. C. F., 1984, “The Incremental Strain Growth of
ing increases by about 50 percent. an Elastic-Plastic Body Loaded in Excess of the Shakedown Limit,” ASME J.
Appl. Mech.,51, pp. 465-470.
i [3] Ponter, A.R. S., and Cocks, A. C. F., 1984, “The Incremental Strain Growth of
Appendlx Elastic-Plastic Bodies Subjected to High Levels of Cyclic Thermal Loading,”
ASME J. Appl. Mech. 51, pp. 470-474.
Scenarios Chosen to lllustrate the Effects of Initial Stress on  [4] Megahed, M. M., Ponter, A. R. S., and Morrison, C. J., 1984, “Experimental
Ratcheting Investigations Into the Influence of Cyclic Phenomena of Metals on Structural
Ratcheting Behavior,” Int. J. Mech. Scg, pp. 625—-638.
Scenario A:  Stress in the Middle Layer at Yieldfhe metal [5] Megah_ed, M. M 1981, “Influence of Hart_iening _Rule on the Elasto-Plastic
layer experiences general yielding upon initial cooling if the tem- ?shfgg’_rfé; Simple Structure Under Cyclic Loading,” Int. J. Mech. S23,
perature decrease after depositiM’,d , satisfies [6] Bree, J., 1968, “Incremental Growth due to Creep and Plastic Yielding of Thin
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A theory for structural system identification which utilizes strains and translational dis-
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1 Introduction parallel computers, among other uses, substructuring in this con-

The identification of structural models using measured rtgxt is defined as the separation of dynamics of the system into
L g me ocal regions, plus any interaction dynamics which act between
sponses plays a fundamental role in vibration and noise control

. - . rtitions. Th region n i reference fini le-
design, as well as in model-based damage detection or he titions. These subregions can be tied to a reference finite ele

A . L nt model, for which one substructure includes one or more
monitoring of structural systems under service. Most emstm&-te elements

id_entification procedures use the applied excitations or presqribe his paper covers the basic theory of how a substructural strain-
displacements or accelerations and the measured accelerations Qb system identification procedure might be implemented. First
displacements as inputs and outputs, respectively. Consequengly, review the equations corresponding to conventional nodal
although strain gauges have been extensively used in static teSig,acement/acceleration based system identification. This is fol-
and strength assessment, very seldom are the outputs of sijgifleq by a derivation of the expression of displacement in terms
gauges incorporated directly into a system realization procedurgs strain, rather than vice versa. Next, these expressions are uti-

In recent years, new sensors have come of age for structyigkq to derive the strain-based equations of motion which serve as
measurements, including embedded optical fibers, embeddedfis foundation of substructural system identification and applica-

ezoelectric sensors, and laser-based differential kinematic m@gns. Finally, several simple examples are presented to demon-
surements. The outputs from these sensors are difficult to convgthte how this theory may be utilized in practice.

into conventional nodal displacements. This calls for the develop-

ment of a new system identification theory which exploits mea-

surements from these new-generation sensors in construction of ) ) ) ]

the governing equations of motion for vibrating structures, not jugt  Linear Equations of Motion for Vibrating Structures

for quasi-static properties such as static mode shapes and strengfefore embarking into a derivation of new theory, it is wise to
levels. review the mathematics involved with traditional global system

The other issue in structural system identification is the corrgtentification practices. In particular, we want to remind readers of
lation of system-identified models directly with those generatafle origin of the standard second-order system of equations gov-
by the finite element method. With the exception of solid elearning the vibrating motion, as well as the related input/output
ments, the finite element modeling of beams, plates, and shebsationship. Once these equations have been recalled, it will be
usually involve rotational degrees-of-freedom. The installatiogasier for the reader to relate the new theory in the following
and accuracy of rotational sensors have been problematic. Asettions with the more traditional practices represented in this
result, rotational sensors have not been widely utilized, whiclection.
limits the fidelity of identified models. We will show that the use The discrete energy functionBl for a linear damped structure
of strain plus translational displacements may be utilized to cican be expressed as
cumvent the need for measuring rotational motions.

Critical to the use of strains for system identification and their
incorporation into theory is the concept of structural partitioning.
Strains are typically valid over only a very localized region, and
therefore any theory which includes strains as an output or statBereug is the displacement vector of the assembled structfjre;
variable must hold for the local level only. This leads to maths the D’Alembert's force vector which consists of the applied
ematical substructuring, also known as partitioning or domain dé&rce vectorfy, the resisting inertia forcs ju, , and the dissipat-

composition. While typically used for systematic processing dig forceDgUg. Mg, Dy, andK are the assembled mass, damp-
ing, and stiffness matrices, where the subsagiptesignates “an

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF assembled gIObaI structure” .t0 d'St'r_]gu'Sh frgm “p_artltlon_ed_ sub-

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIEDME-  Structures,” and the superscrip) (designates time differentiation.

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb. 16, The discrete damped, time-invariant, linear equations of mo-

2000: final revision, Feb. 21, 2001. Associate Editor: A. K. Mal. Discussion on tl ; - ! ' -

paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depanmem%r for VIbratlng StrUCtureS can be Obtamed. from the Stétlonary

Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wyMalué of the preceding discrete energy functional, \ék1=0:

be accepted until four months after final publication of the paper itself in the ASME N .

JOURNAL OF APPLIED MECHANICS. Mgug+ Dgug+ Kgug=Tg. (2)

(g = ul| 5 Kgug— 10|, 10=f,—Myity— Dy 1
(Ug)=Ug| 5KgUg=fg |, Tg=Tg=MgUg—=Dgug (1)
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The input-output relation or frequency response function is okb¢herel is the length of the bar element. From this, one obtains,
tained through a harmonic decomposition of the input-output veeia (9), that
tors as

I[-1
Ug —got Yy 3) q’szz[ 1 } 12)
fg fg

with solution for the frequency-domain outp?g as
ug=Hg(o)fy, Hg(w)=(Kgt+joDy—w?My) "t (4)

where Hy(w) will be called the “global” frequency response

function. {u1) I

Since the elemental rigid-body mode, is given by
o =[1 1] (13)
the displacement-strain relation for a bar element can be written as

-1
1

1
1

A conventional identification process first obtains the frequency =
response functiofd) by using the measured input forteand the Uz 2

output, usually in terms of the acceleration veatgr. Once the 32 Discrete Beam Element. Derivation of the desired
frequency response function is obtained, the three structural Nisplacement-strain relation for a beam element presents both
trices My, D]g' and K, may be found by a system realization;p,ajjenges and new insight into the advantages of strain-based
algorithm ([1]) followed by a mass-normalized transformationyysiem ‘igentification. If one employs the Euler-Bernoulli formu-
procedure of Alvin and Park2]. lation of a plane beam element, it is well known that the bending
strains are evaluated at two Barlow points, véz, + 1/,/3, where
3 Derivation of Strain-to-Displacement Relation the beam axial coordinateis given by{x=1£/2,~1<é<1}. The
o ) ] o ) bending strain-displacement relation for an element is thus given
One difficulty in a systematic derivation of strain-based systegy ([4])
identification algorithms has been that while it is trivial to express
the strains in terms of displacements, the converse has not been ki(é=—113)
easy. We first note that the displacemarntn an element or sub- S= P (§=1/\/§)
structure can be decomposed into two parts, that is, deformation 2
—2\3 —(1+V3) 2y3  (1-\3)l

and rigid-body motiorr (see, e.g.[3]): 1
23 (~1+\3) -2{3 (1+3)

T _
u=d-r. ) S=p
The rigid-body component can be represented by where (v,,w,) and (6,,6,) are the vertical and rotational beam
r=®,a (6) displacements at the element endpoints,, ) are the bending
. strains or curvatures at the two Barlow points, dnsl the beam
whered, represents the elemental rigid-body modes that depepg i, The elemental rigid-body modes include one translation
only on the geometry of the element under consideration,@nd, 4 one rotation, which can be shown to be

are the associated generalized coordinates.

&+, |a. (14)

]=STu, uT={w; 6; w, 6,
(15)

In order to make strains available for use in system identifica- 1 0 1 O
tion, the deformation vectad must be expressed in terms of the <I>Z= L2 1 2l (16)
strains. To this end, we begin with the well-known strain- -
displacement relation When the preceding two expressions are substituted(®tand
s=9y @) (10), we obtain the desired strain-to-displacement relation.
wheres is a general strain variable af8" e A"™ ", m=n} is the Wy
discrete strain-displacement relation matrix that can be derived in 6, V3
a variety of ways, e.g., by relying on the finite element shape| w, = —6(I2+4)
functions of the assumed element. Substitutinijom (5) yields 0,
s=S'(d+r)=S"(d+®,a)=S"d (8) - 2 2 1
since the rigid-body mode®, do not incur any strain. 1 1
The deformatiord can be obtained from the previous equation 23— 5( 3+1)I13 231+ 5(7 J3+1)12
as
To -1 x 12 —12
d=ds, P =5S'S) - 9)
Substituting(9) and (6) into (5), we arrive at the desired result, a 23] + E -1 231+ l 3+1)18
strain-to-displacementelation: L 3 2 (V3-1) 3 2 (V3+1) |
s 1 -1
u=®s+ P, a= <I>[ a] O=[D; D] (10)
K1 0 2 |(ay,
where we note that the column size @, is at most &g, in o Tl 1 | e (17
which ng is the total number of partitioned substructures. Since
the preceding expressions are relatively new concepts, we offer 0 2

some simple examples below. 3.3 Determination of Rotation Degrees-of-Freedom. Ob-

3.1 Discrete Bar Element. For a planar bar element, theserve that the preceding strain-to-displacement relation states that
strain in the element is the axial straip caused by elongation of if strain is measured at the two strain sensor locations, along with
the bar. It is related to the axial displacemenis,(i,) at the bar the two translationsw; ,w,), the rotations ¢;,6,) and the two
endpoints by the discrete strain-displacement relation given byrigid-mode amplitudesd,, ,a,) can be obtained for a beam ele-

ment. This is accomplished in the following manner, as presented
ex=£[— 1 1]{ Ul] 11) by Park a_nd Reich5]. Equation(10) is partitioned into translation
I u; and rotation:
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Fig. 1 Example of partitioning into four substructures

Uy ®; b, u = L . Ug
wl =l @ s+ @, @ (18) Partitioned Partioning Assembled
6 Sy 0 -
where displacement operator displacement (21)
uw=[wl} ue:[ 01] (19) wherelL is the assembly Boolean matrix that relates the global
Wa 02 and substructural displacements. In addition, the global stiffness

with similar partitions on®s and®,, . This equation is rewritten Matrix K is formed by the assembly of individual substructural
to solve for the unknown rigid-body amplitudes and rotationdtiffnesses via the assembly operaitor
degrees-of-freedom

@ K®
[:]:Afl (I>SW s— (') UW] K2
0 Sy
o (20) Kg=LTKL, K= K® (22)
T Wy, 0 .
A= . -
-®,, J K (ns)

From the last equation, it is clear that the rotations and rigid-
body amplitudes can be uniquely determined in this manner. Thdiere K is the block-diagonal collection of unassembled sub-
only assumptions in this exercise are the geometry and elemstructural stiffness matrice$(®. The force vector that is conju-
type, so as long as the model chosen is a reasonable match togiée with the substructural displacement is given by
physical reality, this estimate of the rotation at the element end-
points should be valid. The results of this procedure can be uti- LTf=f (23)
lized in several ways. If the global model is desired, then the g
rotations can be determined and used in a global system identifi- . T
cation procedure as in Section 2. Alternatively, the rigid-body anftnere it is noted that * acts as an assembly operator whereas
plitudes can be determined and used in a strain-based identifith@ disassembly operator as showr(24).

tion process with applications in damage detection and heal hlt is importan@ to note that only part of the tptal substructural
monitoring ([6]) or model updating. Both options will be dis- isplacements lie on the substructural boundaries. The substruc-

cussed in the following sections. tural boundary displacements, if they are to satisfy the equilibrium
state for the global structure, must be constrained so that those
displacements that are co-owned by the assembled structure be the
same. This can be mathematically stated by ugdiy as follows:

4 Strain-Based Equations of Motion

As described in the previous section, conventional structural BI(u—Lug)=0 (24)
system identification utilizes the excitation forces and the accel-

erations as the input and output quantities. This practice preclud@sere B, is a Boolean operator which extracts the partition
the use of other sensor output such as strains and deformatigifiundary nodes of all the partitioned substructures.

which has hampered the use of piezoelectric strain gauges, opticafhe system energy with constraints can thus be stated as
fibers, and other embedded sensors in the system identification

process. In order to more effectively make use of such sensors, we 1
wish to determine the equations of motion in terms of these local- TH(u,A,Ug) =UT| = Ku—f+Mui+Du |+ NBJ(u—Lug)
ized strain quantities. 2

To this end, consider a structure partitioned into substructures (25)
as shown in Fig. 1. Note that, after partitioning, the global nodes
that lie on the partition boundaries are co-owned by two or morvehereM andD are the substructural mass and damping matrices,
substructures. For example, global node 13 is co-owned by ttespectively, and\ are the localized Lagrangian multipliers or
four substructures while global node 3 is co-owned by substruicterface forces between respective substructures. The strain-to-
tures 1 and 2. In other words, partitioning is a disassembly procelisplacement relatioi10) can now be introduced into the con-
given by strained system energy expressi@s) to yield

Journal of Applied Mechanics JULY 2001, Vol. 68 / 523



5 System lIdentification Based on Strain-Based Mea-
sured Input and Output Data

System identification based on the strain-based equations of

1
TI(S, @\, Ug) = (®eS+ (I)aa)T[i K(Ds+ D, a)—f+M (DS

+® &)+ D(Ps+ D, ) motion (36) is in many respects no different from conventional
methods based on the global equations of mot®nin order for
ToT the reader to connect the present method to conventional methods,
FAB{(Psst @p@) — Lug. (26) we first offer their relationspby means of coordinate transformation
The stationary value oflI in the previous equation thus yieldsprocedures.
the following matrix equation set: First, the strain-to-displacement relati@0) and the global-to-
42 q &2 d - substructural displacement relati@l) can be combined to give
(M5W+Dsa+}<s) (MSQWH)SCE) ®B, 0 S B
q={a]=<1> Lug. (37)
T d? . d d? d T . . . .
MSQW +Dsa& MQW +Daa ®B, 0 Second, the external energy invariance condition gives
Bl b, Bld, 0 L, ugfg=uf=q'f,=f,=LT® Tf,. (38)
0 0 7Lg 0 Substituting the global displacement-based frequency response
L - functions (4) into (37) and making use 0f38), we obtain the
s q)lf desired frequency response function in terms of strains:
of oh | O 27 a=Hy(of,
A7) o U B o (39)
U 0 Hy(w)=® *LH (o)L ' .

whereL , = B{L. Since the measured output vector consists of t}i\(_i‘ote from(36) that the analytical strain-based frequency response

strains and the rigid-body amplituder, we eliminateh and ugq tnctionsH () can also be expressed as
from the preceding equation. This can be accomplished as fol- H(,)(w):{fsz ot oPyDy+ P¢K¢}’1P¢. (40)
lows. First, we recast the first two rows (A7) in the form

Myd=b—®p\, P,=P'B,

Given the information in this and previous sections, we can
formulate a logical procedure for strain-based structural system
- . (28)  igentification. While not unique, these steps outline the most logi-

b=®'f-Dyq-K,q cal path for substructural-based damage detection and model up-
whereq"={s" «"} and the strain-based matrices are given by dating((6]). _ _ _
Step I Using the straing and the selected translational dis-

Ks O placements (,v,w), obtain the rigid-body amplitudeg from

0 o (10) to determine the strain-based output vegtem.

(29) Step 2 Using (38), obtain the strain-based input sigrfgl.

Ds Dg, Ms Mg, Step 3  Using the strain-based input and outpi)},y}, obtain

T D MT M| the Markov parametergdiscrete impulse responser the fre-

sa @ sa @ quency response functiorisee, e.g.[7]).

The third row of (27), after time-differentiating twice, can be Step 4 Perform system realization using the Markov param-
expressed as eters determined from Step 3 to obtdif,B,C,D) that describe
the state space model given [see, e.g.[1])

K¢=<I>TKLI)=[

D¢—<DTD<D—[ : Md,—quM«b—[

DG~ Lyiig=0 (30) _ L
t)=Ax(t) + Bf 4(1), ={s S
which, upon into substituting?8), becomes X(H)=Ax() oV, X={s" @ }
_ . (t)=Cx(t)+ Df 4(t) 41
DM, {b— DyA} — Lyl =0. 31) y ¢ (“1)
Hence,\ can be solved to yield A= (1) Il _ _01
~MyPKy =My PyD, My Py

A=My{®IM 14— Lplgh, My=(P{M, D)1 (32)

L . . whereC andD are the output and direct transmission operators,
Substituting this into the last row @27), one obtains P P

respectively.
Ug:M[lLEM b@EM(;lb, M =L{MyL, (33) Step 5 Using the procedure of Alvin and PafR] obtain the
] ) ] ) ] strain-based structural paramete8 (,D, ,K ;) for damage de-
F|na”y, from the precedlng two equat|om,|5 obtained as tection or model updating app”cationsl

_ Thg—1 M _ - T Alternatively, Step 5 could be replaced by two steps which
A=P®pM, b, Po=Mp=MolpM LpMs (34)  resultin global structural parameters:
Eliminating A from (27) and (34), we obtain the desired input- Step 5a Using (37) and(38), transform the strain-based ma-
output relation: trices (A,B,C,D) into the global form.

.. . Step 5b Obtain global structural parameter!{,Dy,Kg)

= = Tf— — g:"™Ng
MyG=Pyb=P,{®'T-D,q-K,a} (35) Vvia the procedure of Alvin and PafR].

P,=1—-®,P,dM,*

which can be rearranged in a standard second-order form 6 lllustrative Examples
.. . _ T In order to demonstrate the strain-based system identification
Myd+PsDya+PyK 4a=Pyly, =P, (36) procedure outlined in the preceding section,ytwo examples are
This equation is designated as gteain-basedequation of motion presented. The first is a simple two-element cantilever beam
for linear structures. We will employ this equation to develop which illustrates directly the concepts presented in the previous
strain output-based structural system identification in the next seections. The second example is the identification of a continuum
tion. structure, namely a cantilever plate. This second example high-
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hy,
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Fig. 2 Partitioned two-beam system

lights some of the advantages of the present procedure when

ftoe the global system realization, the transverse displacement and

goal includes localization as well as measurement and identifigatation at each node is measured.

tion.

6.1 Cantilever Beam. The first example is a numerical

simulation of a simple two-element beam. It is used to demo
strate the ability of the strain-based system identification proc
dure to determine rotational motion without direct measuremen
The dynamics of the global system are reconstructed from t
identified mass, damping, and stiffness matrices from a simulatF

strain-based system realization test. These are compared to

system frequency response functions reconstructed from a glo
system realization analysis which include the rotation measuig

ments directly.

The cantilever beam is modeled with two Bernoulli beam el
ments as shown in Fig. 2. In the strain-based numerical eval
tion, two transverse displacements,(w,) and four strains, at
the two Barlow points for each element, are measured. The be

ing strain at a location is computed by placing two axial straigt

gauges as shown in Fig. 2 according to

2\h, h,
Wy
10’2 ............. RS ..
-- Strain-Based
5 © .- Global
10°
o] 100 200 300
Frequency (Hz)
9,
10'2 .....
3,
T 10
10°
0 100 200 300
Frequency (Hz)
Fig. 3

Journal of Applied Mechanics

A burst random input is applied vertically at the free end and

subsequently is transformed into the strain-based fogceAfter

carrying out the strain-based realizati@teps 2—4 the structural
atrices My,Dy,K,) are obtained as described by Steps 5a and

Ralization practices. For both sets of analysis, the mass, damping,
d stiffness matrices are used to reconstruct the system frequency
é‘h onse functions. Figure 3 shows both sets of reconstructed fre-
n
a

Eb. The global realization is done based on traditional system

cy response functions. Observe that, even though no rotation
easured, the present strain-based realization procedure pro-
s the frequency response function corresponding to rotational
degrees of freedom. The strain-based rotational frequency re-

%) onse function lies directly on top of the global rotational fre-

uency response function, which indicates that the strain-based
rotations are the same as they would be if they had been measured
‘ectly. This information would not be available from most ex-
ing system identification procedures without explicit measure-
ment of the rotation degrees-of-freedom.

6.2 Continuum Structure. The second example is a canti-
lever plate, modeled with 12 elements as shown in Fig. 4. The

100 200
Frequency (Hz)

8

300

100 200
Frequency (Hz)

Comparison of strain-based realization versus global realization
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N o to the force input at 4 kHz. The input and output were then anti-

Mo o P aliased and resampled at 2 kHz, sufficient to capture the first 15
flexible modes of the system. System identification was done on
10 1 12 the resulting 115 degree-of-freedom localized system. For com-
{ L parison, a separate system identification analysis was done using
I j K O L the 16 translational displacements at the nodes.
A method of comparison of the quality of the identified model
7 8 9 is to determine a mass-normalized stiffness
& - R =M l/ZKM - 1/2. (43)
d & Reduced-order mass and stiffness matrices based on the measured
4 5 6 system modes corresponding to selected sensor locations can be
computed as in the previous example. For instance, if the sensor
A - o D locations at nodes |, J, K, and N are chosen, then the transverse
displacement-only(TDO) mass-normalized stiffness matri
1 2 3 from Eq. (43) is determined to be
[ 3.9370 —3.7017 -0.1439 -—0.8447
Z ~ " —3.7017  4.4683 0.0743 0.7396
Kipo=1
Fig. 4 Cantilevered plate PO -0.1439 0.0743  0.3131 —0.1796
goal of this exercise is to determine the system parameters of [ —0.8441 0.7395 -0.1796  0.3989) 44
mass and stiffness, or the combination of mass-normalized stiff- (44)
ness as in Eq(43), based on a reduced set of sensor locationghere
T_hese may |nclud_e rotation degrees_-of-freedom, whlc_h may be - 48399 —4.4907 0.2824 —1.3607
difficult or impossible to determine directly. An alternative is to
measure strain and then compute rotations in post-processing, for- —4.4907 51490 -0.3743 1.2469
which it is necessary to determine Iocatic_)ns at which strain is to Kexac™ 10° 02824 —03743 03461 —0.3015
be measured. There are a number of equivalent sets of strain mea-
surements possible. The set we choose to measure is pictured in | —1.3607 1.2469 —0.3015 0.6058]
Fig. 5. There are 20 strain gauges on each element used to deter- (45)

mine nine bending strains, as we wish to completely describe tRethe analytical Guyan-reduced matt8]) for the selected sen-
dynamics of each element. There are 12 displacements for egeh set(which is determined based on a full set of eigensolutions,

free-free plate element, minus three rigid-body modes, leavipgiher than the measured set used to deteriifgs,). The error
nine flexible degrees-of-freedom which must be accounted Qs m of the matrices. defined as

Because we wish to determine not only the strain state, but also - -

the rigid-body dynamics of each element, we also measure the IKtoo—Kexacl

transverse displacement at each node, as in Fig. 5. This allows us 1K oxacl

to solve for the rigid-body variables as in E&0). Only six strain exac 5

degrees-of-freedom are required for elements at a natural boundn also be determined to compare the resl{s,o has about 21

ary, equal to the number of degrees-of-freedom of each fixed-frggrcent error in the matrix norm as compared Vﬁt&act-

element. o ) ] On the other hand, the strain-based identification procedure,
A vibration test for the plate in Fig. 4 was simulated using @sing the same set of measured modes, can be used to determine

burst-random signal at two input locations. The system respongej2 degree-of-freedom equivalent model which contains trans-

consisting of 16 displacements and 99 strains, was calculated gé@se displacements as well as the two rotations at the selected

nodes. The resultant model matrices can then be reduced to the

four transverse displacements using Guyan reduction. This strain-

based(SB) mass-normalized stiffness matrix is found to be

54342 —4.6592 -—0.3427 -0.809
—4.9235 5.1698 0.2558 0.667

(46)

y

Ksg=1 .
so=10° —-0.4680 0.3512  0.3461 —0.1516
it + —0.9527 0.7674 —0.1602 0.3705
(47)
o This matrix has approximately 15 percent error in matrix norm as

compared to the analytical model. Additionally, the transverse dis-

placement modeIRTDO) has an average of about 19 percent error
in the diagonal value of the matrix, while the strain-based version

* * contains approximately 13 percent error on the diagonal. Finally,
Table 1 shows that the reduced-order eigenvalues from the strain-

X based(SB) model offer definite improvement over the transverse

. . displacement-only model. The eigenvectors, in Table 2, are of

;:;"X ::::ssuyge i ““iz:::;: pre cuch comparable quality with respect to the analytical model, as evi-

X - W measured : 1 linear sensor denced by similar values in the modal assurance critgNohC).

This shows that the inclusion of rotation degree-of-freedom may

total: 24 sensors per substructure be able to improve the quality of the identified model parameters
for reduced sensor set selection, even if rotation sensors are not

Fig. 5 Elemental strain measurement locations included in the final sensor set.
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Table 1 Eigenvalue comparison for the reduced-order models reduces the amount of sensor clutter occurring around the node
locations. The second issue is weight. The weight difference be-

Analytical Model TDO Model SB Model tw | ¢ tati t d strai X
Mode 2 E'Valoe Evaine 1% Brror | Bvale 1% Boror een accelerometers or rotation rate sensors and strain gauges is
v T s 10 oos very large. Strain gauges add essentially no nonstructural mass to
! 381 x 10 380x10° | -0.17 |385x1 : the system. The same cannot be said for accelerometers or rota-
2 4.76 x 105 463 %105 -2.83 |494x 10| 3.64 tional sensors.
3 5.44 x 10° 538x10° | -1.04 |543x10°| -0.14 Finally, the issue of cost must be addressed. Rotation sensors
4 9.88 x 10° 8.08 x 10% | -18.26 | 1.02x 107 | 3.67 are expensive, costing anywhere from $500—-2500 each. Strain

gauges, on the other hand, are extremely inexpensive, on the order
of $1-10 each. Even in the ideal case where the number of re-
) ) . _quired rotation angle sensors equals the number of rotation
6.3 Discussion. One criticism of the present methodology ingegrees-of-freedom, a large cost disparity still exists between the
regards to continuum structures is the large number of sensgfz, methods of measurement. So, in terms of hardware cost and
required to completely describe the dynamics of a single substrléx_é-nsor clutter, it appears that a combination of nodal displace-

ture or element. It is true that there is a considerable increasepnis and elemental strains may be a better method of determin-
the model order, and therefore computational cost of determiningJ the local dynamics of a continuum structure.

such models. However, consider the situation where we wish to

determine the local displacements and rotations such thet an e}e- Conclusions

ment is completely characterized. A common setup for this situa-

tion is pictured on the left in Fig. 6. While this is an acceptable A theory for strain-based structural identification is developed.
configuration for measuring response, the eight measured degrdd¥ present theory, when used in conjunction with strain and
of-freedom are not sufficient to completely characterize the el#anslational displacement sensors, can identify the system char-
ment. It is important to note that we are not interested in simpBgteristics that consist of translational as well as rotational
measuring response. We are interested in localization, which gggrees-of-freedom. The state variables consist of the strains and
quires us to measure enough spatial data to resolve the dynantis rigid-body amplitudes of substructures for which the corre-
of each substructure independently. sponding set of measured strains are utilized.

On the right in Fig. 6 we have a more realistic setup for deter- The present theory becomes attractive in utilizing embedded
mining the rotations at each of the four corner nodes of the pladéezoelectric sensors, embedded fiber optics and other microelec-
element. Because we cannot mount the rotation sensors on tofr@Ric high-precision sensors, thus opening possibilities in tune
the displacement sensor at the node, we must place two sensor#&/#i recent advances in sensor miniaturization technology. To the
sides opposite the node and then interpolate the value at the ndgst of the authors’ knowledge, this has not been presented in the
This must be done for both rotation angles at the node, and theliterature.
fore requires four sensors to measure the two rotations at eachn order to render the present strain output-based identification
node. In the end, in order to completely determine the displad&eory practical to the structural identification community, several
ment field for one free-free element, 20 measurements must iB¥lementation and computational procedures need to be devel-
taken, whereas 24 must be taken using a combination of displagged. These include the development of an instrumentation guide
ments and strains as was suggested in Section 5. so that measured strain gauge outputs can reflect the theory as

It may seem then that it would be of greater advantage to ug@sely as possible, and experimental validation for typical struc-
these 20 translational sensors to characterize the dynamics on étial elements and substructures.
element. However, there are several issues which force consider-
ation of a strain-based system. The first of these is clutter. Tag&knowledgments

strain-based measurements are spread out over the surface of the, . .
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Deformation of Inhomogeneous
Elastic Solids With Two-
-2t ¥ Dimensional Damage

Mem. ASME
. A general correlation is derived between macroscopic stresses/strains and microscopic
I. M. Daniel deformation on the damage surfaces for inhomogeneous elastic solids with two-
Professor, dimensional damage. Assuming linear elastic behavior for the undamaged materials, the
Fellow ASME macroscopic deformation associated with nonlinear strains, or damage strains, is shown
i o to be the weighted sum of the microscopic deformations on the damage surfaces. For
Robert R. McCormick School of Enginegring inhomogeneous materials with periodic structures (laminated composites, for example)
and Applied Scignce, and various identifiable damage modes, simple relations are derived between the macro-
Northwestern University, scopic deformation and microscopic damage. When the number of identifiable damage
Evanston, IL 60208 modes is less than or equal to the number of relevant measurable macroscopic strains, the
correlation can be used to evaluate the damage progression from simple macroscopic
stress and strain measurements. The simple case of a unidirectional fiber-reinforced com-
posite under longitudinal load is used to show how the results can help detect and
characterize the damage using macroscopic measurements, without resorting to assump-
tions of detailed microscopic deformation mechanisfisOl: 10.1115/1.1380384
Introduction usually required[8—14]). This approach usually leads to simpli-

. _fied equations and great physical insight to the problems under
It was showr_1 by the_a_uthqr@l]) Fhat th_e Macroscopic me.study. The drawback is that the model has to be developed case by
chanical behavior of unidirectional fiber-reinforced brittle matn)&ase for different materials and different loading conditions

compqsites can be correlated explicitly with the micros_c_opic d%ometimes a mechanical phenomenon may not be covered by a
formation and damage. Although the statement was verified by Fmeory, not because it is not mechanically related, but because the
ad hoc cylinder theory, in this paper it is shown to be a result Ofa?ssumptions simply exclude any possibility to explain it. For ex-

more general theory based on first principles. ) ; . .
Throughout this study, damage is assumed to occur only @i:"e, transverse strains typically cannot be easily explained by a

h . ) . Lo e-dimensional theory of unidirectional composites under longi-
two-dimensional internal surfaces. Linear elasticity is assumedta

; . inal loading.
every point of the material. Results are presented after a genergh g ¢an ais0 make phenomenological assumptions on the con-
description of the deformation of solids with two-dimension

. . . . . “Stitutive equations of the materials with damaffe5—17). Inter-
damage is given. For inhomogeneous materials with periodiG, yariaples describing damage are linked to macroscopic defor-
structures, such as fiber composites, the results are much simplégion ejther through energy considerations or direct assumption
and thus special attention is directed to unidirectional compositg e iain functional forms. Experimental data is required to char-
with brittle matrix damaged by longitudinal loading. acterize necessary phenomenological parameters. Solutions for
Various approaches have been developed in the past to Sty oscopic stresses and strains are not necessary. The selection
damage in elastic solids. In an important branch of micromechagy internal variables and phenomenological laws are required to
ics, the overall moduli of solids with voids and other inhomogese mechanically sound so that useful results can be obtained—a
neities were studied by many investigators, see Maligfor an 55| not easily achieved. Phenomenological parameters acquired
extensive list of references in the field. Several analytl_cal afthm experimental data are expected to have physical significance,
numerical 'method$[3—7]) have been developed to determine thg,t the |ack of their correlation to fundamental properties through
microscopic stress and strain distributions, and overall elasfjest principles leaves something to be desired.
moduli were calculated through clever averaging schemes. Whiley, thig paper, the authors try to approach the problems from first
based on first principles of mechanics, the approach usually fSinciples of solid mechanics, so that the results can be general
quires explicit stress and strain distributions or crack-opening dign elegant. The correlation between macroscopic and micro-
placements in the damaged solids under study. This restricts thglppic deformation is also presented in a way that physical insight
application to simple cases, and numerical schemes are often n&gy pe easily obtained and all parameters have solid physical sig-
essary for more complex ones. _ _ _nificance. While no attempt is made to obtain the microscopic
For periodic structures like unidirectional fiber composites ithess or strain distributions, the results are useful for material

identifiable damage modes, one has the luxury of estimating str@kgracterization and damage evaluation, especially for inhomoge-
distributions in closed form, and a different approach can Rgoys materials with periodic structures.

adopted. Since the problems of periodic structures with damage
usually defy analytical attempts to obtain exact closed form solu-
tions, drastic assumptiorishear lag assumption, for exampéege Betti's Reciprocal Theorem

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF A modified version of Betti's reCiprocal theorem is derived in
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- f[hIS section so_that th_e effect Of_lnltlaibr re_SIdua] stresses Is
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Marchincluded. Consider a linear elastic body with surfaceS and

20, 2000; final revision, January 1, 2001. Associate Editor: D. Kouris. Discussion ¢fjtial Streswﬁ . From Hooke's law, the straig,, induced by the
the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Department ((de' . | Ry : d ined b

Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wift itiona Stressdii O-ii) Is determine y

be accepted until four months after final publication of the paper itself in the ASME R

JOURNAL OF APPLIED MECHANICS. 0ij — i) = Cjjki €ki » €H)
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S S
@ (b) Fig. 2 A representative volume element in a solid with crack-
like brittle damage occurring on two-dimensional surfaces.
Fig. 1 An elastic body under traction Tin (@) and T’ in (b) (The damage surfaces can be curved and possibly opened by

the load T. Typical sizes of the damage and constituents are
assumed to be much smaller than the element size. )
wherec;;y is the stiffness tensor. The italic indiceandj range
from 1 to 3 unless specified otherwise, and the Einstein summa-
tion convention is adopted. For the same bdjywe assume two
configurations, one under external loadiRg and the other under meaningful averages of field quantities of interest, the macro-
T/, as shown in Fig. 1. scopic definition of mechanical properties of the composite in a
Integrating the product of tractioh, and displacement/ over damaged state can be justified. One way to achieve this is to have
S, and using the divergence theorem, we have representative elements m_uch larger than all physngal sizes of
damage surfaces and constituents of the structure, while still small
, , , enough for macroscopic properties to be meaningful in regions
STiUi ds= S‘Tiiniui ds= V‘TiifijdV’ with higher strain gradients, as shown in Fig. 2. B
With the above restriction in mind, macroscopic tractidns
in which body forces are neglected. Substituting Eg.into the stresseg?ij , displacements;; , and strains?ij are assumed to be

above, we have well defined over the volum¥. Since the concept of continuum
is assumed on the macroscopic scale, the macroscopic trdgtion
fTiui’dS:f (aﬁe{j + Cijii €€ d V. can be related to the macroscopic stress tenspand surface
S \Y,

normaln; through

The first term on the right-hand side can be converted to a surface - _
integral Ti=ojn;. (4)

J’ O'iFJ'afi’jdV: J’ Uﬁulrn]dSZ J’ TiRui,dS,
\Y S S

whereTiR is defined as the initial traction on surfaSagiven by

The macroscopic strain-displacement relations are given by
-1
& =5 (Ui j+uj). (5)

TR=0fin;. (2) Forthe same solid in the undamaged state, the material is assumed
to follow Hooke’s law:
Thus, we have
R , 7= Sk €k (6)
(Ti=TPujdS= | Cjji €€ dV. _ ) _ o
s v where superscriptd” is used for the field quantities in the un-
damaged stat@,"jkI is the elastic compliance tensor of the solid in
the undamaged state.
Consider the solid in both the damaged and undamaged con-
. R , figurations, as shown in Fig. 3. The undamaged configuration can
(TI=THudS= | Cjjqeqe;dV. be considered as a damaged solid with fictitious damage surfaces
s v recovered or closed by tractions on the damage surfaces. Neglect-
From the above two equations and the symmetry propggty ing body forces, we obtain the following from Betti’s reciprocal
=Cyjjj » We obtain Betti's reciprocal theorem in the followingtheorem(3)
form:

Similarly, integrating the product of tractioff and displacement
u; over S gives

J(TifT!‘)u{d%f(Ti’fTiR)uidS )
S S

Note that if the surfac& is the external surface of the body, the /;«T”
initial traction TiR vanishes, and the regular form of Betti's recip-
rocal theorem is recovered. However, it will be made clear in the g
next section that the presence '6;? in the above equation is
important when fictitious damage surfaces are involved.

\

Macroscopic Strains and Microscopic Damage

Consider a damaged inhomogeneous solid of volimeand
surfaceS Assume the damage in the solid to be “crack-like,” i.e.,
the damage only occurs on internal surfaBgsn the solid. The
subscriptk is used to index all damage surfaces so Saefers to
the kth damage surface. At any point in any of the constituents
HOOke'S |aW |S aSSljmed to h0|d WIthOUt be|ng aﬁeCted by thﬂg 3 Solid with crack-like damage in (a) damaged Conﬁgura-
damage. The macroscopic behavior of the damaged composite & with or without friction and sliding, and (b) undamaged
be nonlinear due to contact and/or friction of damage surfaces.ctinfiguration with fictitious damage surfaces recovered or
representative cells in the body can be chosen to give statisticallysed by tractions T ° on S, , and —T° on S}

(@) (b)
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R o o -R 0 -R damaged macroscopic compliancg, . The right-hand side is
L(Ti;ri JuidS= L(Ti -Ti )uideEK fSk(Ti ~TOLWIAS  getermined by the microscopic tractiafi of the undamaged con-
@ figurationon the fictitious damage surfaces, and the displacement
jump [u;] on the damage surfaces. Thus, the equation basically
whereT; andu; are, respectively, microscopic tractions and disrelates the macroscopic and microscopic deformations. Define the
placements oflamaged configurationT anduy’ are, respectively, damage strain tenso?fj’ by
microscopic tractions and displacementsuoidamaged configu- o
ration. The summation in the second term on the right-hand side =€~ Sou, ©)
is taken over all damage surfacgs, indexed by subscript. The  then Eq.(8) can be rewritten as
displacement jump vectdu;] on the damage surface is defined
by [ui]:ui+fui‘ . The tractionsT? on_the ficti.tious_d.amag'e sur- ??:iz J' (TO—TR)[u;]dS. (10)
face are defined on the same surf&eon whichu;” is defined. PV s

The selection betweeS\, andS; is arbitrary. Notice thalriction Ruling out any nonlinearity in the undamaged configuration
and/orbonding tractionon the damage surfaces are allowed, but . 90 y o of th yl' 9 b 9 d
they do not contribute to the above equation due to the absencdBfrOScopic stresses;; of the linear system can be represente

displacement jump on the fictitious damage surface in the undah¥. the sum of the initial stresses; and linear combinations of
aged configuration. the macroscopic stress&,“ , or

The left-hand side and the first term on the right-hand side of o_ R —
Eq. (7) are in the form of work done by tractions. Since the con- 0ij = oy + Ny o (11)
cept of continuum is assumed to hold for the damaged configuighere hy;; are nondimensional stress factors. The component
tion, it is obvious that any work term due to loading has to be abh;“j is interpreted as thlad-induced microscopic stresempo-
to be expressed in terms of macroscopic tractions and displaggnt (Uf}—tfﬁ) caused by a unit macroscopic stress component

ments, so that the energy pumped into the system can be &x-iy the undamaged statsince @2 — o) is symmetric an@?,
pressed by macroscopic tractions and displacements. Thus, é%trary we have ! J

following conditions must be met:
- _ hyij = hji - (12)

fTiUiOdSZ f Tiupds, jTiOuid S= f TPuids, Sinced?, is also symmetric, there is no contribution to the right-
s s s s hand side of Eq(11) from the antisymmetric parfw.r.t. k, |) of

o . hyij - Without loss of generality, we can restrict ourselves to the
fTi u?dS:fTi‘ui"dS and fTi uidS:ijuidS. symmetric part ohy; by observing the following condition:
S S S S
i = igij - (13)

The self-equilibrium condition of the initial streeé? requires that
the macroscopic initial streﬁﬁ vanishes, so the initial traction
TR="0o"n; vanishes too, or

Using TP=ofn;, TR=0jn; and Eq.(11), with indices rear-
ranged, Eq(10) can be rewritten as

—
— o°
T7=0. E?'?'?:V_!Zk J;ihijk|[U|]nde.
Substituting these conditions into E{,), we obtain x

fﬁﬁ?dSzfﬁTidS—E fﬁ(T?—TF)[ui]ds
Sk

S S k

Since o is arbitrary and symmetric, we have

1 1
;ﬁ:V_DZk fSkE(hijkl[ul]nk"' hjik[u 1N dS.

ReplacingT; by o;in;, and T? by o%n;, with the aid of the o _
divergence theorem, the above equation can be rewritten as Considering the symmetry relatiof2) and(13), the above equa-
tion can be rewritten as

Ul dv= J U dV— D, J (T°—TR)[u;]dS 1 h;

J'v e v kK Js. oo EEJ):V_DEK J'SKIZ—JH([uk]nﬁ[u,]nk)dS (14)
Noticing thato U7, =ojj€;; , andojju; =07, €, we can rewrite he ab . | h ic def ion d
the above equation as T e above equation correlates t_e macroscopic _eormatlc_Jn e-

scribed by the damage deformation tenEE}r, and microscopic
— — displacement jumpgu,] on the damage surfacey . From the
—oqv— | =0 _ o_ TRy, 1ALt T k S .
fVUii &dV= V‘Tij &;dV Ek Lk(Ti THlu]ds deriviation, it is clear that the above equation is valid regardless of
the existence of initial stresse§-, friction and/or bonding trac-
Since the volumé/ is arbitrary, we have tion on the damage surface.

_ _ 1
gij€; =0} € — V_E f _(TiO_TiR)[ui]de
bk Js Special Cases
where volumeVy, represents the unit volume that contains a suf- For inhomogeneous materials with arbitrarily distributed con-
ficient number of damage cracks to achieve stable averagessgfuents, the determination bfj, through Eq.(11) is far from a
field quantities. Substituting Hooke’s lai§) into the above equa- trivial task even though the calculation is done in the undamaged
tion, and rearranging the indices, we obtain configuration. For certain cases of engineering importahgg,
- 1 can be determined fairly easily. In this section we will discuss a
a3 (&)= Sij o) = V—DEk fﬁ(Tio_TiR)[ui]dS- (8) few such cases.
S Homogeneous Materials With Crack-Like Damage. For
The left-hand side of the above equation is determined by themogeneous material, E¢l4) can be greatly simplified and
macroscopic stressef, , oy, macroscopic straing;;, and un- simple physical interpretation of the damage straﬁw can be
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Fig. 4 For homogeneous materials the macroscopic damage

strain component €2, is equivalent to the damage deformation Fig. 5 Two different microscopic deformation mechanisms
tensor component 81, which is the crack-opening volume ratio could produce the same macroscopic damage shear strain
in the x,-direction. (Note that €2,=&2,=f,=ps=0 when all component €7,

damage surface normals are in the  x;-direction. )

scopic mechanisms could give the same macroscopic damage
Yftains, as depicted in Fig. 5. Interpretations of other off-diagonal
components of3;; are similar.

obtained. Since microscopic stresses are equivalent to ma
scopic stresses for undamaged homogeneous materials,
0_ 0
(Tij = Uij .

. . Inhomogeneous Materials With Periodic Structure and
Considering Eq(11) and the aboveh;;, can be written as 9 ! I ! 1oct te

Damage Modes. In inhomogeneous materials with periodic

1 structure, very often damage occurs in such a manner that various
hijk|:E(5ik6j|+5jk5i|)- damage modesssociated with a specific location, pattern, and
loading can be identified. For example, transverse matrix cracks
Substituting the above into E¢L4), we obtain are observed in cross-ply composites with,/90,]s layup under
longitudinal tension. Transverse matrix cracks, fiber matrix deb-
?isi:\/i 2 J 751([Ui]n,- +[u;In)ds. ond_ing, and also fil_)er t_)reaks occur in unidirectional ceramic com-
Dk Js posites under longitudinal tension.

In many cases, it is possible to have analytical micromechanical

The right-hand side of the above equation is the volume averaggsss analyses for the undamaged composites, and then to deter-
of the symmetric part of the tensgu;]n; . Define thedamage mine the stress factots;; from Eq.(11). In general, the factors

deformation tensop;; by hyi; depend on the distribution, location of potential damage, and
1 elastic properties of the constituents of the inhomogeneous mate-

/3”:\/—2 Ji[uj]nids, (15) rial. For periodic structures, very often the undamaged micro-

bk Js scopic stresse&i‘] depend on the damage modes, but not on the

then, we have location of the potential damage. For example, with parallel fibers

in its matrix, an undamaged unidirectional fiber composite can be
assumed to have a periodic structure. Thdamagedanicroscopic
stresses at the potential damage surfa@iégr/matrix interface,

ansverse sections in matrix and fibedepend, through the stress

This is a_well-l_mown result used for calc_ulat_ing the ela_stic mOdUﬁLctor hij» on the type of potential damage surface or failure
of materials with damaget, 15]. The physical interpretation of the 1,46 and not on global location, since there is no damage yet and

damage deformation tensgy; is very simple and described in they, o ~terial has a periodic structure. This allows us to take
foIIo_wmg. . . . out of the integral sign in Eq14). Grouping the damage surfaces
First let us consider the summation of diagonal components according to different damage modes, and renumbering the dam-
1 age surfaces so that the notatip, refers to thek™th damage
Bii = But Bazt :333:\/_D2k Sk,[“i]nids surface of thenth damage mode, now we can rewrite Etd) as

1
?ﬁzi(ﬁij+ﬁji) for homogeneous materials. (16)

Thus, B;i (or?ﬁ’) for homogeneous materials is interpreted as the ;ﬁzz hiTkI
crack-opening volume ratjoor the volume average of all crack m

openings. The componer8,; (or €1,) is the projected crack- . .
opening volume ratiogiven by the volume average of the pro_Where the summation ovéd™ is taken over all damage surfaces

jected damage area in the-dection (1,09, times the crack- gy 4 Tl LT T L SGE A0 FER B
opening displacement in thg-direction (u,]). This leads to an g )

interesting result for the special case in which all damage surf t& n |s|_ﬁp|z|)(lled onl_ly_/hto |t§I|c mdnces_ likee andbl, but not to noni-
normals are parallel, as depicted in Fig. 4. Since the damage s ics likek orm. The above equation can be rewritten as
face normalsn are parallel to thex;-direction, it follows from . 1

Egs.(15) and (16) that € :% hiTkIE(ﬁlT"‘ﬁrkT:) (17)

D_ D_
€50— €33=0.

1
m% fSkm([Uk]nﬁ[Uﬂnk)dS ,

Whereﬁ{}‘ is thedamage deformation tensor for damage maue

This is true regardless of external loads, the distribution of daror simply thedamage mode tensdf17]), defined by

age locations, size, and existence of friction or contact on damage 1

surfaces. Similar interpretations exist for the other diagonal com- m__—_ Tn

ponents ofg;; . Bi Vb % Lm[u,]n,ds (18)
The off-diagonal componeig;,, is theprojected sliding volume K

ratio, given by the volume average of the projected damage ar€he physical interpretation of damage deformation tergpifor

in the x,-direction (n,dS), times the sliding displacement in thedamage moden is similar to 8;; described before, except that

Xp-direction (u,]). It is obvious thatg;;# 8;; in general, but the only the contribution of thenth damage mode is considered. For

damage strair?ﬁ is symmetric. This means that different micro-example,s] is the crack-opening volume ratio of damage mode

Journal of Applied Mechanics JULY 2001, Vol. 68 / 531



|
—
]
.-
-
—_—
B —
—_—
—_—
—_—
—_—

fiber

=
=

matrix

Wil )
1[11] /! matrix crack
éd ‘\ ; n I// J V
/ E }_\ interface debonding
1 J and/or sliding
/) fiber break

e

Fig. 6 Common damage modes in unidirectional brittle matrix composites
under longitudinal tension: matrix cracking (mode M), interface debonding /
sliding (mode /), and fiber breakage (mode F). (The theory does not require
the matrix crack spacing, interface debonding length, or fiber break spacing

to be uniform or periodic. )

m, the componengT} is the projected crack-opening volume raticcate, under unidirectional loading. We will start by determining
of damage moden in thex,-direction, and the off-diagonal com- the damage deformation tensgf; for damage moden=M, I,
ponentBY, is the projected sliding volume ratio of damage modandF.

m in the x,-direction for shdmg in the<2-d|rect|on.. . Matrix Cracking. For matrix cracking, the displacement jump
For homogeneous materials, the damage strain teafser the vector,[u]=[u,]e,, is parallel to the matrix crack surface normal,
symmetric part of the damage deformation tenggr, as shown e (see Fig. 6 From the definition of damage deformation
in Eq. (16). Thus, the interpretation of damage strain ten&pr tensor, Eq(18), the only nonzero component for matrix cracking
directly follows that of damage deformation teng@f . This is s gM "\hich is the matrix crack-opening volume ratio. Call the
not the case for inhomogeneous materials with periodic structurggack density(average number of matrix cracks per unit length
Considering Eq(17), the damage strain tensef is the weighted average matrix crack-opening displacemé@D,,, and fi-
sum of the symmetric part of damage deformation tengift$or  ber volume ratidf, then, 8%, can be written as
all damage modes. In the next section we will use an example of
a unidirectional composite under longitudinal loading to demon- BY;= (1~ 1)\ CODy,. (19)
strate the nature of the stress factb, , which serve as the

weighted parameters in EL7). Interface Debonding/Sliding. For interface debonding/sliding,

the displacement jump vector is given by]=[u,]e +[u,]e,,
and the debonding crack surface normale, (see Fig. 6. From
the definition of damage deformation tensor, Etg), the only
Unidirectional Composite Material With Crack-Like  nonzero components for interface debonding/sliding gjreand
Damage ,B'rz. Call the average debonding lendthand average interface
Unidirectional composite materials fall into the category of ingrack-openlng displaceme@OD; , then, it can be easily shown

homogeneous materials with periodic structure and dama@@tﬁlrr which describes the interface crack opening is given by
modes, as described before. The damage of these materials is Bl =4\, ,COD; /R;, (20)
discussed in detail because of its engineering importance.

whereR; is the fiber radius. The matrix crack densky, enters

X ?n,to the equation simply for the convenience of using,las the
[Ength scale to calculate the percentage of debonded interface.

sliding (model), and fiber breakag@nodeF), as shown in Fig. 6. The other nonzero componeB, describes the volume average

The sequence of damaged modes is immaterial as far as the th&{rterface sliding. However, there argDonly two relevant measur-
is concerned. They can occur in any order, or simultaneously. TRB® damage strain componereg, ande;,, under unidirectional
above damage modes are commonly seen in a typical brittie ni@ading. It is not difficult to see that the stress factbfg, and

trix composite, SIC/CASSilicon Carbide/Calcium Aluminosili- h., , are zero because of the absence of shear swdor 0"

matrix cracking (mode M), fiber-matrix interface debonding/
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7, f(vi—vy) fra(1+vy)
RARE O T s e O
fiber 1-vivy  2(1—vivy) | m
(1-F)(vi—vm) (1=F)(1+vy)(1-2v¢) Mm
—— — b22:1_ 1——].
—~— _»732=E§3 1-vivy 2(1-vivy) Mt
(24d)
—— —_—
For an arbitrary two-dimensional hydrostatic pressurg,
¢ * * ‘ * * =035, applied to the undamaged compositee Fig. ™)), we
have
Fig. 7 Arbitrary macroscopic stress components a3y, in (a) om of of
and o%,=035 in (b) applied to the undamaged unidirectional 2z rr 072
composite P o €5yt €= Z?z?z:?—ézﬁy# E_gzﬁl” + E—%sz- (25)

In the above equation2y', o¥, and a2} are the stress compo-

at the interface of the undamaged composite cylinder under loments induced by the macroscopic hydrostatic pressgye o3,
gitudinal or two-dimensional hydrostatic pressure. Thus, from Eop the undamaged composite on the fictitious damage surfaces of
(17), there is no direct contribution to the macroscopic strafhs modeM, I, andF, respectively. Note that the axisymmetry of the
and €2, from the interface sliding componeg, . The effect of composite cylinder model dictates that strai3s and €5, occur
interface sliding on the macroscopic mechanical behavior is thetegether as the coupling terms of the applied hydrostatic pressure.
fore implied in other microscopic deformation. It can be easily shown from Larisesolution[19] that these com-

. i ) . ponents are given by
Fiber Breakage. For fiber breakage, the displacement jump

vector,[u]=[u,]e,, is parallel to the fiber crack surface normal, o —2byy

n=e, (see Fig. 6. From the definition of damage deformation 52, D1y bibor b12b2152a21’ (262)
tensor, Eq(18), the only nonzero component &,, which is the .
crack-opening volume ratio of fiber breaks. Call the fiber break oo by B
density\¢, and average fiber break opening displacen@DD; , = T b bi—b.b. 222 (260)
. 022 b11b25— 01051
then, 85, can be written as .
o 1-f
Bz~ f\COD;. (21) = =~ 28y =2as. (260)
22

For the macroscopic deformation, use direction 1 for the fiber . . o
direction, 2 for the in-plane transverse direction, and 3 for the Using the following notation commonly used for unidirectional
out-of-plane transverse direction. Since the selection of stres§€§nposites, with overbar denoting macroscopic quantities,
oy in Eqg. (12) is arbitrary, we can limit ourselves to discuss only

e=e), e=e>
. . 17 %11, ®2 7 %220
two independent macroscopic stress componenfs, and o,

(=5%). From Eqgs.(11) and(17), we have we can rewrite Eqs(22) and (25) as
om o°f of = ay ap, A (1-f)\,COD,,
== B+ =5 B+ =5 BL, (22) [J)] = 2f\lgCODI /Ry, (27)
011 011 11 €2 Ay; ayy QApg fA;COD;

for an arbitrary stress componeat’;

, con applied to the undamaged 1,6 apove equations relate the macroscopic damage deformation
composite, as shown in Fig(&).

L omof of (described bye? anded) with the microscopic damage deforma-
In the above equationrz;', oyr , andoz; are the sress COM- 4oy of the three damage modesatrix cracking, interface
ponents induced by the macroscopic stress compangynin the  deponding/sliding and fiber breakingt is worth mentioning that
undamaged composite on the fictitious damage surfaces of meRg stress factora;; in the above equations are functions of fiber
M, I, and F, respectively. Since the calculation of these stresglume ratio and elastic moduli. Models other than the composite
components involves only the undamaged configuration, varioggiinder model might generate slightly different values for these
mechanical models are available. In what follows we use the "€nstants, but the damage stra"&%are always representable as

sults from the composite cylinder model by Christent8] 10 |inear combinations of the components of the damage deformation

determine these components, which can be easily proved to b?ensorﬁi’}‘, as indicated in Eq(17). It will be shown in the next

a3y by, section, for several spec_ific e_tppl_ication_s, that the_physi_cal signifi-
o = bbo—bob. il (233) cance of the above relation lies in the linear relationship between
1 ez Tazeal the macroscopic damage straifs and damage deformation ten-
ol —bq, an sorB;. The estimates of the deformation tensor components from
E_‘Il: WE? (23)  the abo_ve equations vyould be rea}sonable as long as the stress
calculation from the cylinder model is acceptable. The importance
a‘z’; 1 of the relationship is not limited by the selection of the stress
= ?[1—(1—f Jay|=ays, (2%) analysis model. If another model were selected the calculated
un stress components might be different but the relationship above
where superscriptsandm refer to fiber and matrix, respectively, would still be linear.
and constants;; are given by Simpler representations of constaatsandby; are desirable so

‘ ‘(1 1 that the physical meaning would be clearer. When the difference

_ (vi—vm)  f(A+v)A—vm) [ w4 of Poisson’s ratios is ignored, @ = v,,=v, simpler forms fota;;

bll 1+ + 1 y (24&) ) ]
1-vivy, 1-vivpy, andb;; can be obtained:

m

(1—=F)(vi—vm) NfEf-I-(l—f)Em

bi=— (24b) by~ E ) (289)
m

1-vivy
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b1,~0, (2&) With the constanta, 3 anday; previously defined, this is the same
as the result obtained from the cylinder thediy]).
fv(Ef—Ep) In general, the coupling constants;, and a,; (=—(1

Do~ — — ’ (&%) ¢ a,,/f) in Egs.(32) are not zero. Therefore, fiber break open-
2(1-v)E,
ing (CODy, in the longitudinal directionwill result in macro-
B+ (A-20)[fEi+ (1-f)Eq] o8 scopic nonlinear transverse stra#, unlessa,;= 0, which can be
22 2(1—v)E; ' (2&d) achieved by letting fiber and matrix have the same elastic con-
stants(v;=r,, andE;=E,,). Interface crack-openin@COD;, in
and the radial directiopwill result in macroscopic nonlinear longitu-
E,, pon dinal straine? unlessa;,=0, or vi=vy,.
AT FE T (1-T)E, (2%) Matrix Cracking Only. If only matrix cracking occurs in the
a0 (2%) process, oCOD;=0 andCOD;=0, from Eg.(27), we have
127V,
c €=ayy(1~f )\ nCODp,, (339)
f
A5~ FE T (1-T)E, (2%) €0 =ay(1—f)\,COD,,, (33%)
m
from which one quickly recognizes that
. fVE((E—En) ey ecod
21 [fE,+(1—f)Em]{E,+(1—2y)[fE,+(1—f)Em]}(z’gd) f_é:a_Zl:_E_le (34)
€] an 22
_ 2(1-v)E; This requires the damage straieis and€® to be proportional, a
2 E T (12 fE.+(1—F)E_1’ (2%) necessary mechanical result for the unidirectional composite with
£+ ( B+ (1-F)En] : _ ;
matrix cracking as the only damage mode present. The ratio
(1—f)vE{(Ef—Ep) ay1/a,, vanishes only whem,;=0, which can be achieved by
A3~ [TEr+ (1—f)EnHEr+ (1—20)[fE+(1—f)Ep]} letting fiber and matrix have the same elastic consténts: vy,

(29f) andE;=E,).

Special Cases. Equations(27) apply to unidirectional com- _ Matrix Cracking and Nonopening Debonding/Sliding Interface.
posites with all three damage modes present. There are two inghe material has matrix cracking and nonopening interface de-
pendent measurable damage stréafsandeb), but three damage bonding andfor sliding, we haveOD; =0. Therefore, the effects
deformation tensor components. The difficulty can be overcomed® similar to th_e case W.'th matrix cracking only, and the previous
many engineering applications for which not all three dama gsult (34) applies. It is interesting that the presence of another

modes occur at the same time. Several cases are discussed b rg%gﬁnmg damage mechanism has no effect on the proportional

Matrix Cracking and Interface Debonding/Slidinglf fiber
breakage does not occur in the procesz0D;=0, then the last
one (fA;CODys) of the microscopic deformation terms on th
right-hand side of Eq(27) can be dropped, and we have €@ =a,5f\;COD;, (35a)

Fiber Breakage Only. If only fiber breakage occurs in the
Jrocess, 0COD,,=0 andCOD;=0, from Eq.(27), we have

€] [an aw|((1-f)\,COD, €0 =a,,f\;COD;, (3%0)
@ 2 Al 4COD, /Ry (30) . . .

2 1 @ m'd P from which one quickly recognizes that

or, by left-multiplying the inverse ofa;;], we have @2 a (1—f)b
by, by (€ == = . (38)

[ (1—f ))\mCODm) | P11 D2 {61] 31) €] a3 011025= D101 — (1= )by,
- —D

2 f\ml o COD; /R a1 bl € Again this requires the damage straE% and?'f to be propor-

which states that the microscopic damage represented f§nal, a necessary mechanical result for the unidirectional com-
ACOD,, and\ | JCOD; can be determined by the readily meaPOsite with fiber breakage as the only damage mode present. The

surable macroscopic damage straisande? . This is the same alio 83/a;3 vanishes only whemys=0, which can be achieved
as the result obtained by the cylinder thediy]). by letting fiber and matrix have the same elastic constéants

In general, the coupling constardg, anda,, in Egs.(30) are ~— 'm andE=Epy).
not zero. Therefore, matrix crack-openi@ODy,, in the longi-  Fiber Breakage and Nonopening Debonding/Sliding Interface.
tudinal direction will result in macroscopic nonlinear transversqf the material has fiber breakage and nonopening debonding
straines unlessa,; =0, which can be achieved by letting fiber ancand/or sliding interface, we hav@OD, = 0. Therefore, the effects
matrix have the same elastic constapits= v,, andE{=E,)). In- are similar to the case with fiber breakage only, and the previous
terface crack-openingCOD;, in the radial directionwill result result (36) applies. Again the presence of the nonopening
in macroscopic nonlinear longitudinal straéf unlessa;,=0, or debonding/sliding interface has no effect on the proportional
V=V relation.

Fiber Breakage and Interface Debonding/Slidindf matrix o ) ] )
cracking does not occur in the processa®D,,=0, we have to Application to a Brittle Matrix Composite

use another. length scale |nst.ead o?(n:]./t.o characterize the PEer-  Equation(27), or Eq.(30) without fiber breakage, correlates the

centage of interface debonding. In this case, the average figekiroscopic deformation with the microscopic damage and defor-
break spacing 1 is more suitable as the length scale. Lettingnation of unidirectional composites for specific damage modes.
CODy, be zero and replacingn, by A1 in Eq. (27), we obtain  Note that the application of the equation does not require the

) _[ae wdznuconm e Dl o L Rl e
i fA;COD (32) spacing : P , g pacing
€2 Q2 Ay f f and crack opening are understood to represent average quantities.
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The interface bonding conditidffriction type, bonding, stick-slip, 80 . . . T T T 12
or debondingand residual stress also do not affect the validity c L 500
the equation. Therefore, the equation can be very useful in eva 1.0
ating the damage development and identifying interface bondil__ o ,, o1 VS. €
(or debonding conditions. This requires only macroscopic tes@
data(stresses and straipsand constituent properties for the cal-=
culation ofa;; . 540 I 800
To demonstrate how this can be achieved, we will re-examit 5
the damage development of a unidirectional brittle matrix cong L 200
posite, documented by several investigatdrkl,20-28). The &
most well-understood part of the damage is matrix cracking, tyf
cally starting from microcracking at various weak sites in th
brittle matrix. With increasing load, the microcracks develop int
longer macrocracks and gradually evolve into a pattern of paral 0 -——= 00 = v Py 5 700
cracks with more or less uniform crack spacing. Interface dama '  Strains, €, €, (%) ‘ '
generally follows the impingement of matrix cracks on the fibel
matrix interface, although the lack of direct observation makes (a)
difficult to identify its initiation and development. Fiber breakage
usually occurs at the last loading stage prior to failure and can
reasonably separated from matrix cracking and interface dama
Stresses and strains from tensile tests of two different batct
of a ceramic matrix composit&iC/CAS are used to calculate the
crack opening volume ratios according to E§0). For conve-
nience, define the crack-opening volume rafiysand 3; as

Bim=(1—f )\;COD,p,, (373)
,6’i=2 f}\mldCODl/Rf . (37b)

The constituent properties used in the calculation d&e: 20 4
=188 GPa(27.2 Ms), E,=97.9 GPa(14.2 Ms), »;=0.3, and L 100

L )_‘/_,———-——-‘?—
[¢] . L L

(MPa)
B B (%)

Bm VS. € 04

20
r 100 0.2

,Bi VS. €4

80 T T T T T T 1.2

(=]
[=]
1

Stress, o4, (ksi)
(MPa)

0.2

=0.36. The stresses and strains used in the calculation are ta .
from results from tensile tests of unidirectional composite cot 0.2 0.0 0.2 0.4 06 0.8 1.0
pons. The calculated results of crack-opening volume raigs Strains, ¢4, €, (%)

and B; are shown in Figs. @) and 8b).

First, the matrix crack-opening volume rajg, curves for both (b)
batches have almost the same well-defined starting point, which
corresponds to initiation of matrix cracking. In Figa8 the B, Fig. 8 Stress-strain curves and calculated crack-opening vol-
and g; curves start at almost the same strain level, and both i€ ratios B, and g; of two batches of unidirectional compos-
crease linearly afterwards. This suggests that the initial matffg (SIC/CAS) under longitudinal tension
cracks develop immediately into a pattern of long parallel cracks
accompanied by interface debonding. On the other hand, in Fig
8(b) the delay in initiation of interface debonding volume rafip
after matrix crack initiation suggests that smaller matrix crac
initiate without noticeable interface debonding or that the d
bonded interface is not open.

Note that if there is no debonding at all;&0), the interface
crack-opening volume rati@; would be zero. The existence o
nonzeroB; implies not only thedebondingof interface, but also
the openingof such debonded interface during the matrix crac X . :
development stage. calc_ulate the mterf_acz_e crack-qpenlng volume ratio. _

The opening of the interface cracks does not exclude the exisFiber breakage is ignored in the above calculation, because it

tence of interface sliding stress or compressive normal stressO§EUrs at the last loading stage prior to failure. For the current

the interface, because the debonding and sliding of the fib@22lysis, the debonding length and matrix crack density,
annot be separated from the microscopic deforma@iomw,,, and

matrix interface with rough contact would justify their coexistenc . - ; -
9 justify eEODi. Nonetheless it provides helpful information about the

The transverse strain reversal phenomenon occuring during
mage is the direct result of the mechanical interaction between
il_%er and matrix. Physical mechanisnif®r example, interface

debonding, interface asperities, surface roughness, or residual
stresses behind the transverse strain reversal contribute as a
¢lumped effect on the macroscopic mechanical behavior, and can-
not be separated by the current analysis. However, the lumped
Ef‘fect manifests itself in the transverse strains and allows us to

([31]). A small degree of fiber misalignment in composites als devel d b ful for furth deli
allows friction to coexist with interface crack opening. Therefor ,321‘;99 evelopment and can be usetul for iurther modeling

the existence of interface crack opening does not automaticafl
preclude interface sliding stress. Since rough debonding surface . .
and fiber misalignment are common in composites, the Coexiagymmary and Discussion
ence of interface crack-opening, compressive interface normalThe correlation between macroscopic mechanical behavior and
stress, and interface sliding stress is very likely. microscopic damage is derived for elastic solids with two-
Based on the macroscopic stress-strain data, the above obseduaensional damage. For homogeneous materials, the damage
tion is reached without assuming a specific failure criterion atrains are well known to be the symmetric part of the damage
interface bonding condition. These results should be taken irdeformation tensor. For inhomogeneous materials, the macro-
account for both the damage observation and mechanical modsdepic and microscopic deformation can still be correlated in a
ing. A mechanical model inaccurately conceived to assamé- more complex way. For inhomogeneous materials with periodic
ori the knowledge of interface bonding condition could lead tetructure and identifiable damage modes, the damage strains are
erroneous interpretation of the interface behavior and especialhe weighted sum of the symmetric parts of the damage deforma-
the transverse strain behavior. tion tensors for all damage modes. This is demonstrated for uni-
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directional fiber composites in E(:Q?), which describes a general [8] Aveston, J., Cooper, G. A., and Kelly, A., 1971, “The Properties of Fibre

: ; ; ; _ Composites,”Conference Proceedings, National Physical LaboratdC
relationship between measurable macroscopic macroscopic dam Science and Technology Press, Ltd., Guildford, UK, pp. 1226,

. —D .

age deform_atlonfij ,_?nd the damage deformation tenﬁ? as- [9] Aveston, J., and Kelly, A., 1973, “Theory of Multiple Fracture of Fibrous
sociated with specific damage modes, e.g., transverse matrix Composites,” J. Mater. Scig, pp. 352-362.
cracking, interfacial debonding, and fiber fractures. When théLo] Daniel, I. M., Anastassopoulos, G., and Lee, J.-W., 1989, “Experimental Mi-
number of identifiable damage modes is smaller than or equa| to cromechanics of Brittle-Matrix CompositesiMicromechanics: Experimental
that of relevant measurable macroscopic strains, the correlation Techniquesvol. 102, ASME, New York, pp. 133-146. ) _
can be used to detect and characterize the damage and its deVéll ga”'e"_ I ’\'\A" _A“aCStaSSOF’P“"’SLvJ (3-' a'L‘d Lee,d ?'-“fV-L 19(?3 T*ée Beha"'gr of
opment from simple macroscopic stress and strain measurements. Tgc’ﬁzgf 465‘23‘ lo%”_“'ﬁ;'tes nder Longitudinal Loading,” Compos. Sci.

.Th.e proposed approaCh d_oes not incorporate a specmc fa"“&?z] Lee, J.-W., and Daniel, I. M., 1992, “Deformation and Failure of Longitudi-
criterion or a damage eVOlU_tlon Iavx_/, b_Ut as a_general framewor » nally Loaded Brittle-Matrix Composites,” ASTM, STP 1120, American Soci-
can accomodate various failure criteria or failure modes. It can, ety for Testing and Materials, Philadelphia, PA.
however, track the damage progress in terms of the damage d&83] McCartney, L. N., 1989, “New Theoretical Model of Stress Transfer Between
formation tensors as shown in Fig. 8. The lack of a specific failure Fibre and Matrix in a Uniaxially Fibre-Reinforced Composite,” Proc. R. Soc.
criterion or damage evolution law is considered as a strength London, Ser. Ad25, pp. 215-244.

9 " 9 4] Weitsman, Y., and Zhu, H., 1993, “Multi-fracture of Ceramic Composites,” J.

well as a weakness of_ the proposed approach. It is a strength” \viech. Phys. Solids41, No. 2, pp. 351-388.
because the observation can be based on purely theoreti¢zd] Kachanov, M., 1980, “Continuum Model of Medium With Cracks,” J. Eng.
grounds and does not rely upon questionable assumptions of fail- Mech., pp. 1089-1051. ) . )
ure mechanisms, evolution laws or unreliable strength/toughne&$] Mauge, C., and Kachanov, M., 1994, *Effective Elastic Properties of an An-

. . K . isotropic Material With Arbitrarily Oriented Interacting Cracks,” J. Mech.
parameters. The information obtained from this approach can be ¢ "sjigsan No. 4, pp. 561-584.

of great help be]‘ore a researCh.er jumps.into a specific meChan.iC[@h Talreja, R., 1989, “Damage Development in Composites: Mechanisms and
model. The obvious weakness is that it is not able to fully predict = Modelling,” J. Strain Anal.,24, No. 4, pp. 215-222.

the damage progress, and this limits its applicability at this mokl8] Christensen, R. M., 1978/echanics of Composite Material3ohn Wiley and
ment. Instead of trying to predict the mechanical behavior for a__ Sons: New York.

. . . K 19] Timoshenko and Goodier, 197Theory of Elasticity 3rd. Ed., McGraw-Hill,
given undamaged state, this approach is better suited for eval 2 N'ew York. ' heory il e

tion, .inversely, Pf damage progress from the maCIOSCOpiC M&20] Prewo, K. M., and Brennan, J. J., 1980, “High-Strength Silicon Carbide Fiber-
chanical behavior. When multiple failure mechanisms are in- Reinforced Glass-Matrix Composites,” J. Mater. S&5, pp. 463—468.
Vo|ved’ a smaller number of macroscopic measurements m|ght bl Prewo, K. M., and Brennan, J. J., 1982, “Silicon Carbide Yarn Reinforced

; i i ; P ; Glass Matrix Composites,” J. Mater. Scly, pp. 1201-1206.
insufficient to mterpret the underlylng damage effectlvely. [22] Prewo, K. M., 1986, “Tension and Flexural Strength of Silicon Carbide Fibre-

Reinforced Glass Ceramics,” J. Mater. S@1, pp. 3590—3600.
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and hoop stress vector at the parabolic and hyperbolic boundary.
[DOI: 10.1115/1.1381393

Associate Professor,
Department of Mechanics,

Professor,

Institut de Science des Materiaux, bat. 413
Universite Paris Sud,

F91405 Orsay Cedex, France

1 Introduction (i) each point o™ in the (x;,X,)-plane is mapped to theame
point on the unit circle in th€-plane for all three map-
ping functionsw,(£y).

the mapping is one-to-one between the region outide

When an isotropic elastic material is under a two-dimensional
deformation the solution can be expressed in terms of the complex(ii)

variable and the region outside the unit circle for eagf({,). This
z=X,+iXy, 1) is assured if
. — . . d
and its complex conjugate If the materle}l has a hqle of_a given — W(G)#0 for [6d>1 (k=1,2,3). (6)
geometryl’, the curvel is mapped to a circle of unit radius by a ddi

conformal mapping If the condition(i) is violated, the boundary condition dhcannot

z=w({). (2) Dbe satisfied for all points off because each point is mapped to
three different points on the unit circle in th&-plane for k
=1,2,3. If the conditior(ii) is violated, a Riemann surface with a
branch cut must be introduced in thg,(x,)-plane so that the
mapping is one to one. The region outsidés no longer a con-
tinuous medium. The stress and the displacement are discontinu-

The mapping must bene-to-one Every point outsidd” in the
(X1,X2)-plane is mapped to only one point in thglane, and vice
versa. This condition is satisfied ({f1])

d—gw(g)io for|¢|>1. (3) ous across the branch cut.
When the curvd” is a closedcurve, it is shown in([4]) that
If the material is anisotropic, the solution can be expressed @onditions(i) and(ii) are satisfied il" is an ellipse. If" is anopen
terms of three complex variablég2,3]) curve, Lekhnitskii[5] has employed mapping functions for a pa-
rabola and a hyperbola. We will show that conditiohis suffi-
Z=Xtpxe  (k=1,2,3 (4)  cient, not necessary, for a valid solution. However, when a solu-

and their complex conjugat& . The complex constants, (k tion exists, the boundary conditions cannot be prescribed
=1,2,3) depend on elastic constants only. The imaginary part Qﬁbltrarlly. The problems considered by Lekhnitskii for a parabolic
py is positive and nonzero. To map the cuivéo a unit circle we and a hyperbolic boundary are rather specialized in that he limited

need three mapping functions the deformation to plane stress or plane strain. Hence the material
is restricted to monoclinic materials with the symmetry plane at
z=wi(&) (k=1,2,3). (5)  x3=0. Moreover, the applied loads are also limited.

The purpose of this paper is to consider the Lekhnitskii's prob-
lems for general anisotropic elastic materials and for more general

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF Ioadlng .Condlftloni' V\ée prlesent new I%er;]tmes and give real_fomr:
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OFAPPLIEDME-  EXPressions for the displacement and hoop stress vector at the
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 29parabolic and hyperbolic boundary. We also discuss the mapping
2000; final revision, Jan. 2, 2001. Associate Editor: J. R. Barber. Discussion on iy¢ parabola and hyperbola for anisotropic elasticity, which has not
paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departmentpla discussed in detail in the literature, and show why a solution
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wi . . . .
be accepted until four months after final publication of the paper itself in the ASMEOT the hyperbolic boundary can be obtained despite the fact that it
JOURNAL OF APPLIED MECHANICS. violates condition(i).

It is important that
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2 The Stroh Formalism ; [E

|
In a fixed rectangular coordinate systep(i=1,2,3) letu; and |

ajj be, respectively, the displacement and stress in an anisotropic x

elastic material. The equation of equilibrium and the stress-strain !

law are r 3 (X, %)
0ij,i=0, ;= CijksUk,s (7) 7

in which the comma denotes differentiation, repeated indices im-

ply summation, ancC;s are the elastic stiffnesses that are as- ° z t &
sumed to possess the full symmetry. For a two-dimensional defor-
mation for whichu; depends orx; andx, only, a solution ta(7) v
is ([3,6-8) L (x7.x9)

u=aF(z), ¢=DbF(2), z=X;+pXy, (8) (@)

oi1=" iz, 0i2= i, ©) |
where F is an arbitrary function oz, and p and a satisfy the
eigenrelation
K
{Q+p(R+R")+p?T}a=0. (10) I i

The superscript stands for the transpodeis the unit matrix, and ¢
Q, R, T are 3x3 matrices whose elements are T,

Qk=Cim1, Rik=Ci2, Tik=Cize- (11) 7777 ;g
The three-vectob in (8) is related to the three-vectarby

b=(R"+pT)a=—(p'Q+R)a (12) "¢

in which the second equality follows frofi0). (b)

There are six eigenvalugsfrom (10) that consist of three pairs _. ) )
of complex conjugates. 1p;,p,,p; are the eigenvalues with aF)'(g' 3)_'\1222'”?1))0{@ Ef’rlz?lgla (drawn for Re p>0); (2) the
positive imaginary part, the remaining three eigenvalues are t%el’ 2)-plane, P
complex conjugatep,,p,,ps. Letag,b, (k=1,2,3) be the cor-
responding eigenvectors computed fr¢b®) and(12). A general

solution obtained by superposing three solutiongdpfassociated

with p;,p,.ps with three arbitrary constant multipliers, (k xz=axj on T. (20)
=1,2,3) is((8]) The parabola degenerates to a crack wherre and to a plane
u=Im{A(F(z,))q}, &=Im{B(F(z,))q}, (13) boundary whera=0. Following (5D, let
where Im stands for the imaginary part and Ji+4apz—1
g yp Z=§+ap§2 or {Tp (21)
A:[a11a21a3]‘ B:[bllb27b3]l (14)

. For simplicity, we have suppressed the subsdkipor py,z,<

(F(z,)=diad F(21),F(22) F(z9)],  zc=x1+PXe- (15)  (k=1,2,3) in(21). It is easily seen froni20) and (21) that
Let t be the surface traction on a bounddtylf s is the arc- f=x, on T (22)
length measured alonb such that, when facing the direction of 1 '
increasings, the material is on the right-hand side, it can be showfhus the parabol& is mapped to the real axislenoted byl in

that ([3]) Fig. 1 in the ¢-plane. The region below the parabola is mapped to
d the lower half-space in théplane. Sincé22) is independent of,
t=—do (16) if p1,p,,p3 are different, each point ohi is mapped to the same
ds” point onT’,. This satisfies conditiofi).
Hence Let ¢ be the root ofdz/d{=0, which is abranch point. From
(21); we have
¢=constant orl’, if I' is traction-free. a7 _
. -1 -P
If ¢ is not a constant, the total tractidrbetween two points, (=—=——. (23)
>s,onlis 2ap 2app
s, The Z associated witl{ is obtained from (21) as
f= f tds=¢(s;) — #(S1). (18) 1
o 2=%,+ p&zzm. (24)

When there is a concentrated forfcapplied at a point, the value

of ¢ increases by if (18) is integrated counterclockwise aroundit is the vanishing of the quantity inside the square root in §21)

the point one full circle. The second equality if24) allows us to compute the branch point

(%1,%5) in the (x1,X,)-plane. It is denoted by in Fig. 1. The

. branch cutx is extended fromZ to infinity in the positive

3 Parabolic Boundary x,-direction. It is mapped to a horizontal line, that passes
Consider an anisotropic elastic material that occupies the regigmough? in the ¢-plane. The rightor left) side of the branch cut

« in the (X1 ,X,)-plane is mapped to the righor left) of . They

2
Xp<axy, a>0. (19) are denoted by a solid and a dashed line, respectively. It can be
The boundany” is a parabola given by shown that a horizontal line in th&plane is a parabola in the
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(X1,X5)-plane whose axis of the symmetry is parallel to th&he identity(A21) allows us to write(32) in a real form as
Xp-axis and whose apex is on the line that connects the branch

s C cos

point Z and the origind. )= ———{2aX[Ny() (Ny— 2a%,1)+ NI(7)Ns]
The imaginary part op is positive and nonzero so that tife (X1~ §)

given by (23) is located outside the half-plane 0. This im- —NaL (34)

plies that the branch poirt and the branch cut are outside the ] )

parabolic boundary occupied by the material. Hence the mappig’gefe Ny, Nk(6) (k=1,2,3) are defined inA4) and A8). If

for the region below the parabola is one to one. This satisfi8dX1) is the normal vector to the parabolic boundary, it can be
condition(ii). It is clear that we cannot consider the region abov@own thatt,(x;) and m(x;) are orthogonal to each other. The

the parabola because there is a branch cut in that region. hoop stress vector a4 =0 is
Consider the surface Green’s function due to a concentrated -1
forcef applied at t,(0)= wE N5L 2. (35)
= = 2
=& Xp=al, (25) This is independent dd, the shape of the parabola.

on the surfacd’. The parabolic surface is otherwise traction-free. With the surface Green’s function given 1696), the solution
The solution has been obtained by Hu and Zf@loas for the problem for which the surfade is subjected to a distrib-

1 uted load can be easily obtained by an integration. This was done

u= = Im{A(In(Z, — £))B~ 1, in ([5]) for a monoclinic material. Hu and Zh48] also presented
a

the Green'’s function for which the applied for€ds inside the
half-space. Their solution can be easily extended to include a line

1 ) .
¢=—Im{B(In({, — £)B™ 1. (26) dislocation.
On the parabolic surfacE, ¢, =x; so that
In({, =& =In(x,—§) for x;>§,

IN(Z, — &) =In|x,— & —im for x;<&. (27) 2 x2
2 1

Using the identity A1) presented in the Appendix the displace- 2 le (36)
ment at the surfac€ can be obtained in a real form as

4 Hyperbolic Boundary
Let the material be bounded by a pair of hyperbolas defined by

-1 wherea, b are real and positivéFig. 2). Consider the mapping
U(Xl):?(lnr)Lflf, for x;>¢, (5D
2

a2 _ b2

-1 z=§[§+ p—) (=z+Z?—a’p?>+b%  (37)

Ux)= —(Inr)L-4+SL°Y, For x;<¢&  (28) 4

& If I'", '~ denotes the upper and lower branches of the hyperbola,

In the abover =|x,— & andS andL are two of the three Barnett- we have

Lothe tensors. They are real. It should be pointed out that the b

displ_acement is unique up to a constant rigid-body transl_ation and x,=bshy==(e"—e" ),

rotation. Hence we could subtrag$L~'f from (28) so that it has 2

a symmetric expression a

1 1 xzziachy:iz(e‘/+e"/), onI'*, (38)

u(x))=—(>nr)L ¥—=SL™ Y, for x;>¢,
™ 2 where —o<y< is a real parameter. In theplane they are
-1 1 _ y +

Ux)= —(INL ¥+ =SL°M, For xy<&  (29) ¢{=(bxapje” on I';.. (39)
™ 2 Let

Equation(29) is independent o4, indicating that the surface dis- it i

placement is independent of the shape of the parabola. In particu- b+ap=p"e"”, b-ap=p e, (40)

lar, the surface displacement is identical to the half-space withya\vhich p=>0 andy™ are real. Thd“f are radial lines making

plane boundary. an angley™ and— ¢~ with the Re-axis (Fig. 2). Thus the region

Let t,(x,) be thehoop stress vectoon I' acting on a surface T :
perpendicular to the boundaly. If s is the arclength measuredboundEd by the hyperpold% is mapped to the wedge region
bounded by the radial lineks; .

along the perpendicular line, we obtain from (2@nd (16), ) )
The square root in (3%)suggests that a branch cut is needed

(%) = 7T(Xll_ 5 Im[ B< ddZ; > Bllf (30) fgo“r/él;e S;?npgp()ilnog);’to be one to one. The vanishing of the square root
It can be shown that 7=%,+ pkzziﬁe’“}’, (41)
d J ) J ] d 1
d—s=cosna—xl—3|n7;(?—xz=(cosn—psmn)d—z (31) p=Vpp . l“/,zz(,/,—_(ﬁﬂ. (42)

where 7 is the angle the tangent t6 makes with thex;-axis. The branch pointst (X;,%,) are determined by equating the real
Inserting (21) in (30) using(31), and evaluating the result dn  5ng imaginary parts of (43) They are denoted b§ and —Z in
leads to Fig. 2. If the line that connect and— Z is called theY-axis, one
—cosy p.—tany \ branch cut extends frord to Y= (denoted byx ") while the
th(X1) = Py S Im 1+p, @any B "tf,  (32) other branch cut extends fromZ to Y= —c (denoted byx ).
! * Insertingz of (41) into (37),, or settingdzZ/d{=0 in (37);, we
p=tan }(2ax,). (33) obtain
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*2 so that thedifferencein (In ¢) for p1, p», ps is independent of.

] /Y Hence, consider the solution
K‘+[' + 1
g u=—Im{A(In ¢, )B"1q},
M 5¥Gs) 5 i
©  fm 1
B = ¢=—Im{B(In£,)B"q}, (45)

&) x, Whereq is a constant vector. Let
g=g+ih (46)

in which g andh are the real and imaginary parts @f On the
boundaryl’* we have

= %Im{B(In(biap*)>B‘1}g+ %Re{B(In(biap*»B‘l}h

med 4 + = h, 47)
¢L% i
e r where Re stands for the real part. Isdie the arclength measured
7 ¢ 3 alongl'~. It can be shown froni38) that
1
¥ R
‘ 4 i ds=*\/(dx;) %+ (dx,)?=+ b2+ [ 1+ (a/b)?]x3dy. (48)
K{/ v Hence, the traction applied on the hyperbolic surfade® is, by
—CA ' v X, (47) and(16),
- r; +h
x/ g t= _on I'*. (49)
m\b2+[1+(a/b)?]x3

If fis the total force on a cross sectioap=constant, we have

Fig. 2 Mapping of a hyperbola (drawn for Re p>0); (a) the from (18),
(X41,X,)-plane, (b) the ¢-plane

f=¢(I'")—p(I'"). (50)
Substitution from(47) gives
N B f=—(Gh+Kg), (51)
r=ipe i, 43)
GriK= 1 | b+ap,\ __, 5
If we denote the line that connecisand — { as theY -axis, the HIK=2B{n b—ap, B (52)

right (or left) side of the branch cuk* in the (x;,x,)-plane is . . .
i . S . The 3X3 matricesG andK are the real and imaginary parts of
mapped o the posmvé‘g axis above(or below {. Likewise, the the right side in(52). In summary, the solutiof45) satisfies the

right (or left) of x~ is mapped to the negativé,-axis below(or following boundary conditions:

abové —Z. They are denoted by a solid and a dashed line, 1y on the hyperbolic surface, the traction is specified4§) and
spectively. The points on th¥-axis betweenZ and —Z are (||) on any cross sectian, = constant, the total forckis specified
mapped to a half-circle in thé-plane that passes throughand by (51). The vectorgg andh are assumed prescribed.
— with its center at the origin. The half-plane to the rigbt We see that the traction on I'* cannot be prescribed arbi-
left) of the Y-axis in the &;,x,)-plane is mapped to the right of trarily. Its dependence oxy has to be specified according (#9).
the Y,-axis and outsidéor insidg the half-circle. Also, we can only prescribe thetal force f applied on any cross
It can be shown that all radial lines and concentric circles witkectionx, = constant. The precise distribution of the traction on
their center at the origin in thé-plane are confocal hyperbolasthe cross section cannot be prescribed.
and ellipses in thex; ,x,)-plane when referred to an oblique co- In the rest of the paper we lét=0 so that(45) is written as
ordinate systentX, Y). The corresponding axe§; andY, in the
{-plane are orthogonal to each othipp. 86—89,(8])). U= ;1Im{A<In§ YB-UK 1
The branch point€ and —{ are outside the wedge region ™ * '
bounded byF—. Hence the branch pomtE and —Z and the 1
branch CUtSK: in the (Xq,Xy)-plane are outside the region ¢=—Im{B(InZ,)B 11K 1f. (53)
bounded by the hyperbolds". Thus the mapping for the region 77
inside the hyperbolas is one to one. It satisfies condiiionHow-  The body is subjected to a pair of forcesnd —f, and the hy-
ever, it does not satisfy conditidi) becaus&39) depends om. If  perbolic surface is traction-fre@ig. 2(a)). An approximate solu-
P1, P2, Ps are different, each point oR~ maps to three different tion to this problem was given if10]) for an isotropic material
points. It would be a problem to satisfy an arbitrarily prescribegnd in([11,17) for an orthotropic material. Lekhnitskjb] con-

boundary condition. sidered the problem for a plane-strain or plane-stress deformation.
What is remarkable about the hyperbolic boundary is that, atence the material is limited to monoclinic materials with the
though the{ given in (39) is different forp,, p,, ps, symmetry plane at;=0. He also restricted the foréeo be along
the x;-axis. The solution53) is for a general anisotropic elastic
InZ=In(bxap)+y on I'* (44) material and for an arbitrary fordeIn the following we present a
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real form expression oK and the displacement and the hoop 1 Py
stress vector at the hyperbolic boundary for a general anisotropic [oi1]= Im[ B Bl] K1, (66)
elastic material. {w =2y
The matrixK is, from (52), If f,, f,, f; are the components of the total forEdt can be
1 1 shown that
K= ;Im{B(In(b+ap*))B’1}— - Im{B(In(b—ap, ))B~1}. o+
(54) J‘r T11(X3, %) XpdXp = 3. (67)

Making use of the identityA11), the real form expression is  the proof requires new identities, and is omitted here. k&p)

K=L(a,—a)L"L, a=tan(a/b), (s5) be the point of application for the normal forde at the cross

. sectionx; =xJ. Since
where, using A9),

1[0 f " O dx= 1, (68)
L(B,—0)=L(0)—L(—0)=?f_€N3(w)dw. (56) -

the left side of(67) is flxg. Hence(67) gives
The explicit expression of () for orthotropic materials can be

_ 07,0
found in ([13)). falf1=xa/x;. (69)

The displacement at the hyperbolic boundBryis, from (53),  The point of application of the shear forde is immaterial. We
and(39), may assume thdft, is also applied atx®,x3). Equation(69) tells

-1 us that the vectorf(,f,) is along a radial line in thexg,x,)
u(x;)= —Im{A(In(b*p,a))B~*+yAB 1}K1f (57) -plane. Itiscollinearwith (—f;,~f,) as shown in Fig. @). The

™ point of application for the antiplane sheé need not be at
or, using(A1), (AL1), and (55), (x9,x9). It should be noted front68) that the vanishing of , f,
or f5 does not necessarily imply the vanishingogf,, o, or o3;.

1
uxp)=1—=(ns+YI+S(*a)[L(a,—a)] . (58)
m 5 Concluding Remarks

In the above, We have shown that, for an anisotropic elastic material under a
_ two-dimensional deformation that has a parabolic boundary, the
— 2 2 — 1
d=va'+b%, a=tan “(a/b). (59)  mapping employed by Lekhnitskii satisfies conditidiisand (ii)
The v in (58) can be expressed in termsxf in (38) as delineated in the Introduction. If the material has a hyperbolic
boundary, the mapping employed by Lekhnitskii satisfies condi-
y=In[(x/b)+ 1+ (x1/b)?]. (60) tion (ii) but not condition(i). Nevertheless, a valid solution can be

obtained for a special boundary condition. Hence, for an open
boundaryI’, condition (i) is sufficient, not necessary, for a valid

solution. It should be stressed that a valid solution may not exist.
When it exists, the boundary condition may not be prescribed

Let ty(x,) be thehoop stress vectoon I" acting on a surface
perpendicular to the boundaly. If s is the arclength measured
along the perpendicular line, we obtain from (53nd(16),

-1 1 de, oy arbitrarily.
th(xl):?lm( B<Z dS>B }K f. (61)
. ) ) . . Appendix
Inserting (37} in (61) using(31), and evaluating the result dnh~ PP o . )
leads to The following identities are employed in the paper.
AB l=—sSL 1-iL % (A1)
() = — P17 | g sl -3p, (62) -~
0= e M B\ T, tany | L=-2i88", #2)
ax B(p,)B *=(N]—N3zSL™%)—iNgL %, (A3)
_ 1 1
n=xtan b— m . (63) where
o _ ) N,=—T7IRT, N,=T71, N;=RTIR"™-Q. (A4)
The identitie A21) and(55) allow us to write(62) in a real form
as In the aboveS, L, andH (to appear beloyvare the three Barnett-

Lothe tensors. They are real. Explicit expression of the Barnett-
=0 cos g [Na( ) (N D+ NT()NG] Lothe tensors can be found (fiL4]). Let
ty (X1) = ——=—=={tan —tangl)+
i (X1 ﬂ_\/m{ [ N3(7 1 7 1(7)N3

X1=Tr C0SH, X,=r siné, (A5)
—Ng}[L(a,—a)] . (64) cosf —sing
It can be shown that; (x,) is orthogonal tol' . At x;=0, n= SI(I‘)IH o M= COOSH ' (A6)
th(O):;—bN3[L(a,—a)]‘1f. (65) Qik(8)=Cijksnins,  Rik(8)=Cjjsnjms,
Tik(0) =Cjjsmymg, A7
When the material is orthotropic with, , p, being purely imagi- ()= CigesyMs (A7)
nary and the forcd is along thex;-axis, t,(0) has only one N ()=—T YORT(6), NyO=T 0),
nonzero component. For this special cé8® recovers the result _
obtained in((5)). N3(0)=R(OT 1R (6)—Q(6). (A8)
The tractionsi; (i=1,2,3) on any cross sectioq=x‘f is ob-  The matricesN,(#) reduce toN, when §=0. Consider the inte-

tained by inserting (53)into (9),. We have grals
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1 (e 1(°
S(0)=;j Ny(w)dw, H(ﬂ):;f Na(w)dw,

0 0

—1 (¢
—f N;(w)dw.
T

0

(A9)
The tensorsS(6), H(#), L(6) reduce toS, H, L when =1
([16]). It can be shown thaisee(7.9-23 in ([8]))

2A(nz )BT=[(Inr)I+7S(6)](1—-iS)+imH(O)L,

2B(Inz, )BT=i[(Inr)+7ST(#)]L—mL(O)(1—i9).
(A10)

Making use of(A2), (A10) can be written as
Allnz B I=—[(Inr)I+7S(0)](il +SL 1+ 7H(9),

B{Inz,)B t=[(Inr)I+#ST(8)]+ 7L () (i1+SL L
(A11)

We now derive a new identity that can convéd®) and(62) to

a real form. The two equations {42) can be written in a standard

eigenrelation as

a a
N, [=P| b (A12)
where the 6<6 matrix N is ([15])
Ni N
“In, NI (A13)
Equation(Al2) is generalized as
a a
{1+ (tang)N} b}:(l+ptan0) b}. (A14)
This can be written as
(1+ptang) ! S}z{l-%(tane)N}’l[S}
a
=cog ¢{l —(tan e)N(a)}M (A15)
in which the 6x6 matrix N(6) is
[Na(6) N(8) a15)
N3(8) Ni(6)]

The second equality inA15) follows by employing the identity
(7.5-19 in ([8]). For p=p4,p,,p3 (ALl5) takes the form

A((1+p, tanh) 1)
B((1+p, tand) ™)

I—(tan®)Ny(6) —(tanfd)N,(0)
o —(tan@)N4(8) 1—(tand)N]( )

In particular, using A1) we obtain

=COo

8w
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B((1+p, tand) Y)B~1=cog #{tand[N3(#)S—N](6)L

+ilIL Y41, (A18)
Equation(A3) can be modified as
B(p, —#)B ' =(NJL—N3S—iNg)L *—ul,  (AL9)

whereu is an arbitrary parameter. Observing that the matrices
N3S—NIL and N3(6)S—NI(6)L (A20)

are symmetric([16]) (see (7.8-10, and (6.8—8 in ([8])) and
SL™ ! is skew-symmetric, multiplication ofX19) and A18) and
taking the imaginary part leads to

Im[ B<
+NI(6)Ng]—Ng}L %,
It should be noted thasee(7.8-3 in ([8])) the matrix
Na( )N +NI(6)N;

Pe—m _al -
W>B ] = co$ {tane[N(6) (N~ 1)

(A21)

is symmetric.
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Flow Past Rotating Cylinders:
Effect of Eccentricity

Computational results are presented for flows past a translating and rotating circular

cylinder. A stabilized finite element method is utilized to solve the incompressible Navier-
Stokes equations in the primitive variables formulation. To validate the formulation and
its implementation certain cases, for which the flow visualization and computational

S. Mittal results have been reported by other researchers, are computed. Results are presented for
Associate Professor, Re=5, 200 and 3800 and rotation rate, (ratio of surface speed of cylinder to the
Department of Aerospace Engineering, freestream speed of flow), of 5. For all these cases the flow reaches a steady state. The
Indian Institute of Technology, values of lift coefficient observed for these flows exceed the limit on the maximum value of
Kanpur, UP 208 016, India lift coefficient suggested by Goldstein based on intuitive arguments by Prandtl. These
e-mail: smittal@iitk.ac.in observations are in line with measurements reported, earlier, by other researchers via

laboratory experiments. To investigate the stability of the computed steady-state solution,
receptivity studies involving an eccentrically rotating cylinder are carried out. Computa-
tions are presented for flow past a rotating cylinder with wobble; the center of rotation of
the cylinder does not match its geometric center. These computations are also important
from the point of view that in a real situation it is almost certain that the rotating cylinder
will be associated with a certain degree of wobble. In such cases the flow is unsteady and
reaches a temporally periodic state. However, the mean values of the aerodynamic coef-
ficients and the basic flow structure are still quite comparable to the case without any
wobble. In this sense, it is found that the two-dimensional solution is stable to purely
two-dimensional disturbances.DOI: 10.1115/1.1380679

1 Introduction [5] have been made. Later, Badr et[&l] presented computational
experimental results for RA4000 and rotation rates between

A . . .and
Flow past a spinning and translating cylinder has been a Sum%‘% and 3. Excellent match was obtained between the two except

of numerous computational and experimental studies. Interest If‘high rotation rates where it is suspected that the experimental

this prok:_)lem arises not onl_y from Fhe point of view of basic flui esults show three-dimensional features. Computational results for
mechanics but also from its applications to flow control. TOkuthe Re=10 flow were also presented

maru and Dimotaki$1,2] have demonstrated, via laboratory ex- Tokumaru and Dimotakif2] measured the lift coefficient act-
periments, that a significant control on the structure of the walﬁ;.;g

hi o h i illati on rotating cylinders from their laboratory experiments. They
can be achieved by subjecting the cylinder to rotary oscillationgaye reported values of lift coefficient that exceed the limit set by

Gad-el-Hak and BushngB] review various techniques that aregqgstein[4] based on the intuitive arguments given by Prandtl.

employed for separation control including the moving-surfacgccording to Prandtl’s arguments, the maximum value of the lift

boundary layer contro[MSBC) in which rotating cylinder ele- cqefficient that can be achieved via Magnus effectis(412.6.

ments are employed to inject momentum into the already existigg, example, for Re3.8x 10° and a=10 Tokumaru and Dimo-

boundary layer. _ _ _ takis[2] report an estimated lift coefficient that is more than 20
Flow past an isolated rotating cylinder has been studied Byrcent larger than this limit. This was observed for a cylinder

various researchers in the past. The results of Prandtl and Rgjigh a span to diameter ratio of 18.7. Further, the trend of results

from laboratory experiments have been reported by Gold5#in that they have reported suggests that the value can be made larger

These include the effect of the aspect ratio and end plates attachstthigher rotation rates and by taking cylinders of larger aspect

to the end of a cylinder that lead to an increase in the overall lifatio. They have suggested that perhaps it is the unsteady effects

coefficient. Some of the later work on this flow problem includéhat weaken Prandtl’s hypothesis and that the three-dimensional/

the development of the near-wake behind an impulsively startedld effects are responsible for lowering the value of lift coeffi-

cylinder via flow visualization by Coutanceau and Mengbdl cient that could be achieved in a purely two-dimensional flow.

The time evolution of the vortices in the near-wake for short timeowever, Chew et a[8] have reported that their two-dimensional

after the impulsive start comes out very clearly from their study.

The highest Reynolds number in their study is less than 1000 and

the rotation rate varies between 0 and 3.25. The nondimensional

value of the rotation rate corresponds to the ratio of the speed on

the surface of the cylinder and the freestream speed of flow. Badr

and Dennis[6] gave numerical solutions for the viscous flow

equations for small rotation rates 0.5, 1.0, and-R60 and 500 in U

which comparisons with experiments of Coutanceau and Menard —_—>

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 7,
2000; final revision, Nov. 29, 2000. Associate Editor: T. E. Tezduyar. Discussion on
the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Department of o . i X
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wiT'd- 1 Description of the eccentricity  (e) of the rotating cylin-
be accepted until four months after final publication of the paper itself in the ASmeer. The geometric center of the cylinderisat O while its axis of
JOURNAL OF APPLIED MECHANICS. spin passes through R.
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Present Badr et al. (1990)

Fig. 2 Re=10°% a=0.5 flow past a rotating cylinder: comparison of the instantaneous streamline
patterns at various time instants from the present computations and those from Badr et al. [8]

computations are in agreement with Prandtl’s postulate. They fitidn of the cylinder is slightly displaced with respect to the geo-
that for Re=1000, the estimated mean lift coefficient approachesetric center. This introduces an unsteadiness in the flow via the
asymptotic values with increase in At a=6 they predict a mean motion of the cylinder. The results are compared with those for
lift coefficient of 9.1. The magnitude of lift generated by a cylinoneccentrically rotating cylinder. Computations for various val-
der for higher rates of rotation is an issue that remains unresolveels of eccentricities show that the basic flow structure and the
even to this date. In this sense, the present work assumes sigmifean value of the lift coefficient do not differ much from that for
cance in contributing to the efforts of resolving the issue regarditige basic solution. This reflects the stability of the purely two-
the limit on maximum lift that is possible via Magnus effect.  dimensional flow to two-dimensional disturbances. This study
The objective of the present work is to investigate flows pasiso brings out the effect of the eccentricity of the cylinder on the
spinning and translating cylinder at high rotation rates and detdélew and the time histories of the aerodynamic coefficients.
mine the correctness of the limit on maximum lift set due to The outline of the rest of the article is as follows. We begin by
arguments by Prandtl. Stabilized space-time formulations for inreviewing the governing equations for incompressible fluid flow
compressible flows that have, earlier, been applied to a varietyinfSection 2. The SUPGstreamline-upward/Petrov-Galerkiand
flow problems are utilized for computations. First, the formulatioRSPG (pressure-stabilizing/Petrov-Galerkirstabilization tech-
and its implementation are validated for flows involving rotatingique ([9—11]) is employed to stabilize our computations against
cylinders by carrying out computations for R&000 and rotation spurious numerical oscillations and to enable us to use equal-
rates of 0.5 and 2.0. The results are in excellent agreement wittder-interpolation velocity-pressure elements. Computations for
the flow visualizations and computational studies carried out hige eccentrically rotating cylinders have been carried out with the
other researchers, earlier. For rotation rate of 3.0 the results fr@SD/SST (deforming-spatial-domain/stabilized-space-tinfer-
present computations match very well with other computed rezulation ([12,13)). Section 3 describes the finite element formu-
sults, reported earlier. However, the experimental results shdations. In Section 4 computational results for flows involving
certain differences as compared to the two-dimensional computetating cylinder are presented and discussed. In Section 5 the
tions for larger times. This may be attributed to the threeesults are summarized and a few concluding remarks are made.
dimensional nature of the flow. At high rotation rates it is seen that
the lift for purely two-dimensional setup can be very large. The
values of the lift coefficient obtained in the present work exceetl The Governing Equations
the maximum limit based on the arguments of Prandtl. The obser- Q,CR"¢ and (0.T) be the spatial and temporal domains,
vations are consistent with the resu]t of To.kumaru and Dimota 3spectively, where, is the number of space dimensions, and let
[2]. For the Reynolds number considered in the present study €4enote the boundary d?,. The spatial and temporal coordi-

fl?vtvhachltev%s _atstteadyl stt_ate fotr ? ro'iailor:m;afg_of 5. The Isijabt” ates are denoted byandt. The Navier-Stokes equations gov-
of this steady-state solution, at least to two-dimensional diStUly o incompressible fluid flow are

bances, is an issue that needs investigation. The result of this

study will play a vital role in resolving the validityor nonvalid- au

ity) of the Prandtl’s limit on maximum lift coefficient. p EJFU'VU—f) —Vo=0 on O, for (OT), (1)
Computations are carried out to study the receptivity of the flow

for eccentric/wobbly rotation of the cylinder. The center of rota- V.u=0 on Q, for (0T). 2
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Table 1 Re=5, 200 and 3800, =5 flow past a rotating cylin-

u= on (I')y, n-o=h on [T, 4
der: steady-state values of the lift and drag coefficients 9 ( l)g (T'on “)
Case Re C, Co C,/Co where )y and (), are the complementary subsets of the
T 3 o1 To5a 513 boundaryl'; andn is its unit normal vector. The initial condition
2 200 5728 0.783 3483 on the velocity is specified of, att=0:
3 3800 25.94 0.709 36.60

u(x,00=uy on Q, (5)

whereuy is divergence free. The force coefficients are computed

) ) by carrying an integration, that involves the pressure and viscous
Herep, u, f, and o~ are the density, velocity, body force, and th&resses, around the circumference of the cylinder:

stress tensor, respectively. The stress tensor is written as the sum
of its isotropic and deviatoric parts:

1
1 CDzif (on)-ndl’ (6)
o=—pl+T, T=2use(u) e(u)zi((VuH(Vu)T), (3) (1/2)p..U22alr,, )
wherep and u are the pressure and viscosity dnid the identity 1
tensor. Both the Dirichlet and Neumann-type boundary conditions CL=72J' (on)-n,dr'. (7)
are accounted for, represented as (12)p.Uz2alT,,
Re=5
Re=200 ] Re=200

Re=3800 Re=3800

Potential Flow Potential Flow

()

Fig. 3 Re=5,200 and 3800, a=5.0 flow past a rotating cylinder: streamlines for
the steady-state solution. The potential flow solution is also shown for compari-
son.
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Here,n, andn, are the Cartesian components of the unit veator
i Potential Flow

that is normal to the cylinder boundaly,,, anda is the radius of 0.95 ! ]
. - o i Re=5 ----- -

the cylinder. E i Re=200 ------ 3
0.90 [ il Re=3800 ----- E

- . [ o 3

3 Finite Element Formulation 085 b il E
To accommodate the motion of the cylinder and the deforma- 0.80 _ ‘." ," :

tion of the mesh, a formulation that can handle moving boundaries : .

and interfaces is employed. In order to construct the finite element 0.75 | ; "

function spaces for the space-time method, we partition the time S F il ]
interval (0,T) into subintervald ,=(t,,t,.1), wheret, andt,,, 070 D E
belong to an ordered series of time levels=<t;<-.-- <ty 065 [ S 3
=T. LetQ,=Q, andl',=T"; . We define the space-time sl&h, 060 s Iy ]
as the domain enclosed by the surfades, Q,.;, and P, U s E
where P, is the surface described by the bounddty as t 0.55 | 3

traversed,, . As is the case witl'; , the surfacé®,, is decomposed o050 B L ,’ 3
into (P,)4 and (P,) with respect to the type of boundary condi- L E

tion (Dirichlet or Neumanhbeing imposed. For each space-time 045 L
slab we define the corresponding finite element function spaces: A
(SDn. _(th)m (S and (Vg)n Over the element domain, this 045 ¢
space is formed by using first-order polynomials in space and ;
time. Globally, the interpolation functions are continuous in space 0.50 F
but discontinuous in time. 055 F
The stabilized space-time formulation for deforming domains is
then written as follows: givenu),-, find u"e(S7), and p" -0.60 F
e (Sp)n such thatvw" e (V)n, q"e(Vp)n, 065 F
ouP 070 f
whp| —+uh VU —f|dQ+ | e(wW"):a(p",uMdQ 2 ]
" at Qn T orsk
Nel h -0.80 F
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Fig. 4 Re=5, 200 and 3800, a=5.0 flow past a rotating cylin-
der: variation of the  x-component of velocity along normals lo-

—(yh - — h.hh
(u"),)d J(P ) wh"dP. ®) cated at the uppermost and lowest points on the cylinder. The
nh potential flow solution is also shown for comparison.

This process is applied sequentially to all the space-time slabs
Q0,Q1,...Qn_1. In the variational formulation given by E@),

the following notation is being used: the vorticity/stream-function formulation&,8] or the vorticity/

velocity formulations([14]). However, the present effort employs

UMy =limu(tyxe), 9 = . : =R
-0 finite element formulation of the Navier-Stokes equations in the
primitive variables. The cylinder resides in a rectangular domain
_ and a flow velocity corresponding to the rotation ratés speci-
o (--)dQ jl JQ (...)ddt, (10) " fied on the cylinder surface. Freestream value is assigned for the
n n n . .
velocity at the upstream boundary while at the downstream

boundary, a Neumann-type boundary condition for the velocity is

J'P ("')dP:JI L (..)dl'dt. 11) specified that corresponds to zero viscous stress vector. On the
" neen upper and lower boundaries, the component of velocity normal to

The computations start with and the component of stress vector along these boundaries is pre-
— scribed zero value. The Reynolds number is defined as Re
(U)o = o, (12)  Zouaiv wherea is the radius of cylindetJ the freestream speed
whereu, is divergence free. (after an impulsive startand v is the coefficient of kinematic
The variational formulation given by E@8) includes certain Viscosity of the fluid. The rotation rate of the cylinder is nondi-
stabilization terms added to the basic Galerkin formulation to emensionalized with respect to the freestream speed and is given as
hance its numerical stability. Details on the formulation, including=aw/U where o is the angular velocity of the cylinder. the
the definitions of the coefficients and 8, can be found in the cylinder spins about an axis that is off-centered and is located at a
reference$9,12,13. distancee from its geometric center as shown in Fig. 1.
. . . 4.1 Re=1000,e=0, a=0.5, 2.0, 3.0. To establish confi-
4 Numerical Simulations dence in the formulation and its implementation, the computed
Flow past a cylinder spinning about its own axis has been stuesults for various rotation rates are compared with numerical and
ied by various researchers in the past. Most of the computatiomegperimental results, reported earlier. The eccentricity is 0 in these
reported earlier, for this flow problem, have been carried out usingses; the cylinder spins about its own axis. Figure 2 shows the
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Fig. 5 Re=5, 200 and 3800, a=5.0 flow past a rotating cylinder: vorticity field for
the steady-state solution

results for the computation of Rel0? flow past a cylinder with steady-state lift coefficient obtained from the present simulation is
«=0.5 with an impulsive start. Also shown in the figure are th&wch larger than the limit set by Goldstdi| based on intuitive
computational and experimental results from Badr ef &L The arguments by Prandtl.
computations have been carried out with a mesh containingThe streamlines for the steady-state solution for all the three
12,408 nodes and 12,176 quadrilateral elements. All the exterfRgynolds numbers are shown in Fig. 3. Also shown in the same
boundaries are located at eight cylinder diameters from the cylifigure are the streamlines for the potential flow solution. It is
der center. The time-step for the computations is 0.01. It can beresting to observe the effect of Reynolds number on the loca-
observed from the figure that the present computations reproddics of the saddle point compared to that for potential flows.
all the essential features of the flow and their time evolution. Th&hile for higher Re the saddle point is located close to the verti-
instantaneous streamlines, shown in the figure, have been derigatlline of symmetry passing through the center of the cylinder,
from the computed velocity field via a least squares procedufer Re=5, departure of the saddle point from this line is quite
The results for Re 1000 anda=2, 3 (not shown hergalso result - significant. Figure 4 shows the variation of tkecomponent of
in excellent agreement. velocity along normals located at the uppermost and lowest points
4.2 Re=5, 200 and 3800e=0, a=5.0. The next set of °" the cyIi_nder. Also, shown in the same figure are the profiles for
results are for long time behavior of the flow for rotation rate the potential flow solution. On the upper surface, the max speed
=5, and various Reynolds numbers. During the entire simulatigRondimensionalized with the freestream speed of the)fliow
for Re=5 only one clockwise vortexthe startup vortexis shed the potential flow is 3. For the viscous flow, the speed on the
from the rotating cylinder. A set of closed streamlines form arourirface of the cylinder is 5. For R&, close to the cylinder, the
the rotating cylinder. In this computation, the finite element megiPeed decreases monotonically with height while it shows a non-
consists of 12,678 nodes and 12,420 four-noded quadrilateral '@onotonic behavior for higher Reynolds numbers. For=B&00,
ements. The mesh is fine enough to resolve the boundary lajlé¢ speed first decreases, then increases and decreases again. On
and other flow features, adequately, for this low Reynolds numbéte lower surface the potential flow solution predicts a speed of 7
The external boundaries are located at 25 cylinder diameters fréf the cylinder and it decreases, monotonically, away from the
the center of the cylinder. Computations with a domain with theylinder. For the viscous flow, this value is 5 and again a non-
boundaries located at 20 cylinder diameters from the cylinder resonotonic variation of the speed distribution can be noticed. This
sult in an almost indistinguishable solution. For more details oesults in an interesting pattern of the vorticity distribution as will
the effect of placement of lateral boundaries on the computed fld¥e seen shortly.
past a cylinder at Re100 the reader may refer to the article by The vorticity fields for various Reynolds numbers are shown in
Behr et al.[15]. The steady-state value of the lift and drag coefFig. 5. The distribution of the vorticity on the surface of the cyl-
ficients from the simulations are listed in Table 1. Note that thieder for various Reynolds numbers shows very similar trends for
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Fig. 6 Re=200, 3800, a=5.0, e=0.005 D flow past an eccentrically rotating
cylinder: time-histories of the lift and drag coefficients

all the three cases. However, its magnitude is larger for highttrey are stable. It is known from work of certain researchers, for
Reynolds numbers. Since the cylinder is assigned a rotation in #seample, Tokumaru and DimotaKig] that the three-dimensional
counterclockwise direction, one might expect the surface vorticigffects result in a reduction of the lift values that can be achieved
to have the same sign all along the entire surface of the cylindier two-dimensional flows. However, this issue has not been ad-
for the viscous flow solution. However, it is seen from the resuligressed yet in the context of a purely two-dimensional environ-
that it changes sign twice. This suggests that the flow separaggsnt. Therefore, it is of interest to study the stability of the two-
once and then reattaches on the cylinder surface. Notice, from tigensional flows, to two-dimensional disturbances. One way of
plot from stream function, that there is a set of closed streamlinggestigating the stability of a solution is by introducing a distur-
near the cylinder. Also, thiagnus effectauses the pressure onpance in the basic flow and then monitoring its time evolution. In
the lower side of the cylinder to be substantially lower than thgke present work, the stability has been investigated via a recep-
on the upper side. As a result, the fluid particles, close to tgity study. Computations are carried out for an eccentrically ro-
cylinder surface, experience a favorable pressure gradient on fheng cylinder. It is hoped that the periodic forcing of the flow due
windward side and an adverse pressure gradient on the leewgydne eccentric/wobbly motion of the cylinder will excite any
side of the cylinder. These pressure gradients are responsible {gksip|e instabilities associated with the flow. As a result of this
the separation and reattachment of the flow close to the cylin Eeptivity study, the final solution is expected to be unsteady.

surface. This observation is consistent with that from Fig. 5 Whiqtlowever for a basic flow that is stable, it is expected that the
shows that the iso-vorticity contours close to the cylinder appe ' .

X A - f%e-averaged disturbed flow will not be too different from the
as spirals. The variation of the vorticity near the lowest and u asic solution. The computations are carried out using a space-
permost regions close to the cyllnder_ can also be _corrgalated 1 }fie finite element method where the spatial domain is allowed to
vanatl? nd?lfq trt]?x-clompogem Oflc;/ elocn{) as ?E_owr;f n tFlgli S’ LIS getorm with respect to time. Calculations &+ 0 with the space-
gtxrgﬁ;eer ang rr?z;ya}regzg toel}jrqgtezsidr}zrensseirr? thlesf(laov(\alc Wil b€ MUihe formulation yields results that are almost indistinguishable
’ from those obtained in the previous section. This further adds to
4.3 Re=200,e=0.005 D, 0.025 D, 0.05 Dg=5.0. It has our confidence in the present results.
been pointed out in the previous section that for purely two- Various degrees of eccentricity are considered. In all cases, the
dimensional flows the high rotation rate of the cylinder=5) computations begin with an impulsive start. The initial condition
results in a steady-state flow and very large value of the lift codr the flow is the potential flow past a stationary cylinder. The
ficient. For such flows to exist in real situations, it is essential thgeometric center is located at the rightmost location with respect
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Fig. 7 Re =200, «=5.0 flow past an eccentrically rotating cylinder: close-up of
the time histories of the lift and drag coefficients for various values of the
eccentricity

to the center of rotation. With respect to Fig. 1 the coordinates déveloped solution achieves a limit cycle and the basic flow struc-
R relative toO are(—¢,0), at the start of computations. ture remains the same. This suggests that the basic two-
Figure 6 shows the time histories of the lift and drag coeffdimensional flow is quite stable, at least, to two-dimensional
cients for the simulation witle=0.005 D. The aerodynamic co- disturbances.
efficients show an oscillatory behavior. The frequency of oscilla- The vorticity fields at various instants during one cycle of cyl-
tions is the same as the_lt of _the rotation of cylinder. It is interestingder rotation for the fully developed temporally periodic flows
to note that the time histories of the mean values of the aerodye shown in Fig. 9. From this figure it can be observed that the
namic coefficients appear quite similar to the ones obtained fokgcentric motion of the cylinder causes a vortex to be shed during
cylinder with e=0. Similar observation is also made from thesach cycle of rotation of the cylinder. The size and strength of the
time histories olC, andCy, for @=0.025 D and 0.05 D. A closeup yqrtex “that is shed, increase with increase in eccentricity of rota-
of the time histories for various values @are presented in Fig. 7. yjo, “the dynamics of the vortex formation, its release and dissi-
In all the cases, the frequency of the time variation of the aerody- ion is quite clear from the figure f@=0.05 D. Somewhere
namic coefficients is same and corresponds to the rotation rat ween the second and third frames, a counterclockwise rotating

the cylinder. It can be observed that the amplitude of the unsteaV ftex is shed from the cylinder. It travels around the periphery of

force coefficients increase with eccentricity. However, the phase#'1 . - h S S
same for all values of. For values ofe larger than 0.005 D t e_cyllnder in the counterclogkwse dlrecthn and is dissipated
’aanng the next cycle of rotation of the cylinder. These strong

negative value of drag is observed during a certain part of e . X : . : .
cycle of the cylinder motion. However, the mean drag over thortices also result in certain weaker induced vortices of opposite

entire cycle is always positive. A summary of the variation of th&'d"- The vortical activity due to_the eccent_ricity of the rotation
aerodynamic coefficients for various valueseofs presented in t@kes place very close to the cylinder, and its effect on the outer
Fig. 8. The magnitude of the mean lift coefficient increases with low seems to be insignificant. These computations help us in
This could, perhaps, be explained by the increased strengthcefcluding that the two-dimensional flow past the spinning cylin-
vortices for larger eccentricities of rotation. The mean drag coeder, presented in the previous section, is stable to two-dimensional
ficient shows a significant reduction for the case even with ttlisturbances. Therefore, in a purely two-dimensional environ-
lowest value of eccentricity =0.005 D and then seems to ment, the solutions presented in the earlier section can exist. This
change little with any further increase in eccentricity. Howevestrengthens our point of view that the Prandtl’s limit on the maxi-
the unsteady component of the drag coefficient shows a lineaum lift coefficient generated by a spinning cylinder may not
increase in amplitude with eccentricity. In all the cases the fullgold.
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Fig. 8 Re =200, «=5.0 flow past an eccentrically rotating cylinder: summary of
the aerodynamic coefficients for different values of the eccentricity

4.4 Re=3800,e=0.005 D,a=5.0. To determine the sta- 5 Concluding Remarks
bility of the Re=3800_ flow in a purely two-qllmensmnal setup Flow past a rotating circular cylinder placed in a uniform
gompu_tathns are carried out W|Eh=0.005 D Figure 6 shows .the stream has been studied numerically. A stabilized finite element
time hls_torles of the agrodyn_am|_c coefficients. Also shown n tr}'ﬁethod is utilized to solve the incompressible Navier-Stokes
same figure are the time histories f_or the computatlons aith equations in the primitive variables formulation. Good agreement
=0. As was observed for Re200, the time evolution of the mean ith some of the flow visualization and computational results
value of the aerodynamic coefficients follow the same trend @3 other researchers, reported earlier, is observed. Computa-
that for e=0. The eccentricity of rotation causes a sinusoidgjons have been carried out for R8, 200, and 3800 and rotation
variation in the temporal data and its frequency content is same@g , of 5. It is seen that for these parameters the flow achieves
that of the rotation of cylinder. This shows that the eccentricity gf steady-state and that the lift for purely two-dimensional setup
the rotation of cylinder does not cause any significant change dgn pe very large. Both the semidiscrete and the space-time for-
the original steady solution. This reflects the stability of the twanylations have been utilized to compute the solution der5.
dimensional solution, to purely two-dimensional disturbanceghey result in almost indistinguishable results adding further to
Figure 10 shows the vorticity, pressure and magnitude of velociffe correctness of the present results. The flow close to the cylin-
close to the cylinder, at one time instant for the temporally pefiter, for various Reynolds numbers, is compared to the potential
odic solution. On comparing this figure to Fig. 5 it can be obfiow solution. Interesting differences are observed in the various
served that the effect of eccentricity in the rotational motion of theplutions. The vorticity distribution along the cylinder surface
cylinder is restricted to a region very close to it. points to mild separation and reattachment of the flow. This is

To check the dependence of the solution on the spatial aagributed to the adverse and favorable pressure gradients of the
temporal discretization, the solution was projected on a finer mefibw on the windward and leeward sides of the cylinder. It is
with 26,830 nodes and 26,500 elements and the computati@xpected that for even larger Reynolds numbers, the separation
continued with a time step of 0.01. The aerodynamic coefficienisould become stronger and result in an unsteady flow. The values
for the new solution showed less than 0.1 percent difference in tbe the lift coefficient obtained in the present work exceed the
mean values and less than 1.0 percent in the unsteady valuesmaximum limit set by Goldstein based on the intuitive arguments
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eccentricity=0.005 D eccentricity=0.025 D eccentricity=0.05 D

Fig. 9 Re=200, a=5.0 flow past an eccentrically rotating cylinder: vorticity field at
four time instants during one period of rotation for the temporally periodic solution.
The frames in the various rows from top to bottom correspond to the time instants
when the geometric center of the cylinder is at its left-most, bottom-most, right-most,
and top-most location, respectively, with respect to the center of rotation. The clock-
wise vorticity is shown in broken lines while the counterclockwise component is

shown in solid lines.

pressure llvelocityll

Fig. 10 Re=3800, a=5.0, e=0.005 D flow past an eccentrically rotating cylinder: vor-
ticity, pressure, and magnitude of velocity fields for the temporally periodic solution
when the geometric center of the cylinder is at its left-most location with respect to
the center of rotation
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geometric center of the cylinder. The unsteady disturbances intro- oo Lo e YRR
. K . steady Flow Past a Rotating Cylinder at Reynolds Numbe?sahd 1d,” J.

duced by the motion of the cylinder results in an overall unsteady ¢4 mech. 220, pp. 459—484.
flow. However, the mean values of the aerodynamic coefficient§g) chew, v. T., Cheng, M., and Luo, S. C., 1995, *A Numerical Study of Flow
are still quite comparable to those from the basic solution. In this  past a Rotating Circular Cylinder Using a Hybrid Vortex Scheme,” J. Fluid
sense, the two-dimensional solution is stable to purely two- Mech.,299 pp. 35-71.
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Assistant Professor and Director This paper presents two newly developed micromechanical models for the analysis of

plain weave fabric composites. Both models utilize the representative volume cell ap-
proach. The representative unit volume of the woven lamina is divided into subcells of
homogeneous material. Starting with the average strains in the representative volume cell
and based on continuity requirements at the subcell interfaces, the strains and stresses in
the composite fiber yarns and matrix are determined as well as the average stresses in the
lamina. Equivalent homogenized material properties are also determined. In their formu-
lation the developed micromechanical models take into consideration all components of
the three-dimensional strain and stress tensors. The performance of both models is as-
sessed through comparison with available results from other numerical, analytical, and
experimental approaches for composite laminae homogenization. The very good accuracy
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1 Introduction derived with this model. The fiber-undulation model takes into

ccount the fiber undulation and continuity. Both the mosaic and

Composite laminae are being more and more extensivel uﬁ] - . . :
P 9 y e fiber-undulation models are one-dimensional models. The

lized in modern shell structures. High specific stiffness, specﬁtgcri ging model was developed for the analysis of satin compos-
i

\?\}L?Qr?trzéigdcgorﬁgggifsssﬁ;ﬁsa{Egngré?c:}rlrre?jdgﬁgit?eg?r?:i Eﬁgir '? ! In this model the regions with straight threads are assumed to
posS P . ) . o at as load-carrying bridges between adjacent interlaced regions.
aerospace, automotive, and marine vehicles, industrial, civil an Naik and Shembekd5] developed two-dimensional microme-
otgeénsft;%cr.tgrcf:ssm Oc])(sFthees E’;O enl]gg]orbtggﬁsre%foc?]mggsgfnl]%rgrl%@hgnical models using the parallel-series assumptions. These mod-
WOVE Ic composl v 9 cogniz 4% are based on the classical lamination theory assuming that it is
petitive than u_nldlrectlonal_ composnes._Thls IS par;ly due_to_ the.‘:{pplicable to each infinitesimal piece of the RVC. The models are
a.b'“ty to provide go_od relnfor_cement n _aII directions within &apable of describing the RVC geometry in detail, including the
single ]ayer, to their bgtter Impact resistance, better-ba]gn er yarn cross sections and the undulated portions, and can be
properties, easier handllng and fabrication, and good ?b'l'ty ed to determine the homogenized in-plane stiffness properties of
conform to surfaces with complex curvatures. Along with thal e RVC
however, their complex architecture makes the analysis of theirKarayéka and Kurathé] used the RVC approach to develop a

behavior much more challenglng. Therefore, it is not SUrprsiNgicromechanical model capable of representing both plain weave

that thgre are substanthly fevx{er approache§ fpr dete.rmlnlng. d satin weave composite layers. The model is based on the

tpr:opefrtles Q;_wo¥en f?br'c Iam_ltnae slndtpr??rl]ctlng E[_r;_elr k3;?ha\”%\rssumption that all in-plane strain and out-of-plane stress compo-
an for unidiréctional composites. Most of them utiliz€ € reRsqiq 5re constant throughout the RVC. It was used 6 to

resentative unit cell ap‘proach—the properties and behawor. of ?/estigate the behavior of a five-harness satin weave Graphite/

entire lamina are considered to be the same as the properties %xy laminate

unit cell. The entire complex geometry of the composite layer Ca'PTabiei and Jiang[7] developed a micromechanical model,

l(g\t;?:l;y be rt;aplrg_ducgld lIJ(y using this representative volume Cﬁ)hich considers the two-dimensional extent of woven fabric lami-
as a buriding block. nae and is based on nonlinear stress-strain relations. Within this

Earlier models for the analysis of woven fabric composites in;, L ) o
. odel the RVC is divided into many subcells and an averaging is
clude the works of Ishikawa and Chdd—4], who developed erformed to obtain the effective stress-strain relations. This

thr%eld'ﬁeﬁﬁt g]pddgls: thed TO_?F?'C mOd.el' thg Ilpel;-unddulatl odel is suitable for implementation into nonlinear finite element
model, and the bridging model. The mosaic model IS based on Weyeq 1 enable structural analyses of woven composites. Re-

classical lamination theory and represents the waven composn_ecgﬁtly, Tabiei et al[8] presented a nonlinear constitutive model

23;?5:“;232: ﬁwfoa:jsgl;nnrgeiggczltrz?(ﬁ-pgr;alllrgllrr]r?ct)?jsél ;J;rlegr]nthe RSy plain weave composites. The incremental constitutive model
P P was developed based on micromechanics. This model considers

tions, the upper and lower bounds of the elastic moduli can lf’r"?aterial nonlinear behavior of both resin and fill/warp yarns.

—_ A global/local approach to woven metal matrix composites
gc?nﬁir;)?]r:a;lét(t)r:esg(:)l:JlI(ijezeM?cdhrzr?iscidbivision OHE AMERICAN SOCIETY OF analysis was deveIOpEd by BednarCyk and PinC[@L’&O]. The

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- approach uses_ a local unldlr(_ectlon_al m'CromeChan'Ca_l model to
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 18, represent the fibers and matrix, which constitute the fiber yarns,
2000; final revision, October 24, 2000. Associate Editor: M-J. Pindera. Discussion g@md a three-dimensional global model to simulate the overall be-
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departr?ﬁ\t,- B R ;

of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, an !0!’ of the RVC. ThIS approaCh is used to predICt t.he response
will be accepted until four months after final publication of the paper itself in th@f €ight-harness satin weave Carbon/Copper composites and com-

ASME JOURNAL OF APPLIED MECHANICS. pare the results to experimental data.
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Along with the analytical models of woven fabric composite:
there are also some numerical approaches utilizing the finite e
ment method. Using a three-dimensional model, Whitcdai
analyzed a RVC of a plain weave composite. Whitcomb used t
finite element model to assess the influence of different paral
eters on the stiffness properties of the RVC. In their work Chur
and Tammd12] summarize and compare various homogenizatic
methods via finite element analyses.

The aim of the present work is to develop micromechanici
models for plain weave composites, which could be incorporat:
efficiently into explicit and implicit finite element codes to be able
to perform structural analysis of composite and sandwich shefilg. 1 Plain weave architecture, representative volume cell,
with woven fabric layers. This will enable determination of thénd one quarter cell
state of stress and strain in the constituent fiber yarns and matrix
within the finite element analysis, which could be used to perform
material failure and property degradation checks within the struc-
tural analysis process. Many of the presently existing analyticéle strain and stress tensors, and starting with the strains in the
models lack either accuracy or efficiency or both, to be capable B¥C are capable of determining the three-dimensional constitu-
providing the above features to a finite element analysis. The five matrix of the homogenized RVC and all stress and strain
nite element models usually have a good accuracy and are cap@gi@ponents in the composite constituents. Both models assume
of correctly modeling the three-dimensional state of stress atitat the RVC is assembled using certain number of subcells,
strain in the RVC and its constituents, but involve too many elavhich are under homogeneous state of stress and strain. The fol-
ments in discretizing the RVC to be used for composite structur@wing assumptions are also used in the modglsthe matrix is
analysis. The analytical model of Tabiei and Jiang described igptropic and the yarn fiber bundles are transversely isotropic with
([7]) proved efficient for an implicit finite element analysis, buprincipal axis along the yarn axigh) the contact between the
the nature of the explicit time integration scheme will make igonstituents is perfect, i.e., displacements and traction are continu-
hard to fit into an explicit finite element analysis code. To a cepus across the constituent contact interfaces.
tain degree, this also applies to one of the herein presented modBoth formulations are developed with the intention to be used
els, namely the single-cell model. However, the other model dig-a finite element composite shell analysis. Therefore, in the for-
scribed here, the four-cell model, solves only a small system @fulations, the average strains within the RVC are assumed to be
six linear equations, which would make it much more efficient iavailable, which is the case in a standard displacement based finite
an explicit finite element analysis. element analysis. The models are then used to find the strains and

In what follows two new micromechanical models are formustresses in the composite constituents, and the average stresses in
lated and their performance is checked and compared with resitite entire RVC or the tangent stiffness matrix.
from other numerical, analytical, and experimental approacheslf [C]y, and[C], are the constitutive matrices of the matrix and
employed in the analysis of plain weave fabric composites.  yarn in a material local coordinate system then

Representative

a) b) c)

M ~m m m
; ; . 11 12 12 O 0 0
2 Formulation of the Micromechanical Models mem om0 o0 0
Both models developed and described in this work utilize the 2o e
RVC approach(see Fig. 1 In that the authors have tried to 2 C Ch 0 0 O
achieve an optimal balance between the two major parts of the [Clm= 0 0 0 c" o ol @
formulation: the geometric description of the RVC, and the mi- a4
cromechanical representation of the developed model. This is 0 0 0 0o Ccy O
something that many existing models lack; a tedious formulation 0 0 0 0 0o ¢
is used to describe the RVC geometry with a very high precision, L 44
and at the same time the accuracy of that geometric descriptiwhere
cannot be taken advantage of due to overly simplified microme-
chanical descriptions. This makes these approaches hard to imple- ~m _ Em(1=vm) m_ EmVm .
ment in a real world analysis and at the same time the accuracy of ' (14 v,,)(1—2v,)’ o1+ v (1-2vy)
the acquired results often does not match the solution effort
needed. The geometric description of the RVC in the present ch_G. = Em @
models is much simpler compared to other approacbes, see A4EMT2(14 vy

Naik and Shembekdb]), which translates into computational ef-
ficiency and easy implementation. Yet, as the herein presen
results show, their accuracy is very good for different values
the RVC geometric and material parameters. An important cont
bution for this accuracy is due to the three-dimensional microm

En, vm, andG,, are the matrix Young’s modulus, Poisson’s
&etio, and shear modulus, respectively. Both fill and warp yarns
are assumed to be of the same fiber material, with constitutive
matrix of the yarns

chanical description of the RVC. Previous micromechanical mod- fcYy. ¢, ¢c. o 0 0]

. K . . 11 12 12
els implement two-dimensiondNaik and Shembekal5]) and
even one-dimensiondlshikawa and Chotlil—4]) approaches in cl, C) C¥ O 0 0
the RVC description, which can significantly affect the solution cr. cl. ¢ 0 0 0
accuracy. N

In the present approaches the entire woven fabric laminacanbe [C],=| 0 0 0 Cy, 0 01|, @®

constructed by using the RVC, Fig(H), as a building block. cL_cY
Assuming that the fiber yarns in both directi@he fill and warp 0 0 0 0 2 23
have the same structure and properties, the entire RVC, fy. 1 2
can be constructed by using just one quarter of it, Fig),land 0 0 0 0 0 c,

this quarter cell is hereafter referred to as the RVC. In their for- -
mulation the models described here consider all componentsvdiere
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E, (1- 1217 E v, ~(1+v Thus, only two parameters, namétyandV,, or ¢ andV, are
C{lzﬁ' Cl= ytyurl y1o) sufficient to completely define the geometry of the RVC. Further-

A A more, the dimensions of the sub-subcells are also completely de-

E, 1(1— vy 1Py 1) fined with these two parameters. Note that in the present formu-

CY,= = Ay' AL (4) lation this model does not include a layer of matrix material,

which covers the entire RVC. Therefore, the height of the yarns is

E, +(vy 11+ vy L7y 7L half the thickness of the entire lamina. If the real lamina to be

Ch="2—2 A Yy o CY= Gy.t; represented by this model has a matrix layer of significant thick-

ness then the model can be modified to include it, which would

A=1— ,,;TT_ 2vy vy (1 vy 7). not change the basis of the formulation.
Here vy 1 =vy  1(E, 1/Ey ) and E,, ,E,1,vy 7,7y 77.Gy7 2.1.2 Micromechanics of the ModelWithin the subcells

are the Young’s moduli, Poisson’s ratios, and the shear modufif§” “mf,” and “fm” the constituent yarn and matrix materials
of the transversely isotropic yarn; subscriptand T denote the are first combined to get an equivalent homogeneous material in
direction along the yarn axis and the transverse to it directiofach subcelisubcell “mm™ is entirely matrix so there is no need
respectively. Note that in the above formulas the commas in tfehomogenize jt The four subcells are then combined to get an
subscripts do not represent differentiation. The above constitutigguivalent homogeneous RVC. The homogenization is based on
matrices, Egs(1) and(3), relate the stress and strain tensor conthe parallel-series assumptions: For some of the strain components

ponents arranged in vectors as follows: the adjacent cells are assumed to work “in parallel” and the cor-
. responding strains are equal; for the rest of the strains, the cells
{ot=loy oy 0, 04y 0y, 05" are assumed to work “in series”—the corresponding stress com-
_ T onents are equal and the strain components are averaged to get
{8}_|8x €y €7 Yxy Vyz 72x| ) %) b 4 P d 9

the entire cell resultant strains. Similar assumptions are used as a

with y;;=2¢;; being the engineering shear strains. basis for many micromechanical models for unidirectional and
A description of the geometry and mechanics of the modelgoven composites.

follows. Since in the first model we divide the quarter cell into The homogenization of the subcells “ff” and “mf” is de-

four subcells in the lamina plane it will be referenced hereth&" scribed in the following.

four-cell model” while the second model, which has only one

cell in the lamina plane will be referenced ashé single-cell  2-1.2.1 Homogenization of subcell “ff". The subcell “ff” is
model” shown on Fig. &). It consists of two homogeneous parts of equal

thickness, top fill and bottom warp. Both of them are of the same
transversely isotropic material with axis of transverse isotropy
2.1 The Four-Cell Model along the corresponding yarn axis, whichxitor the fill andy for
2.1.1 Geometry of the Model.The geometry of this model is the warp. So, the fill and warp constitutive matrices will be as
shown in Fig. 2a). To keep the formulation simple, the crosgollows:

sections of the fill and warp yarns are assumed rectangular and rcY. cr. c’. o 0 0
their undulating form is approximated with only horizontal and oz =2
inclined at angled sections,f being the average undulation angle. cf, ¢, Cc 0 0 O
This representation makes it possible to divide the RVC into four S R 0 0
subcells, denoted by “ff,” “fm,” “mm,” and “mf” on Fig. 2 (a). [Clay = 12 23 22 )
Subcell “ff” is further divided into two sub-subcells, Fig.(8), fil 0O 0 0 Cj, 0 o0
which represent the horizontal portions of the two yarns. Subcells v
“fm” and “mf” consist of yarn and matrix portions as illustrated 0 0 0 0 Ci O
on Fig. Zc). Each one of them contains half of the inclined por- 0 0 0 0 0 Cy,
tion of the yarns; by putting two such subcells together we get the - -
entire undulated portion of the yarn. Subcell “mm” is entirely ofand
matrix material. - -

Let us assume that the RVC has heightbiinits and sides of Cr Cl2 C O 0 0
length one unit each. Then, if both yarns have a rectangular cross cy, ¢, ¢, O 0 0
section with side¢1/2 andV,, V, being the overall yarn volume y y y
fraction, the ratio of the volume of the yarns to the volume of the Clo. — Cks C C O 0 0 g
entire RVC will equalV, . Furthermore, the undulation anglé, [Clwarp= 0 0 0 cy O 0 )
can also be expressed through the total RVC heightand the
yarn volume fractionV,, from 0o 0o o0 o0 Ccjy O

H | 0 0 0 0 0 C§5_
tan? 4(1-Vy)~ ©) with C¥g=C},— C}%4/2.

Assuming we have available the homogeneous strain tensor
componentssifjf, of the entire subcell “ff,” we will express the

; strains and stresses in the fill and warp portions, and the stresses
mm ] lmf g SubCellar Sub-Cell m in the entire subcell. From the perfect contact and the parallel-
Ny - u__H series assumption we have at the fill-warp interface:
2 H
i 7
g‘t H i s)f(f—s)f(—sw o;f=a';= 0"2/
T ' *
il ff_ f__w ff_ f _ w
HTS 2 Ey TeyTEy Oy;= 0y~ 0y )
y 1~V Yy
f_ f _.w ff_ f _ w
! 8xy_8xy_ Xy Oz2x= Ozx= Ozx
a) b) <) . .
Here a single superscripts used to denote that the correspond-
Fig. 2 Geometry of the quarter cell for the four-cell model ing quantity refers to the fill yarn, and refers to the warp yarn.
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The rest of the strain and stress tensor components of the subcelistitutive matrix for subcell “mf” will be shown, and the con-
are assumed volume averages of the strains and stresses ofstitetive matrix for subcell “fm” will be derived using the appro-

constituent fill and warp parts: priate transformation.
o1 o1, Subcell “mf” contains matrix and yarn parts of equal volumes.
e)'=5(e,+ed) o)=5(0,+e)) i ; i ;
z —2(&;7&; x —2\0xT &y If the undulation angleg, is not zero the material local coordinate
ff_ 1, f w o1, f, w system of the fill yarn part will not coincide with theyz coordi-
ey =3 (8y,Fey,) oy =3(0oytay) 10)  nate systen(see Fig. 2)). However, we can take advantage of

the isotropy of the matrix material and homogenize the subcell in

the yarn local coordinate system, and then transfer the thus ac-
Note that the above relations combined with the assumption @fired constitutive matrix in the globayzcoordinate system. For

homogeneous strains and stresses within the subcells will resulttiis purpose we need to transfer the subcell average strains from

violation of the displacement continuity with respect to the suthe RVC global to the yarn local coordinate system

rounding subcells. Therefore, the values of the strains in the sub- mis mf mf m _

cell should be treated as subcell average values, satisfying the (e =&y cOS O+ &7 sir 6 yy; cosOsing

ff_ 1, _f w ff_1, f w
€2x= 2 (8zx+€zx) nyf 2 (ny+8xy)'

displacement continuity in an average sense. Using the above (M) =g
equations, Egs(9) and (10), the unknown strain components in gy gy
the fill and warp parts can be expressed: (S?f),:(g;nfsinz 0+8rznfcos7_ o+ 7/rznxf cos6 sin o 1)
14
f__ff C1,—Ch ff_ffy L w_ _ff CL,—Ch ff_ff (y™y = 9Mf coso— y"f sing
SZZSZ_T Sx_ey) 82282+T &‘X—Sy) ’)’xy ’)’Xy 7yz
22 22 mfy s mf mf
, y (Yxy)' = Yxy SINO+ vy, cosé
2T CY,+CL Y2 YT CY,+CY V2 (v2x)' =28, sin@ cosfd—2¢, sind cosd
mf i
f 2c% . . 2CL + v (cog 9—sir? 6).
faT oy oyt faT oy oLt These values of the strains in the yarn local coordinate system will

o ) ) ~only be needed if the strains and stresses in the matrix and fill
So, all strains in the constituents are obtained, and knowing tgg:ts are needed. If not, the homogenized subcell constitutive ma-
constitutive matrices of the yarns, we can further express t constructed below can be directly used to get the subcell
stresses in the constituent. Also, from E@.and (10), the aver- average stresses in the RVC g|oba| coordinate system.
age stresses in the entire subcell can be expressed in term of thene yarn local coordinate system(y’z’, can be obtained by
average strains of the subcell. Thus the elements of the constifyating the RVC global coordinate system aroundytais at an

tive matrix of the homogenized subcell can be found, angled. The variables expressed in that coordinate system will be
1 cY _Cy3)2 denoted by a superscript prime. In that coordinate system, similar
cli= szf2=E CY,+CY,— %} relations to Eqs(9) and (10) should hold:
22 mfy, _ fyr m 7 mfyr _ fyr my 7
2 (Sx ) 7(8)() 7(8)() (Uz ) 7(0-2) 7(0-2)
Cfffl ZCY (CXZ_C)ZIB) mfy s fyr my 7 mfy s foyr my s
1275 12+T§2 (ey)'=(gy)'=(gy) (oy;)' =(0y) =(ay)" (15)
e (e) =(eg) =(el) (a5 =(aL) =(0])’
Cff:Cff: 12 23
13 23 2 and
(12)
Ci=C%, (7= 3[()) +(eN'] (o7 = 3[(0}) +(05)']
ff_ e~y
Cai=Cas (ey) = 3[(e),) +(ey)'] (o)) = 3[(a}) +(0%)']
ff_ ~ff_ CX4C¥5 (16)
Cos=Cos~ v+ ov.- MO L0t V(2™ (oMY = L gf ) (M
44" =55 (e2x) = z[(e7)" + (3] (ny) = 5[(0xy) +(ny) 1.
Finally, the constitutive matrix of subcell “ff" is From these relations we can determine the unknown strain

7 components in the yarn local coordinate system in the matrix and

et cff cff 0 o0 o
1 12 13 fill parts, which are
C Cii Ci3 0 0 0

[2CY(e)")" +(CY,— CT) (e’

cit cfft ¢t o 0 0 &M/ =
[Cli= 013 013 033 o ol (13) (e2) Ch+C3,
“ +(CY—CH(el)']
o o o o cft oo 2 Ty
ff
L0 0 0 0 0 C) (e2)' = Gy ar [2Ch(er") +(Clm Ch) (e’
Thus, the homogenization of subcell “ff” is complete and pro- e
vided the average strainsf{ , in the subcell are known, all strains —(CY—C(e))'] 17
in stresses in the constituents can be determined, as well as the v m (17
average subcell stresses. mys_ 2Cs;s mfs s far Cas mfs s
(Syz) “chicy (ayz (Syz) “Cchicy (8yz) .
2.1.2.2 Homogenization of subcells “mf” and “fm”.Since 447 55 447 55
subcells “mf’ and “fm” have similar geometry, their constitu- 20y cm
tive matrices will be also similar and will be related through a  (¢™)’= m—‘”y(sfzﬂxf)/ (ef)= m—“y(gg‘xf '
simple coordinate rotation. Therefore, only the derivation of the CastCay CastCiy
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The constitutive matrix elements of the subcell in #iey’ z’

coordinate system are

Yy _ ~Mmy2
(Cmf)’zi m+cy _ (ClZ ClZ)
11 2 11 11 CT]_J’_ C)éz
ety Y ey oy, (Gl CBICh- c@}
12 2 12 12 C1m1+ C¥2
e Ch+Cl
Y y— my2
(Cmf):E Cm+Cy _ (C23) (Clz
22 2 11 22 CTl_,’_ C§2
(C?Sf)’: w (Cg13f r_ 2C¥2C1ml
Chi+C% Chi+C%
(Cmf ’— E(Cm+cy4)
44 2 44 4
(Cmf) r_ C¥5C4m4 mfyr _ 2CX4CT4
FOChACE, Y Ctey

Then, the constitutive matrix of subcell “mf” in the’ y’ z’

coordinate system is

(18)

[Clms

f(cn) (e (Ch) 0 0 0
(CH)" (CH)' (%)’ o 0 0
(CH)' (CH) (CF)’ 0 0 0
oo 0 o (%) o 0
0 0 0 0 (chy 0

| 0 0 0 0 0 (C&®)]

(19)

By rotating back the local coordinate systemy’ z’ at angled

we will get the RVC global coordinate system. Transforming th
above constitutive matrix, Eq19), accordingly, will give us the
subcell “mf” constitutive matrix in RVC global coordinate sys-

tem, which is
[
cly
cly
0
0

mf
L Cle

[Clmi=

where

Chy ¢i¥ o o Cf]
Cx C¥ 0 o0 C¥
Cx Cf o o0 cy
o o cp cy oo
0 o cif cx o
Ci ocx 0 0 CH

Chf=(CMf)’ cod 6+ (CT) sinto+2[ (CT)’

+2(CH)'1sirf6 co o

ch=(c

mh’cog 6+ (CRY)'sinfo

Ch=(CT)’ (codo+sin*g)+[(CT)’

+(C

) —4(Chf) Isir?6 cos o

(20)

Cly={[(CT)'—(CT) Jcogo+[(CT)' —(CTy) IsirPo
+2(CH)' (cog6—sirf6)}sin 6 cosd

C?zf: (ngf) '

Journal of Applied Mechanics

CIy=(CY)'sifg+(CH)’ cogg
CH=[(Ch)"—(CT)"Isin 6 cosd
C=(cmh'sin* o+ (CH) cos'+2[ (CTY)"’

+2(ClN"1sirPg cogo
Co={[(Cy)’ —(C}) IsiP6+[(C5)' — (CT) Jcos's
—2(CH)’ (cog6—sir?6)}sin 6 cosd

(21)

Cii=(CL)) cos 0+ (Cg)'sir’6
Ci=[(CH)’ —(CL) Ising cosp
Clf=(CJ)'sir6+(Cl) coso

CH=[(CT)'+(CH)' —2(CT)"Isir? 6 cog ¢
+(CH)' (cog 9—sir? 6)2.

The constitutive matrix of subcell “fm” can be obtained
through an appropriate transformation of the above matrix, Eq.
(20) and is as follows:

C?zf CTzf C?sf 0 - C?ef 0 ]
Clmzf CTlf CTsf 0 - CTef 0
[Clym= Cg]sf CTsf Cngf (r)nf _C?Gf Omf .
0 0 0 cy, 0 —Cus
-Cy -Cy -Cc% o0 Ccf o0
| 0 0 o -cif o ci |

(22)

Thus, each subcell has been homogenized and its equivalent
constitutive properties are available. The strains and stresses in the
constituents, and the subcell resultant stresses can be determined,
provided that the strains of the subcells are available. We can
apply a similar parallel-series approach to the entire RVC and thus
determine the strains in the subcells. Let us assume that the aver-
age strains in the RVC.?”- , are available. Then, based on the
ﬁarallel-series assumptions, the following relations will hold:

For strains

Ve +(1=Vy)el'=%,  Vye "+ (1-V,)el =2,
Vyey +(1-Vy)e) =2, Vyel''+(1-V))e] =5,

fm_ _mm_ _ff_ _mf_——
z "€z TE€,78; T&; (23)
fm_ _mm_
Xy~ ©xy —

ff __ mf_—

f_
€ xy= Exy = Exy

&
Vy(1=Vy) (7 +el) +(1-Vy) 2™ Vel =%,
Vy(l_Vy)(SLT‘f’ 821xf) + (1_Vy)28;nxm+ Vyzlsg(zg_zx

For stresses

fm

_ _mm ff mf
Oy =0y

Oy =0y
Vyoil'+(1=Vy) o™=V, o'+ (1- V) o™=,

ff_ _fm mf_ _mm
Oy =0y Oy =0y

Vyoi'+(1=Vy) o) '=V,ol™ (1-Vy) o) "=,

Vy(1=Vy) (o™ + o7 +(1-Vy) 2o ™+ Viel =7, (24)

Vy(1=Vy) (ol + on) +(1=Vy)2on ™+ Vool =0y,

fm_ mm_ ff_ mf_—
Oy, =0y, =0y, =0y, =0y,
fm_ mm_ ff_ mf_—
Oz2x = Ozx = Ozx= Ozx = Ozx
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These relations, Eq$23) and(24), have been derived based ornthe RVC to be of a unit length, then the volume of the entire RVC
the assumption that there is a perfect bonding between the sulif be equal toH,. The volume of the two yarns will bél/2
cells, and the assumption of homogeneous strain and stresstia (Fig. 3). Then
each subcell. For example, considering the transverse normal
strain componentg,, it is obvious that the above assumptions ﬂ+a=v H b= H—H
lead to an equality in its value for all subcells, as expressed in Eq. 2 yit 2
(23). The same applies for the in-plane shear stegijp. Using
these assumptions in the geometric representation of the RVC,
Fig. 2(@), all of the above relations, Eq§23) and (24), can be
easily derived. They contain enough information to be able to
express the 24 unknown strain components for all subcells. THisVy<0.5 we assume that=0. Then
will be done by solving a system of 16 linear equations with 16

H H
tan 01=Z tan 62=Z— a. (26)

unknowns. Note that they, ande, strain components are readily H=2V,H, b= Ht( 1 Vy)
available. Also, some simple manipulations lead to 2
ey = C5m5nyZ+VyCT5'EXy eMi= c44§yz—(1—vy)c;"5’§xy tang,=tané =VyHt (27)
v C?5f+Vy(CL”4— C?sf) v Csm5f+Vy(C£1n4_ Csmsf ' 2 2
_mm_ Clie,—V,Cite,y Jin_ Clent (1-V,)Chfe,y If V,>0.5 we assume th&t=0. Then
U CRHV(CL-CE) ™ Coy+V,(CL-CH) 1
(25) H=H; a=H; VY_E
This reduces the rank of the system of equations to 12. Further-
more, by using some of the simple relations in the equations the _Hy (3
system of linear equations can be reduced to six equations with tand;=— tand=H 7= Vy|. (28)

six unknown—the remaining strain components of the subcells.
The coefficient matrix of this system is not fully populated, which Note that the maximum yarn volume fraction that this model
makes it possible to explicitly express the six unknowns. Aftéran represent is 0.75. Therefore, if it is higher, 0.75 will be used in
solving this system all strain components in the subcells will H&e geometry description, E(8), and the actual value is used in
available. Then with the values of these strains all strains atfte micromechanical calculations. This is not expected to affect
stresses in the fill, warp, and matrix parts of the subcells can Bignificantly the accuracy of the model. Experiments with values
determined, as well as the average stresses in the subcells. Ttégaer than 0.75 showed that the homogenized properties from
stress values can be finally used in E2¢) to calculate the aver- this model compare very well with the values predicted by the
age stresses in the homogenized RVC. Thus, the micromechanfegr-cell model.

description of the RVC will be complete. As already stated this

aooroach would result in violations of the physical continuity be- 2.2.2 Micromechanics of the ModelThe micromechanic de-
pp wou sultin violations physi Inuity be ription of this model is quite straightforward. In addition to the

tween the adjacent subcells. However, the continuity requiremen umptions listed at the beginning of Section 2 it is also assumed

are satisfied in an average sense. that the strains and stresses of the entire RVC are weighted aver-
ages of the strains and stresses of the four layers. Thus, for the

2.2 The Single-Cell Model average RVC strain components we have

2.2.1 Geometry of the Model.The geometry of the single- 1-V v
cell model is shown on Fig. 3. The entire quarter cell is repre- ?”——y(g.".“Jrg.’T‘b)Jr —y(sifj+eiv}’). (29)
sented by a single cell, which has four layers: two matrix, one fill, 2 . ! 2

?nd r(})ne warp. The ]I:':Illyers wil beddte)noted witl, f, w, andm, | Assuming that the RVC average strain componeajs, are
or the top matrix, fill, warp, and bottom matrix, respective y:g]own, the above relation represents six equations for the 24 un-
n

They are separated by inclined planes, defined by appropriate gi- . "
= . . own strain componen&sk- , wherek=m;,f,w,my . In addition
mensioning and the angled, and 6, (Fig. 3). The undulating . . | : H ) .

. . . ; these six relations we have six continuity and traction condi-
form_ of the yams 1s represented by prisms W't.h trapezoidal cro ions at each interface between the adjacersllt layers. These are 18
section, inclined at an angle 6, or — 6,,6, being the average o< which together with the above, EB9), form a system
undulation angle. Only two parameters are needed to describe E$§4 eql;ations of 24 unknowns. the stra’in con’1ponents in the four

: : o)
eometry of the entire RVC—the yarn volume fractidfy,, and ) ; .
tghe Iamir)lla thicknessd, . If we assur)rqe the in-plane dirr?fgjnsions 0]layers. The interface relations, however, have to be expressed in a

coordinate system defined by the orientation of the interface.
Here, we assume that the fibers of the fill and warp yarns lie in the
xz andyzplanes, respectivelgsee Fig. 3. Therefore, if the inter-
Front Back zT face coordinate system is defined in such a way that one axis lies
in one of these planes, it will be a principal material axis for that
yarn. Then, the interface coordinate system will be the principal
coordinate system in which the transverse isotropy of the yarn is
expressed and the constitutive matrix of the yarn in this coordinate
system will be that defined in Eq&3) and(4) above. Such coor-
dinate systems are defined for the three layer interfaces. For ex-
ample, at them,-f interface, to define the interface local coordi-
nate system we first need to rotate the global coordinate system
about they-axis at an angl#, and then rotate it about theaxis
at 6,. Although for the fill-warp interface the local andy-axes
cannot lie in the globakz andyzplanes if6,# 0, we will assume
that they are close enough to be able to use the principal consti-
tutive matrices for both layers without having to transfer them in
Fig. 3 Geometry of the quarter cell for the single-cell model a nonprincipal coordinate system. Simple trigonometric relations

ST o

p

S
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would show that the angles between the locahdy-axes and the Table 1

corresponding principal axes are negligibly small for any realist .0ra | E.GPa | GnGfa | Guofa - ™
value ofH,. ) ) Epoxy 3.5 35 13 13 0.35 0.35
So, at each of the three layer interfaces we have the followi SrEdas [y 18.02 5400 3877 0314 0249
. - . . o Epoxy
relations, which should hold expressed in the local interface Ol capars | 130 70 T T X o5
g\ltnatte ?yStemf 5)55;7:,18.1(5:‘;31 293.88 253.84 93.46 83.08 0.278 0.2846
interface m-f:
i f me_ f m _ f
SX,—SX, Sy,_sy; Sx,y,_ax/y/ N
Chung and Tammgl2] used a finite element model to deter-
m_ f me _ f me _ f 30 . . - .
O,y =0y 0y =0yz Oy =0y (30)  mine the elements of the homogenized constitutive matrix of a

plain weave RVC. The RVC consists of epoxy matrix and fiber
bundles, which are 65 percent E-glass/epoxy. The values for the
material properties of the E-glass/epoxy yarns and the epoxy ma-
trix are presented in Table 1. The overall fiber volume fraction is
ol =ah ol =", ol =a, (31) 0.35, but taking into account the 0.65 fiber volume fraction in the
yarns, the yarn volume fraction that has to be usedVvjs

At interface wm, =0.35/0.65-0.5385. The average undulation angle determined

V=™ WM W _ .M approximately from the finite element model shown[i®] is
o ooy XYLy tan(@)=1/6. The results for the RVC properties from upper and
=™ gV g™ W M (32) lower bound estimates frofi2] and from the present models are
L 4 v’z Ty Tzx T shown in Table 2. The results fro2] were obtained by using

In the above relations, Eq&30)—(32), the local coordinate sys- prescribed displacement boundary conditions to get the upper
tem is denoted with a superscript prime. Since the strains in theund, and prescribed stress boundary conditions to get the lower
four layers are the primary unknowns, the stress relations havebeund. As seen from this table, the results of both present models
be expressed through the strains by using the corresponding cafe good, the single-cell model being somewhat closer to the finite
stitutive relations. Then, these relations have to be transferred iesults from[12].
the RVC global coordinate system where the primary unknownsTable 3 presents results for the homogenized RVC material
live. The transformation matrices from RVC global to interfacgonstants for the above-described case, and for the same RVC
local coordinate system can be expressed through the afiglesgeometry — with  different materials shown in  Table
and 6, as indicated above. Equatiof®9)—(32) form a system of 1—Timetaj321-S matrix and 65 percent SCS-6/Timetal yarns.
24 equations with 24 unknowns, the strains in the four layers fFhe results from[12] were acquired using the described there
global RVC CS. After solving this system, the stresses in tig$rain energy balance method, which gives an upper bound to the
layers have to be calculated. For that purpose, for the fill and wagfastic constants. As seen, all values have very good agreement.
layers, the constitutive matrices have to be transformed into RVEXample 2
global coordinates by a simple rotation about thand x-axis, Results are compared with the finite element based microme-
respectively. Finally, the average stresses in the RVC are calelanical method of Marrey and Sankad]. The yarn is of Glass/
lated by volume averaging the stresses in the four layers: Epoxy with propertiesE =58.61 GPa, E;=14.49GPa, G 1

=5.38 GPa, v 1=0.250, v;7=0.247; the isotropic matrix is of
1-Vq (33) Epoxy with E=3.45 GPa,»=0.37. The yarn volume fractiow,

2

=0.26, and from the RVC dimensions, the average undulation
Thus, all strain and stress components in the four cell layers ai;&g]

le was estimated to l#e=4.2 deg. The results from Reference
in the RVC are determined, provided that the strains of the R are compared to the present results in Table 4. Some discrep-
are known.

Vi
_ m_ m f
o= (o' + o)+ ?(a'ij-i-o}'}’).

anhcies of the values are probably due to the geometry of the

Compared to the four-cell model the single-cell model has both
different geometric and mechanical description. The geometry of
this model would more accurately represent tightly woven conj@ble 2

posites where there is n@r almost ng portion of the thickness Upper Bound [12] | Lower Bound [12) | Four-Cell Model | Single-Cell Model
entirely occupied by the matrix. Its micromechanical represent___ Cu, Gra 212 177 203 208
tion is relatively straightforward but would be more appropriat g“' g: 2 jgg 2‘6’(2) Zi:
for implementation in an implicit finite element analysis schem—¢_&z, 212 3 203 208
due to the fact that a system of 24 equations has to be solve( ¢, 6pa 4.42 437 4.60 438
each time iteration step. The four-cell model representation s GPa 9.82 9.23 115 9.23
. | th | t f t f - t h h Cys, GPa 3.20 3.14 3.53 3.41
quires only the solution of a system of six equations, which wour—z"5;; T Y Y 5
make it very efficient for an explicit finite element scheme. It wa| ¢, cpa 142 223 250 229
actually implemented as a separate constitutive model into the
nonlinear dynamic explicit finite element code DYNA3D andrable 3
used there to model the behavior of sandwich shells with wove= _
. . . E-glass/Epoxy SCS-6/Timetal
composite facings. Some results from this study can be found - ,
Reference Four-Cell Single-Celi Reference Four-Cell Single-Cell
Chapters 4 and 5 dfL3]. (12] Model Model (2] Model Model
E, GPa 18.634 17.853 18.209 196.05 194.47 196.32
E,, GPa 18.634 17.853 18.209 196.05 194.47 196.32
3 Results and Discussion E, GPa 8.346 9.788 7.798 174.15 180.30 170.60
Gy, G 3.19 . X . E X
To test the performance of the two models presented here, si- (: 2122 ZZ? Zg ZZZ Z":‘; 2: 82
eral RVC'’s with different constituent materials, yarn volume frac G”’ G: z‘m 2'497 2'294 60‘00 61'00 9'1
tions, and undulation angles are homogenized and the results | 2= =22 2911 2% e R 052'7759
compared to other published analytical, numerical, and expel—= '37 - - - - -
mental reSUltS. Yy 0.3720 0.3321 0.3923 0.3180 0.3086 0.3237
EXampIe 1 Vu 0.3720 0.3321 0.3923 0.3180 0.3086 0.3237
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Table 4 composite layers, and will fit well into both explicit and implicit
time integration schemes. Their very good accuracy was shown

Approach E, E,GPa E, GPa G, Gy, GPa G,y GPa Vi Ve Viy . . ..
- - ~ - > here through several tests, and together with the simplicity of
Reference [14] |  11.81 6.14 1.84 215 0.408 0.181 . ) e
formulation makes these models attractive for the finite element
Four-Cell 11.86 621 1.70 233 0.404 0.166 i i i
Model : : : : - - analysis of composite laminates.
Single-Cell
ol 11.93 567 1.59 231 0436 0.159
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The Elastic Stability of Twisted
Plates

E. M. Mockensturm

Assistant Professor, Since Coulomb’s and Saint-Venant's fundamental work, many researches have studied the
Department of Mechanical and effect of twisting on elastic bodies. The work presented here investigates instabilities that
Nuclear Engineering, can occur when thin bodies are subject to large twists and extends work by A. E. Green
Pennsylvania State University, published in 1937. Because large twists are considered, a fully nonlinear plate theory is

University Park, PA 16802 used. This theory predicts compressive lateral membrane stresses not predicted by Green’s
Mem. ASME weakly nonlinear theory. These stresses can significantly alter the twist angle at which

buckling occurs. Two conditions for the opposing twisted end supports are considered. In
one case the supports are held a fixed distance apart and in the other case the force
applied to the supports is held fixed during twist. The buckling modes and critical twist
angles vary significantly depending on the support condition used.

[DOI: 10.1115/1.135751)7

Introduction such as those suggested by experiments, is produced. While small,

Scientists and enaineers have studied how elastic bodies the magnitude of this compressive stress increases with increasing
9 st angle and may be sufficient to buckle a thin plate.

spond to twisting moments for centuries. These studies date baclfn the present study, the elastic stability of twisted plates is

t(.) 1784 with Coulomb’s fupdamental work on the thstlng_ 0?eexamined. It is found that, for sufficiently thin plates, the lateral

circular bars([1]). By assuming a more general form of solution, o hressive stress is large enough to produce buckling observed
that introduced the warping function, Saint-Venant was able | eyneriments and overlooked by previous authors. The results
determine the stresses, induced by twisting, in prisms of magy the case when the twisted supports are a fixed distance apart
shapes([2]). Saint-Venant's solution for rectangular prisms wage found to be much different from those when the supports are
the motivation for work by Greef8,4]. In this work Green used a free to move longitudinally and the force applied to them is held

weakly nonlinearvon Karman) plate theory and was the first to constant. In the later case the fully nonlinear plate theory predicts
investigate instabilities caused by twisting. both lateral and longitudinal compressive membrane stress and,

Green's work showed that if the longitudinal force applied t@epending on the system parameters, buckling may occur in the
the twisted ends is held constant during twisting, compressiygeral or longitudinal direction.

longitudinal stresses will develop in the strip. The phenomena can
be explained by noting that twisting stretches material near tidathematical Model
edges of the strip more than it does material near the midwidth.

Thus, if the force on the twisted ends is held constant and t%ijMockensturm and Motgs] used two nonlinear plate models to
i

dict steady motions of a uniformly tensioned, axially moving,

models differed substantially only in regions near the free

. ; i E%Iges of the plate. As the relative thickness of the plate decreases,

edge, perpendicular to the twist axis. these regions become smaller. Here, as the plates modeled are
Crispino and Bensofb] extended the work of Green to ortho-gnnosed thin, the model without transverse strain is extended to

tropic plates. They found that the critical twist angle is signifianaiyze the stability of an unbuckled configuration.

cantly altered by the ratio of the Young's moduli of the plate. The Three configurations of the plate are considered:réfierence

buckled shape, however, was similar to that obtained by Greeronfiguration is flat and uniformly tensioned; thabuckledcon-
During experimental studies of the effect of twisting on thingigyration results from twisting opposite ends of the plate; the

wide elastic sheets, a much different instability was observeglckled configuration results from infinitesimal displacements

Instead of buckling into a mode with nodal lines perpendicular tgout the unbuckled configuratiésee Fig. 1 Bifurcations from

the twist axis, the sheets wrinkled into a mode with nodal lingge unbuckled configuration are predicted from the equations gov-

parallel to the twist axis. This buckled configuration is consister@ming the buckled configuration. In the followir&) denotes a

with lateral compressive stress. However, all previous work fourthrmalized vector. Latin indices take the values 1, 2, and 3; Greek

this stress to be zero throughout the plate for all twists. indices take the values 1 and 2. Summation over all values occurs
Mockensturm and Motg6] used a fully nonlinear plate theory when an index is repeated.

to study the steady motions of translating, twisted plates. In thisLet R, specify the positions of particles in the reference con-

analysis, the twisted ends were constrained to be a fixed distafigerration. It will prove convenient to associate the particles in the

apart, supported by whatever force necessary. In this case, tbference configuration with a fixed Cartesian coordinate system.

longitudinal compressive stress found by Green and others dadsen

not occur. However, it was found that lateral compressive stress, . .

Ro= ¢ Eot §°Es (1)

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF Where{E-}={E‘} form a fixed. orthonormal basis and the coordi-
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- P '

i i 1 2
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 12Natesy are convected and' material.| i |<|T/2, ly?|<BI2, f.ind
2000; final revision, Oct. 18, 2000. Associate Editor: S. Kyriakides. Discussion dns°| <H/2 the body has uniform lengith), width (B), and thick-
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departnifgiig (H) as shown in Fig. 1. The reference configuration is

of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and N N . .
will be accepted until four months after final publication of the paper itself in thénapped byX*(¢') into the unbuckled configuration and by

ASME JOURNAL OF APPLIED MECHANICS. x* (") into the buckled configuration. Let
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C=Ap(E“®EP)+E3®ES, CT=(u,p+Ug.)(E*®EP),

=~ (Bup+Bp,) (E“®EP),
A=[(Ugp) |+ BU, sl(E*® EF+ EFQ E®). @)
It should be noted thamm)w#(u,‘aﬁﬂ, . In the present case,

the second covariant derivative is of thectorcomponenm?,‘

The resultant stress tensomgc,\) = n“fg «®Ez and m(c\)
=m*PE,® E are related to the second Piola-Kirchhoff stress ten-
sors and decomposed as

Hi2 _ H/2 ~
n= sdy=N+N, m=f spPdyl=M+M (8)
—H/2 —H/2

whereN(C,A) andM (C,A) are the resultant stress tensors in the
unbuckled configuration. The deformation taking the unbuckled
configuration to the buckled configuration produces the additional
resultant stressd$(C,A) andM(C,A). The kinematic constraint
that unit normals to the reference surface remain unit normals

after deformation is enforced by constraint stress

Fig. 1 The initial, X ¢(*), unbuckled, X (%), and buckled, qzqa(éa@) és"‘ E3® Ea)"‘qSEs@ észQ_,_Q
x(¢*), configurations of the plate
The fully nonlinear equations of equilibrium governing the
buckled configuration

[n*Ta,+q"a3+m3;,]r=0, [m*a,]r—[g%a,+0%3]= g

R=X*(¢/)=X(*) + ¢°A3(y) (2)
specify the position of particles in the unbuckled configuratio?fOVi()je the equations describing the unbuckled configuration
and u=0

r=x* () =x(y*) + y°8%(y*) ©) [N“TA,+Q"Ag+MTAz,] r=0,

specify the position of particles in the buckled configuration. The MTA 1.—[O%A +03A.1=0 10
vectors,A® and&®, are the outward unit normals to the surfaces, [ ol [Q"ALHTQAs] (10)
7 and., defined byX (%) andx(®), respectively. This form of and, upon linearization about this state, the equations governing
the deformation assumes unit normals to the surfa®g, are the buckled configuration
mapped into unit normals to the surfacesand.. The transverse ~ ol ol ~ R ~ B 1R 1
strains then vanish. The infinitesimal displacement fie{d') INTAHNTU,FMTAg FLMTA,) oA ]A3}’F_O(11)
=x(")—X(¢') distinguishes the buckled and unbuckled con-
figurations. where, because the plate is thin, terms involvMg" and Q"

The covariant basis o is given byA,=X ,=dX/dy*. A have been neglected. These equations are derived in detail from
reciprocal, contravariant basia®?, to.”” can then be constructed the referential balance laws of finite elasticity in Mockenst{ivin

such that and are based on the work of Nagh8j9].
R o ) . If there exists a strain energy functiop(c,\), the stress result-
Ag-A,=0, A3=A% A=A, A A-A=5, ants are
N AN 3 _ _ A do(C,A ~ - ~
Pap=Aap A% Top=Bap=Aap As N=2%, N=K,[Cl+K,[A],
[3,=—Bi=As, AP, T§=I4=0 (4) o)
. ¢ 1 ~ = <
where s} is the Kronecker delta, anfl, ;. Bz, andfzﬁ are the M=2 A M=K, [C]+K5[A] (12)
first and second fundamental forms and Christoffel symbolg’of
respectively. Analogous relations, obtained by replacing uppehere
with lower case letters, hold for the buckled configuration. 5 5 2
The covariant derivatives of the componentd/ofdenoted by a K.=2 9 K,=2 g Ka.=2 ¢ (13)
vertical bar, with respect to the badis are then Y ocac), 27 ocan| S anan |
Vois=VaptThsVi, Vap=Vaat+T5,V,, are fourth-order tensors, afid]g denotes quantities evaluated in
N the unbuckled configuration.
Vps=VpatBgVas  Vapy=Vajys- ®) Although solutions can be obtained for any, nonlinear, isotropic
Note that this is the covariant derivative with respect to a Eucligdaterial (7)), here attention is focused on the Saint-Venant-
ean three-space, not a Riemannian surface, resulting i5egy. ~ Kirchhoff material,
The membrane stretch and bending strain in the buckled con- 2 12 .
figuration are given b N= KH L) 1 M
¢ g y (P(C, )_ﬂ 4 +( —V)T
— Eat o EB)+E3wES —_ + EagEB
c=a,3E*+®EF)+E°®E°, A=—(b,s+bg,)(E*®E ),6 K( (c1—3)2 (c=1)-(c=1)
(6) o \v e (19
respectively. Upon linearization about the unbuckled configura-
tion c=C+C and\=A+ A where whereK =EH/(1—v?), E, and v are material constants.
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A~ T\ A T\ A
E1+{cos( iz E2+§sin( ii) E; (15)

After deformation the twisted ends of the platg'E +=L/2) T which equalse in the reference configuration, increases with
must pass through the lines increasing twisi(see Figs. 3 and)4 o
In the present analysis, it is assumed that the plate is first elon-
(+)\1L gated by an amourg, and then twisted. One could also assume
-2 that the plate was first twisted and then strained. For an infinitesi-
) . . . mal, linear theory these two assumptions give identical results.
where (e {—,e},\, is the nominal(untwisted stretch in the por the nonlinear analysis done here, the twist then stretch case
plate, andr/2 is the angle between each support and the horizogap pe obtained from the results presented by replacaigwith
tal. The total twist in the plate is then Additionally, it is assumed .
the plate is freg to slide laterally along the supports and theyTq zeroth order in ‘a” the equations of equilibrium(21) are
provide no bending moment, identically satisfied. Higher order equations, fo andf 4,
21 2 MBl_ 11_
N*+2I'5gM#=0, M*=0. (16) fo)/+vy=0, fly(+1/2)+v(e+1/8=0
Correspondingly, for the buckled configuration

3

N2+ 2I'5,MP =0, M™=0, u;=0, U=0. (17) fig)'+ %(2u2—3)—ey:o,
The boundary conditions on the traction-free lateral edgés (
~ B2 are f ( NPT 1) 0 (24)
ol T35+ 5| 12e°-3e— —| =
N“2+2T'3,M#2=0, (MA,) ;- A2+M¥P=0, M?=0, and @172 24 16

are readily solved. While even higher order solutions are easily
obtained, results to fourth order im" agree well with numerical
results at least ta=0.5 ([6]).

Ne2+2r§,MP2=0, (M*PA,) 5 A2+ MP=0, M?*=0
(18)

for the unbuckled and buckled configurations, respectively.

Unbuckled Solutions. The fully nonlinear equations of equi-
librium are solved by assuming a solution of the plate midsurface,

B T2 T2
X(%.Y) . . _ R
B =NXE;+f(y)cogax)E,+f(y)sinfax)E;  (19)
where{x,y}={y*,4?}/B, a=7B/L, andf(y) governs the lateral
stretch in the twisted plate. Under this assumption

2

5 —

[A.,]= )\i"'azfz 0 B[B, ;= Njaf’ 0 1} Reference Configuration
aBl™ "2\ apl™ 2, 2¢2 ’
0 (f") Y\i+a?f?|l 0 ST/2 ™ -
2£¢1 _ a2
aff 1|—-af O |
BLI%s)= vz, o BUSl= ,, l T4 !
Ntasfe[l o0 f 0 f .

(20) L2 » <L/2

where a prime denotes differentiation with respecy.t®esolved i l

onto the base#\', the three, nonlinear, partial differential equa- Fixed Support Separation Fixed Support Force

tions of equilibrium(10) reduce to a single, nonlinear, ordinary
differential equation

22 1172 2212 _ 12 1211 \p2 Fig. 2 lllustration of the difference between the case with fixed
N2 +N"T3,+N T32-2(M 2tM T12)B] support separation and the case with fixed support force

Unbuckled Configuration

~M™¥(B] #+T'2B1+'11B3)=0 (21)
. _ 2_ _
where with Eq.(14), e=(\{—1)/2, ande=H/B 0.5 , 124
N 2e+a?f2+p(f'2-1) N2 f2-1+p(2e+a’?) 05} | — T~ : 103
K 2 K 2 ’ 045} | 1o n=1,7| 833
M2 g2(y— 1)\ af’ ’ 0411\ / V/\l A 660
KBZ ™ Dhiiar (22) ..0'35 n\={/5 \/ ~ ) 507
VA1 S 03¢ / —Av"v‘;— 1.373 §
and all other components of the resultant stress tensors are 0. ¢25} g n=1 1250~
boundary conditions are identically satisfied except for #§.1) ozl " 1 166
with index a=2. The dimensionless, longitudinal support force ) / il '0936
0.15 n=5 .
2 K [eA}(1-v)a?f'?
T= +2e— v+a2f2+ vi'2|dy. i — A 0ate
ffl/z 2EH [ 3(\i+a’f?)? Y 0.05} 10 0104
23
] ] ) ) (23) v 18 16 14 1z 1 2 4 6 s 10
Equation(21) is solved using a perturbation method. The di nn

mensionless twista, is assumed smalk and e are assumed of

ordera?, andf(y)=y+3/2;a%'f 5 (y). Fig. 3 Dependence of critical twist on longitudinal mode num-

) ) ) . ber and aspect ratio for an initially untensioned plate and fixed

Fixed Support Separation.If the supports are a fixed distancesupport separation. Insets show lateral mode shapes for vari-
apart, the strairg, is prescribed. In this cag@lustrated in Fig. 2,  ous aspect ratios.
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0.65 — - T 221 find these nontrivial solutions, all parameters but the dimension-

0.6} - 1.96 less twist,a, are assumed fixed. The smallest”“at which a
osst N /I / 173 nontrivial solution exists is called the critical twist,, .

\V/ The equations governing the buckled configuration can be re-
05t 41/10{\/ =1 152 duced further, and the boundary condition along the supported
045F 1.33 edges satisfied, by assuming a separable solution of the form

.»U%Z"KZW‘ 1.16 — .
O et w1 : (F : Ur(x,y) = VAU (y)sinf am(x— ¢/2)]
035 1.00
n=1
n=>5

= _
// oG Uz(%,Y) = VAU, (y)cog am(x—/2)]
P 17 Us(x,y) =Us(y)sin am(x— $/2)] (27)
02 {.665
s L | s03 where¢=1/7=L/B, a=nz, andn is an integer.
A‘An’d&,* ’ Inserting Eq.(27) into Eq. (11) and Eq.(18) removes the de-
0.1 =10 1541 pendence om from the equations and yields three, coupled, linear
0.05 1.510 ordinary differential equations fdd; . These equations are fourth
order in U; and second order iV, and U,. When written in

V10 178 1/6 1/4 12 2 4 6 8 10
nmn

first-order form they become

Fig. 4 Dependence of critical twist on longitudinal mode num-
ber and aspect ratio for a plate initially strained 0.5 percent and
fixed support separation. Insets show lateral mode shapes for
various aspect ratios.

4
;J y'[Qd)[S](y) (28)

2
; y'[P.])[S]m:

where the &8 matrices[P,] and[Q,], are independent of (but
functions of “a” and the other system parametpend

[S]=[U; U, Ug U1’ U2’ U3’ U3" Usm]T- (29)

Fixed Support Force. Alternatively, one may consider the Solutions even i, andU; and odd inU, are independent of
case in which the supports are free to slide longitudin@itythe those odd inU, andU; and even inJ,. Thus, solutions can be
E,-direction and the longitudinal force applied to the supports ifound in the rangg € (0,1/2) instead of € (—1/2,1/2). As a trial
held constant during twist. This situation is illustrated in Fig. Zolution for Eq.(28) assume
and is the case considered by previous autkl&sb5]). Substitut-

ing the expansion fof(y) into Eq.(23), expanding in series about S
0 2 sohing fore des, + 2 expanding [S](y)—{[m > y'[All} [1(0) (30
1 1 1
e=Ta2[2—4+ 2v f(2) E +a2f(4)(§)} where
[S](0)=[B, 0B, 0B;0B,0] or
1/2 v _
+2""2f Vit E(f(rz))zdy} (25) [SI(0)=[0 B, 0 B, 0 B3 0 B,]. (31)
0 Substituting Eq(30) into Eq. (28) and equating like power of
where the fact that(y) is an odd function has been used. yields the following recursive relations fA, ],
Again, to zeroth order in &” the equations of equilibriuni21) 1 -1
are identically satisfied and higher order equations, goverhi _
andf g a N N e O 2 ([Qin-1]=NIPL DA - (32)
f<z>"+ vy=0, Substituting Eq(32) into Eq.(30) and using the boundary condi-
1 1 1 1 tions at the free edge, E¢L8), yields an eigenvalue problem for
f(2)/( iz +v T(l— V2)+ 1—2— v f(z)( — E) —f(2>(§)” =0 a
Y2 2[2 » -
fa'+ 5|37 2T+y (5” —1]1=0. Results
1 1 2T T2 The twisted support conditions significantly alter the stress state
f(4)’ i_) T —— 4+ —(1-1?) in the unbuckled configuration and, thus, change the state where
2 480 1440 12 2 bifurcations occur. For both support conditions, twisting generates
1 1 compressive stress in the plate. When the supports have a fixed
+a| - _) — f(4)(_> } =0 (26) separation, the longitudinal membrane stress is always positive as
2 2 twisting only stretches the plate in this direction. However, the

are readily solved. lateral membrane stress, which is zero in the untwisted state, be-
come increasingly compressive with increasing t[i8t). For the
Bifurcations. Once the unbuckled configuration has beefixed support case, the lateral membrane stress causes the plate to
found, bifurcations from this state can be sought. The threguckle.
coupled, linear partial differential equations governing small When the supports are free to move in the longitudinal direction
perturbation from the unbuckled configuration are obtaineghd the longitudinal force applied to them remains constant during
from Eq. (11) by substituting the series approximatidify) twisting, both longitudinal and lateral membrane stresses may be
=y+a’fy(y)+a*f(4(y) determined above and taking the dotompressive. In this case, increasing twist again causes increasing
product with A'. The resulting equations are expanding ifongitudinal membrane stress near the free edges of the plate.
series—to fourth order—abou@t=0. As these equations are ho-However, because the total longitudinal traction acting on the sup-
mogeneous, a trivial solutiofu=0) always exists. However for ported edges remains constant, the longitudinal stress near the
certain combinations of parameters, nontrivial solutions exist. Toidwidth must decrease with increasing twist. Thus, depending

564 / Vol. 68, JULY 2001 Transactions of the ASME



on the initial tension in the platé.e., force on the suppoitsthe
longitudinal membrane stress may be compressive near the pl

midwidth. ®

In the following results, unless otherwise stated;0.3, &
=103, »=1, andT or e=0. ©
=]

Fixed Support Separation. When the supports have a fixeds | X~ -
separation, the lateral membrane stré&%, is the cause of buck- 2
ling in a twisted plate. As this membrane stress decreases w
increasing twist, there will be some critical value of twist tha o
causes the plate to buckle. This critical twist is dependent ont < L
material properties, geometry, and initial stress of the plate. Pi
vious analyses using weakly nonlinear plate theo(fids5]) pre- SESERE 03 04 06 08 I Y Ty
dict the lateral membrane stress is zero for all twists and, thus, log(e) e (%) log(s)
not predict this instability.

If the thickness, initial tension and material properties of thgig. 5 Critical twist as a function of initial strain and thickness
plate are held fixed at the values assumed previously, the dimé-a square plate and fixed support separation
sionless critical twist,, increases monotonically with increasing
a=nyz (see Fig. 3 The longitudinal mode numben, is thus
always one as this will produce the lowest, . While a, in-
creases withy, the twistangle r=al 7, that causes bucklinde-

creaseswith 7. 0.6 :11=§
Sincen=1 the longitudinal dependence of the buckling mode / e
is always a half sine. However, the lateral dependence varies s 0.5/"
nificantly with aspect ratio as shown inset in Fig. 3. For somu n=3
aspect ratios, the buckling mode is an even functiory.oFor P n=2
other aspect ratios, it is odd yn These regions are divided in Fig. g =%
3 by dashed lines. Ag; increases, the lateral profile becomes 0.3 =1
increasingly oscillatory. Asy increases, the buckled region also “fljz
becomes more localized near the midwidth. 0.2 e ——— I']; 2
If an initial stretch(tension is applied to the plate and then it is ":}7
twisted, the critical twist angles do not increase for all plate ge 91 n=w
ometries as one might expect. This can be established by comp
ing Figs. 3 and 4. In the first cagfig. 3), as noted above, there 0.2 04 0.6 0.8 1

is no initial strain in the plate before it is twisted. In the seconc e (%)

case(Fig. 4), the plate is initially strained 0.5 percent and then_ N ) ) o ) )

twisted. Againa.(7.,) increasegdecreasasmonotonically with Fig. 6 C(ltlcal twist as a function of mltlal strain for various

a, and buckling always occurs with=1. While the longitudinal 2SPect ratios and fixed support separation

mode profile does not change with initial strain, the lateral profiles

do, as shown inset in Fig. 4. Also illustrated by the insets in

Figs. 3 and 4, increasing the initial strain in the plate causes theparation case is observed. Here, both lateral and longitudinal

lateral buckling profile to become more spatially oscillatory for aompressive stress can develop and the plate may buckle in either

given 7. a lateral fi=1) or longitudinal 6>1) mode. In this case, direct
The dimensionless plate thickness alters the critical twist angtemparisons can be made to the weakly nonlinear results of Green

significantly. As shown in the righte=one percentand left & [4]. In the following discussion the applied, nondimensional sup-

=0) panels of Fig. 5, with=1/3, a., decreases from 0.825 whenport force is given as a percentage. This is done for easier com-

£=10"2t0 0.129 where =10"* and from 0.807 whem=10"2 parison with the case when the rollers are a fixed distance apart.

to 0.121 whens =104, respectively. For the square plate illus-Noting Eq.(25), one can think ofT as the strain induced by the

trated in this figure, the initial strain has little effect on the criticapplied force before twisting. _ .
twist angle. For a plate witle=10"*, the critical twist angle  The possibility that the fundamental buckling mode occurs with

initially increases from 0.129 a=0 to 0.148 ate=0.1 percent the longitudinal mode number greater than one is illustrated by the
and then decreases with further increases of initial strain. Fof’@hmonotonic behavior of the curves in Fig. 7. For the case when
plate with e=10"2, the critical twist angle decreases continu{h€ supports are free of any applied forde<0), the critical twist
ously with increasing initial strain. increases monotonically witk. Thus, in this case the plate al-
The aspect ratio also influences hew depends on the initial Ways buckles in the first longitudinal mode; a result also obtained
plate strain. As seen in Figs. 5 and 6, for a square plate wigy Green[3]. However, as noted in Gredd], when a force is
e=10"2, a,, initially increases from 0.324 &=0 to 0.332 at applied to the supports and held fixed during twist, the critical
=03 p’erccént and then decreases to 0.32%-abne percent. twist does not necessarily increase monotonically withThus,

However, when the width is greater than three times the Ieng{ﬁr a given, the minimuma,, may occur withn>1. For ex-

the critical twist increases monotonically as the initial strain indPle, for a plate with»=1/10 and T=0.01 percent, a
. St caty e nt =0.05874) occurs withn=39. For a square plate witfl

crease from O to one percent. For a plate witk1/2, a., de- . .
; ; =0.01 percent, the fundamental buckling mode occurs with
creases monotonically a&sincrease from 0 to one percent. How- ' o
Y b =4 anda.,=0.05875. Wheril' =0.1 percent the possibility of a

ever, this monotonic behavior does not remain for all narrowEé

plates. The nonmonotonic behavior reappears for a plate w| Hckling mode witm>1 remains. Whem=1/10, the plate buck-

_ Ll in the first longitudinal modenE=1) andag,=0.1533; how-
t1(]) el\jgnazstflﬁevvtner:]kslilgg mgrqeeagggnges from even to odd and baever, whenyn=1/8, n=53 anda.,=0.1641, and whem=1, n

=7 anda,,=0.167. As the initial stretch in the plate increases,

Fixed Support Force. When the supports are allowed toa., again becomes a monotonically increasing functiorxand
move longitudinally to keep the force applied to them constattte plate buckles in the first longitudinal mode. There is also a
during twisting, behavior much different from the fixed supportiecrease in critical twist with an increase in applied tension from
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Fig. 7 Dependence of critical twist on longitudinal mode num-
ber and aspect ratio for a plates with various fixed support
forces

Fig. 9 Critical twist normalized by plate thickness as a func-
tion of plate thickness for various aspect ratios and no support
force

0.1 percent to 1 percent for plates with<1/3.25, a phenomena When the force applied to the supports remains zero as the
also seen in the case when the rollers have a fixed separationplate is twisted,n=1 and the dimensionless parametgy /s

As the tension increases, a transition occurs from longitudingécomes nearly independent of plate thickness as the thickness
buckling (n>1) to lateral buckling §=1) as seen in the fixed decreases. As shown in Fig. 9, as the plate gets narrower the value
support separation case. Previous analyses]) predict that the of ¢ at which a., /e becomes independent ef decreases. For
critical twist angle increases monotonically with increasing ten;>1/2, a., /¢ is constant fore<1/100. For a plate withj=1/10,
sion. The weakly nonlinear theory used in these studies only peg- /= is nearly independent of for £<1/10,000. As the plate

dicted the possibility of longitudinal compressive stress. By inhickness increases,, /s decreasegbut a., increasek for all
creasing the support force, it was predicted that ever greater twigtpect ratios.

would be necessary to produce an instability. Here, the fully non-

linear theory also predicts compressive lateral stress. Figure.8

illustrates how, for large support forces, it is the lateral membrar%Jmmary

stress that causes the instability. Shown for three valuea of Using a fully nonlinear plate theory, the elastic stability of a
=nn is the critical twist as a function of. For T below 0.2 plate twisted out-of-plane by opposing end supports is studied.
percent the critical twist increases with tension as predicted pfB~yo support configurations are investigated and compared. In
viously. The dotted line represents the twist at which, for a givethe first case the end supports are held a fixed distance apart as the
T, the minimum longitudinal membrane stréasthe midwidth is  plate is twisted. Because the plate is stretched during twist, the
zero. To the right of this curve, the longitudinal membrane strefarce applied to the supports and the longitudinal membrane
is positive everywhere in the plate. Previous analyses predict thieess increase with twist. If the plate is not initially in com-
critical twist to always be above this curve, in the region whengression, the longitudinal membrane stress will always be posi-
compressive longitudinal stress exists. Here, the critical twisve. However, the fully nonlinear plate theory predicts a com-
curves cross this line, illustrating that a different instabilitpressive lateral membrane stress that incredgesnagnitude
mechanisnilateral compressive stresis at work. with twist. Thus, buckling can occur for this support configura-
tion. In this case, buckling always occurs in the first longitudinal
mode. In the second support configuration, studied by previous
authors, the force applied to the supports is held constant during
---------- twist. The end supports move closer together in this case. Here,
’ both compressive lateral and longitudinal membrane stresses can
develop and the plate may buckle in fundamentally different
modes. In some cases the mode is spatially oscillatory in the lon-
gitudinal direction and in other cases the mode is spatially oscil-
latory in the lateral direction. Previous investigations, using
weakly nonlinear plate theories, do not predict the occurrence of
the second type of mode and can significantly overpredict the
critical twist angle.

0.5
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The Phenomenon of Steady-State
a st | String Motion

Expert Researcher,

The Israel Electric Corporation, Ltd. The paper examines the phenomenon of steady-state motion for a string traveling with
R&D Division, constant velocity along an invariant curve under gravity in a viscous medium. This tech-

Amir Bldg. nically important phenomenon has been known in the literature for about 120 years and

Haifa 31000, Isragl may be applied in high-speed turbines, the textile industry, etc. The conditions for the

e-mail: mir@iec.co.il phenomenon’s existence are found. Concepts of two critical string velocities as well as

sub, super, and hypercritical domains are introduced. The analytical solutions for the
nonlinear differential equations and arbitrary constants for the general boundary condi-
tions are found. The theoretical results are very close to the experimental ones.

[DOI: 10.1115/1.1380677

1 Introduction 2 The Differential Equations

The paper examines the technically important phenomenon of alVe assume that a homogeneous, inextensible, ideally flexible
steady-state string traveling with constant velocity along an istring without bending and torsional stiffness travels with a con-
variant curve(mode under gravity in a viscous medium. Thestant velocity along an invariant mode having lengthGravity
phenomenon is illustrated schematically in Fig. 1. The stringnd resistance of the mediudrag force load the string. The
comes out from outlet device @utleh, moves along invariant drag force is assumed as constant, always directed along the mode
mode 1 or 4, and enters into inlet devicgiflet). One sees the tangently opposite to the traveling velocity. The differential equa-
string frozen in space, because the motion along the mode is figns of the steady-state plane motion may be deri§@ from
visible. The string in fact moves only along itself and its velocityequilibrium” of string element shown in Fig. 2. The equations’
at every point is constant and directed to the mode tangent. THRYivation in general form is given in the Appendix. These equa-
phenomenon may be applied in high-speed turbines coolirﬁﬂns in projections onto Cartesian coordina¥esy in nondimen-
thread coiling in the textile industry, design of easily unrollegional form are

mobile radio antennas, etc. d dx\  dx
This problem has a long research history and still no complete —(p*— ——=0;
solution. In the last century Aitkiil] and Radingef2] wrote ds|™ ds/ ds
about the string “rigidity” that in their opinion is produced by the d dy| dy
centrifugal forces. Smith and WeathezcH&h and Burge[4] ex- d—(p*d—) - d——n=0;
amined the phenomenon’s heat exchange for practical use in high- s s s
speed turbine cooling. Voevodifb] had carried out numerous dx\2 (dy\2
experiments with different textile cords elevation up to the height (d_s + d_s) =1, (1)
of 30 m.

Kurkin and Lebede\6] showed experimentally in a vacuumwhere the nondimensional variablesy, s, p*, n are equal to
chamber that the phenomenon ceases to exist when the air is re- "
moved. A heavy metallic cord was also elevated due to its spe- x= 5 y= X = § p* = P - 9.
cially heightened aerodynamic resistance. These experiments L’ L’ L’ mul’ w'
showed that a dominant reason for the phenomenon’s existenceis_ p _ 1\2 is the fictitious string tensior® is the real tension:

the friction of string-on-air. ; ; o ; :
- . V is the traveling velocity; angk is the drag force of the string
Svetlicky ‘,"md. Gabruk7], Qohen and .EpSte'[.B]’ and N.o.rden- unit masgacceleration The drag force that depends on the string
holz and ORel_IIy [9] e_xamlned _the klnemgtlcal condltlon_s Ofgeometry and material, medium viscosity, et§6]) increases
steady-state string motion. Svetlicky and Miroshflld], Kurkin  montonically with the traveling velocityg is the gravity accel-
and Miroshnik| 11], Healey and Papadopoulp2], and Schagerl eration:m is the string linear mass; argiis the arc(Eulen coor-
et al.[13] analyzed different particular cases of string travelingyinate along the mode.
Perkins and Mot¢14,15 analyzed the vibration and stability con- The fictitious tensiorP* may have any sign, however, the real
ditions of traveling cables while neglecting the resistance of thgcionp is assumed to be positive
medium. '
The purposes of this paper are to present analytical solutions of
the above boundary value problem for different domains of strir@
traveling when considering the resistance of the medium and com- ) ] ]
pare these solutions with the experiment results. The analyses bdntegrating the first of Eq(1) gives

Equations’ Analytical Solution

low and given discussion of the results provide the explanation for dx
the phenomenon’s existence. p*E_X: C;. 2)
Contributed by the Applied Mechanics Division o AMERICAN SOCIETY OF Substitution ofp* from Eqg.(2) into the second Ed1) in terms

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 23,

2000; final revision, November 18, 2000. Editor: N. C. Perkins. Discussion on the d dx d dy\ 2

paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Department of — = ds=+dx\/1+ (_) (3)
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and will ds dsdx’ - dx

be accepted until four months after final publication of the paper itself in the ASME, . . .

JOURNAL OF APPLIED MECHANICS. yields (while considering the sign plus af5)
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Fig. 1 Schematic illustration of the phenomenon

dy dy\?

Separating variables and integration of E4). leads to
dy  1[|Cy+x[" C,
C, [Ci+x|"

C dy 1
( 1‘“0& - +

x_ 2 : %)

Additional integration gives
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Fig. 2 Three kinds of steady-state string motion

Journal of Applied Mechanics

CL[[Cy XM ClCpt X[t c 6
=211+ 1-n 3 )

The valuegp* ands are found from Eqs(3)—(6) after manipu-
lations:

. 1[|Cy+x|rn n
pr=-3 C—2+C2|<31+XI , @)
CL[[Cy X CylCyt x|t c .
T 2| Cy(1+n) 1-n 4 8)

whereC,,C,,C3,C, are arbitrary constants.

Equation(7) has a singular point at= —C;, where the “ten-
sion” p* either vanishes or is infinite regardless of the boundary
conditions. At this point the tangent to the string mode is always
perpendicular to the&-axis (dy/dx=c). Evidently, the solutions
(6)—(8) exist at the singularity only for the case<1.

We name the minimum velocity for which the solution exists at
the singularity as the first critical velocity. This velocit¥., is
found from

#(Vig)=g (n=1). %)
Substituting Eq(5) into
dy 21312
()
p= Ty (10)
dx?

allows one to find the radius of curvatupe
+|C1+x|1+2”+C‘2‘|Cl+x|1’2”+2C§|C1+x| )
- 4nCs '

Investigation of Eq.(11) shows that the curvature radius can
either vanish or become infinite at the singularity. We name the
minimum velocity for which the curvature radius vanishes at the
singularity as the second critical velocity. This velocWy,, is
found from

p=

m(Voer)=2g (n=0.9. (12)
Thus, there are three domains of the string motion:

* subcritical, when 82V<V;, 0<v<1,n>1, u<g,

e supercritical, when V,<V<V,, 1<v<2,0.5<n<1,
g<u<2g, and

* hypercritical, wherWV>V,.,, v>2, n<0.5, u>2g,

where the parameter=1/n.

4  Subcritical String Motion

First we examine the string having a traveling velocity smaller
than the first critical on¢in subcritical domaih In this case as it
follows from the abovementioned domain the string mode cannot
contain the singularity.

When the origin of Cartesian coordinates is located at the out-
let, the boundary conditions are

y(0)=0; y(a)=b; s(0)=0; s(a)=1, (13)

wherea=A/L, b=B/L, A, B are the horizontal and vertical dis-
tances between the outlet and the inlet.

Substitution of Eqs(6) and(8) into Eqg.(13) and manipulation
give the equation of the consta@t

[ICi+al* " "= [Cq**M[|Cital* "= |Cy* "=
=(1-b*(1-n?). (14)
After numerical finding ofC, from (14), the constant€,, Cs,
andC, are calculated as follows:
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Fig. 4 The theoretical string tension for subcritical velocities

stantsC;, C} satisfy the derivative continuous condition. Thus,
there are four boundary conditiori3) for determining of five
constant<,, C;, C5, C3, C,4. The deficient boundary condition
can be found when considering the string equilibrium in the outlet
Fig. 3 The theoretical string modes for subcritical velocities vicinity (on its both sidels One can prove that due to the negative
“tension” the outlet cannot “break” the string direction. Conse-
quently, the deficient conditions is

(1=b)(1—n)

_ . d
C27c rarme (13) © (0)=tana (29)
Coe 1 L e (e 1) \Wherea s the known starting angle between the axiand string
37 2 C,(1+n) 1—n ’ (16) outlet tangent. This angle is determined by the given direction of
the outlet. Experiments also confirm the strong influence of the
A e s e e 17y Starting angle on the string mode.
47 2|Cy(1+n) 1-n an Substitution of Eq.5), (6), and (8) into the boundary condi-

. 1 1 . find fi .
The influence of traveling velocities’ on string modes in th thns (,, 3)Candc( 9) permits o find five arbitrary constant,
2 3 4

subcritical domain is presented in Fig. 3. The modes are shown 16¢’
a=0.2p=0. The analysis shows that the modes do not practicalty,
differ from the catenarnfmotionless equilibrium modestarting

from »<0.2. B (1-b?(1-n? —a?

The plots of the nondimensional tensipfi versus nondimen- T o« T o«
sional arc coordinats for the modes of Fig. 3 are presented in 2a—(1+b)(1+n)tar( 7 5) _(1_b)(1_n)00f(2_ 5)
Fig. 4. The analysis shows that the “tension” tends to the one of
the catenary, when the traveling velocity vanisties, the param- (20)
eterv approaches)0

T o
ci=-Ic.ta| 7~ 3); @

5 Super and Hypercritical String Motions

Now we examine the string having the traveling velocity C,,_Cé|cl|1 "+(1-b)(1-n) -
greater than the first critical on@e. super and hypercritical do- 2 |Ci+altn ’ (22)
maing. In this case the mode with the singularity, for which the
“tension” vanishes, may exist. The continuous “tension” which is _ 1 |Cl|1+n C§|(31|1_n )
positive at the inlet becomes negative at the outlet. Cs=- 2 Ch(1+n) 1-n |’ (23)

The singular point divides the mode into two parts. In a general
case the arbitrary constar®@, C,, C;3, C, in Eq. (5)—(8) may 1[ |Cqyt™™  CylCyt
be different for each part. The arbitrary constants of the first mode Cy=~— 2 Cy(1+n) 1-n (24)

part, which is located between the outlet and singularity, are let-

tered by subscripts™ and the ones of the second part—by sub- There are four solutions for the examined problem satisfying
scripts “.” Using the continuity conditions at the singularity, onethe given boundary conditions due to signs™in Eq. (3) and
can obtain two possible valuegroots of C; (in the process of Eq(21)

S~~~ e~~~ derivation. These solutions are shown schematically in Fig. 5.
C1=C1=Cy; C3=Ca=Cs; Cu=Cy=Cy; C#Ca. Modes 1, 2 correspond to the plus sign in E3). while modes 3,

(18) 4 correspond to the minus sign. Modes 2, 4 have mutually inter-

The derivativedx/dy is always infinite at the singularity re- secting parts and are not of practical interest. Mode 3 can be built
gardless of the boundary conditions, therefore, the differing cohy setting the starting angle 180 deg greater than in mode 1.
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Fig. 5 The four possible solutions satisfying the given bound- \
ary conditions 02 ‘ i \ ‘
o . , 03
Thus, only the plus sign in Ed3) and defined valu€; (Eq. Vo113 \
(21)) are considered in the paper. Corresponding string mode 1 is o
similar to the experimentally observed one. This mode having the 04 |
singularity at positivex, may exist, if the constar@€, is negative, 0 0.1 0.2 03 04 0.5
thereby leading to the inequality X

(1-b?(1-n?—a?

0 Fig. 7 The theoretical string modes (a=45 deg) for large su-
T a ) : per and hyper critical velocities

2a— (1+b)(1+ n)tar(%— g) —(1—b)(1—n)cot< >

(25)

Thus, the motion with the velocity greater than the first criticajes which are considerably greater than the first critical velocity
one exists if its parameters a, b, and « satisfy the inequality are presented in Fig. 7. All the modes in Figs. 6 and 7 have the
(29). ] o - ) starting anglex=45 deg and parametees=0.2,b=0.

The string modes in Fig. 6 correspond to velocities, which are gytiet and inlet can be assumed coincidirmg=(p=0), when
slightly greater than the first critical one. The modes with velocihe distance between them is considerably greater than the length
L. The influence of the starting angle on the modes having con-
stant velocity z=21 m/se) is shown in Fig. 8 for this case.

The string modes are experimentally determined using the ex-
0o I perimental apparatus illustrated in Fig. 9. The closed cylindrical
Y et P woven textile cord 1 which has weight/length 4.5 g/m, length, 7

N . "\ and diameter 4 mm wraps around flanged pulley 2 with the diam-
0 LS kY eter 0.2 m. A surgical groove in the pulley perimeter increases the

: pulley-cord friction. The cord is pressed to the pulley by pinch
rollers 3 and 4. The location of rollers 3 and 4 can be changed and
then fixed along the pulley’s circumference. The pulley attached
to a DC motor moves the cord. The experiments were carried out
with velocities up to 30 m/sec, which were measured with a stro-
boscope. A simple camera photographed the cord modes.

The comparison between theoretical and experimental modes
(the theoretical ones are dotjeid presented in Figs. 10 and 11.
The modes with constant velocityV=19.6 m/sec [
=28.2m/sef) and different starting angles are presented in Fig.
10. The modes with constant starting angle 45 deg and differ-
ent velocities are shown in Fig. 11. The theoretical plots of “ten-
sion” p* versus coordinate corresponding to the modes of Figs.
10, and 11, are shown in Figs. 12 and 13 accordingly.

The “equilibrium” of free string part is considered in Fig. 14
for which the weight mgL and drag forcemof unit mass and end
: (outlet, inle} “tension” forces PY , P3 load the string. The equi-
| librium of moments with respect to the intersection point O of the
v =104 end forces’ directions gives

0.1

0.3

0 o1 02 gLD=pn, (26)
where() is the corresponding area of the modds the distance

Fig. 6 The theoretical string modes  (a=45 deg) for small su-  between the center of gravity of the mode’s area and point of end
per critical velocities forces’ intersection.
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10 The theoretical and experimental modes (m
=28.3 m/sec?) for different start angles

. ; the singularity. The supercritical motion may occur only if the
. i solution exists at the singularity. The conditions for existence of
e the solution are derived for unlimited string length. However,

04 «=-65° string stability and strength, motor power, etc, limit the length.
. This issue is a separate subject for investigation that is not con-
sidered in the paper.
03 0 01 02 03 0.4 05 The analogy between the steady-state motion and equilibrium is
x also interesting. The equilibrium equations of any mode part may

be written(as though the string does not travelthen changing

Fig. 8 The theoretical string modes  (m=21 m/sec?) for differ-
ent starting angles

the real tensiorP to the fictitious oneP* =P —mV?2,
The phenomenon’s existence may be explained while consider-

ing the momentum “equilibrium” of the string part which is
. ) . shown in Fig. 14. The string does not “fall” under the weight
Equation(26) enables to find the drag force acceleraliofom  infiyence because the moment of the drag force balances the mo-

Eq. (26) when the experimental string mode is known.

6 Discussion of Results
As shown above there are three kinds of string md&és. 2):

« falling mode 3 without the singularit{in the subcritical do-
main);

« roundish mode 2 with the singularity when the radius of cur-
vature at the singularity is infinitéin the supercritical do-
main); and

» extended, sharp at the top mode 1 with the singularity when
the radius of curvature at the singularity vaniskiesthe hy-
percritical domain

The boundary conditions for the subcritical motion are the same
as for the motionless string equilibrium because there is no singu-
larity. The singularity leads to an additional boundary condition at
the outlet. The modes strongly depend on the solution behavior at

Fig. 11 The theoretical and experimental modes
for different velocities

Fig. 9 The schematic diagram of experimental apparatus

572 | Vol. 68, JULY 2001

ment of the weight. One should pay attention to the paradox of
negative value of the “tensionp; in the equilibrium, despite the
fact that the real tensioR is always positive.

u=23 m/s?
V=16.2 m/s

u=14 m/s2
V=11.9 m/s

1=10.6 m/s2
\ V=8.2m/s

(a=45 deg)
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Appendix

Figures 3, 6, and 7 show the string elevation starting fram the Derivation of Differential Equations of Steady-State String

catenary, as the longitudinal velocity increases. The tensi . - | . X : | ‘
changes along with velocity as shown in Fig. 5. The modes ag}g)tlon. we write planar c_iynamlq equations for an element o
tension that correspond to small traveling velocity are close to t QMOgeneous, ideally flexible string without bending and tor-

ones of the catenary. Figure 8 shows strong dependence of modld
on the starting angle. an
Theoretical modes agree well with experimental ones. This N 9Q
agreement may be explained by minimum of assumptions that are m—=-—=-0q
made at the transition from the real string to its mathematical a s
model. The experiments also show that the string “falls” when th@here\/= Ve, is the string velocity vector having the module
cono!ition(25) is not satisfied. This may occur, for example,_if theand directed along the tangent to the mode unit Vegiora
starting angle or the distance between the outlet and inlet iStg s the cross-section string force vector which is directed
changed. along the unit vectoe; ; T is the string tensiong is the vector of
distributed linear external force acting on string;is the string
linear masst is the time; andS is the arc coordinate along the
string mode.
Performing differentiation with respect to coordingewhen

Qal stiffness. The string travels with a constant velocity along
invariant mode

(27)

09 ; ] taking into consideration thatS/dt= V= const gives
r i N N aS_VZ Je, -
y | o awsa Vs 28)
' | Substitution of Eq(28) into Eq.(27) in terms of
| 0Q o(Te) dT_ _de
—= =—e+T— 2
03 oS~ a5 st gse (29)
while using total derivatives instead of partial ong@lse string
i mode does not depend on tijrend manipulations lead to
v =094
0 S o2 de, . d(T-mV?)_ a0 20
gt (T-mMV) gt —4gs  &t+a=0 (30)
i o
A«’ N o4 Applying of variableT* =T—m\? gives
s | —
0.3 P ‘ *
i | aTr
I,‘Xﬁ ' E +q= 0 (31)
LT v=0T ! -
| ‘ whereT* =T*¢;.
065 02 04 06 0.8 1 Equation(31) is almost identical to the equation of the string
s equilibrium with difference in use of fictitious tensidrf instead
of the real on€Tl. This allows one to apply E¢31) as equilibrium
Fig. 13 The theoretical string tension for the modes of Fig. 10 equation for an arbitrary string part.
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We obtain the equations in projections onto Cartesian coordReferences

natesX, Y using Eq.(31) and relations for “tension” projections
T% andT¥

dy

= X e Y (32)
x> ds' YT ds

The third equation necessary for solution is the relation betwee

the cosines

L 4%
ds

d .
d_S +0x=0;

|

55l

where gy and gy are the projections of the distributed external
force.

d

dy
T ——

as) Tav=0;

(33)

dY2_1
T3 =
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A New Look at an Old Problem:
Newton’s Cradle

In this paper we consider the most basic multi-impact system, the so-called “Newton’s

Y. Hurmuzlu Cradle.” The task of developing an analytical method to predict the post impact velocities

of the balls in the cradle has baffled investigators in the field of impact research for many

Mechanical Engineering Department, years. The impulse-based rigid-body body as well as the alternative compliance-based
Southern Methodist University, time-base approaches have failed to produce valid solutions to this problem. Here, we
Dallas, TX 75275 present a new method that produces energetically consistent solutions to the problem. Our
method is based on the traditional impulse-momentum-based rigid-body approach. We do,

however, resolve the nonuniqueness difficulty in the rigid-body approach by introducing a

new constant called the Impulse Transmission Ratio. Finally, we verify our method by

conducting a set of experiments and comparing the theoretical predictions with the ex-

perimental outcomes[DOI: 10.1115/1.1344902

V. Ceanga

1 Introduction lyzed its effect on the velocity outcomes. He demonstrated that it
as not always possible to determine the values of the necessary

tiong[1]). The simplest of th bl the li hai iffness ratio that yielded a specific velocity outcome. Hinch and
quef lon o € S|m"p est ot these problems, the linéar chain %aint-\]ear[8] studied the case of a very long rectilinear array of
the “Newton’s Cradle,” represents the most basic problem of thig,

. . ) e alls. The compliance-based methods are significantly more diffi-
type. This c_IassmaI problem |nyolves a c_oII|S|on p_roblem Wher_@ult to apply than the impulse-momentum-based ones. To the best
one ball strikes one end of a linear chain of stationary balls ify o, knowledge, the investigators that applied these methods,
contact Wltlh each other. The system represents the S|mplest of h&er included damping in their analysis, and have always as-
multibody impact problems that one may consider. Yet, it encagymed perfectly elastic collisions. In addition, complexity of such
sulates the difficulties that are present in more complex systeMsethods makes it very difficult to experimentally estimate the
Many investigators attempted to develop analytical solutions th@jodel parameters, specifically for chains with large number of
produce post-impact velocities in this class of problems. The fag}|s.

remains, however, that the methods that have been proposed po&holet[9] uses the methods of convex analysis that is inspired
sess deficiencies and inconsistencies that are yet to be resolvesy: an adaptation of Moreau’s sweeping procéd®,11)) to ana-

One approach to the solution of the problem has been the cdyre the multiple impacts in a three-ball cradle. This work repre-
sideration of sequential impacts and use of impulse-momentwants the most advanced up to date and produces unique and en-
rules and coefficients of restitution. Johns@j introduced the ergetically consistent results. The only drawback of the approach
notion of sequential impacts. The method was based on a sucdsghat the solution is formulated in terms of three parameters that
sion of simple impacts that occur one at a time. Han and Gilmod® not have obvious physical meanings. For example, with this
[3] proposed a solution algorithm that accommodated multipleethod, it becomes very difficult to identify the parameter values
impacts, but their methods resulted in multiple sets of feasibleat lead to purely elastic impacts. In addition, the post-impact
post-impact velocities that were valid for the same initial condielocities are nonlinear functions of the parameters. Thus, one
tions. Brogliato[4] also considered the three-ball impact problenmay encounter difficulties in estimating the parameter values from
The conclusion drawn by this author was that the rigid-body rul@xperiments. Often, there is not a one to one correspondence be-
did not possess sufficient information to yield a unique postween a particular post-impact velocity set and parameter set. One
impact solution. He proceeded by stating that the only way tvay obtain the same outcome for different set of parameters. We
solve the rigid-body indeterminacy was to add compliance to thglieve that, a solution method that is based on physically mean-
bodies in contact. ingful parameters such as the coefficient of restitution will be

The second approach is the compliance-based method thatmre effective in dealing with the multiple impact problem at
troduce linear springs between consecutive balls in the chain. . o o )
approach results in a set of second-order linear differential equa-The objective of the present article is to develop an impulse-
tions that can be cast as functions of the ratios of the sprifigementum-based method to determine the post impact velocities
constants. One of the earliest studies of this type was presente@fihe general N-Ball chain. The method should produce unique
Smith [5]. Walkiewicz and Newby[6] considered the possible and energetically consistent solutions. The predicted outcomes

solutions of the three-ball chain that simultaneously satisfied mghould be physically consistent and experimentally verifiabie

mentum and energy equations. They showed that there were iRgrimental verification of the previous methods is almost nonex-

nitely many solutions that fit this description. Newfs] studied 'Stend. For this purpose we present a new methodology that uses

the three-ball impacts by placing linear springs to model the colfle €nergetic coefficient of restituticpl2]). We propose a new

tacts. He used the spring stiffness ratio as a parameter, and dpstant, that we call the “Impulse Correlation Ratio.” We test
our method by conducting a set of experiments, and comparing

the theoretical outcomes with the experimental ones.

Multi-impact problems pose many difficulties and unanswere

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept. 152  Three-Ball Chain
1999; final revision, Apr. 16, 2000. Associate Editor: N. C. Perkins. Discussion on
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departmenp 1 pProblem Description. Consider the three balls that are

of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, an . . E . L s
will be accepted until four months after final publication of the paper itself in théqepICted in Fig. 1. BalB, strikes the other two ballgvith initial

ASME JOURNAL OF APPLIED MECHANICS. velocities ofv, anduvy) that are in contact at time=t~ with a
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q 1 qz q3

i=1 i= i=3
Fig. 2 The compliant, three-ball chain
T, 13
tact situation at the instant of collision yield different solutions.
> — > Accordingly, Han and Gilmor¢3] report the following solutions

Y U3 for three equal mass balls aee=1, v, =1, v, =0, andv; =0:
Fig. 1 Impulses UII - %U; :U§ :% ®)

vi=vy=0 vj=1 (6)

velocity of v, subject tov; =v, =v; . The collision causes the The former solution is obtained by assuming tBa@andB, are in

two normal impulses, and 3 as shown in the figure. The prob-contact wherB, strikes and they can be treated as a single mass
lem at hand is to determine the post impact velociti¢s v, ,  (v4 =v4). The second solution, on the other hand, is obtained by
andv; . For this purpose one can write the conservation of lineassuming thaB, andB; are not in contact wheB, strikes, which
momentum equations for the three balls, this yields leads to the impulse conditioy=0. Having two equally possible
solutions poses a serious difficulty in accepting this approach as a

mMAvy=—A7, @) valid way of solving this problem.
MyAv,=ATy—ATs 2 2.2 Impulse Correlation Ratio. We now consider the com-
MeAvg=Ary ©) pliant model that is presented in Fig. 2, which is the example

considered in Brogliatd4]. For simplicity, we will choosem;
whereAv; andA r; are the changes in velocities and impulses aSm,=my=v; =1 andv, =v; =0. When all the balls are in
a result of the collision. Here, we have three equations in terms Qfntact, their displacements can be obtained as follows:
the three post-impact velocities and the two changes that occur in
normal impulses. Additional assumptions are needed to obtainthe t k(2y— y;)sin(vVkyit)  k(2y— y2)sin(Vkyat) @
two additional equations that are necessary to solve the problerl1=3~ 32 M2
One can use coefficients of restitution between pairs of balls to 3 (ky)™(v1=72) (k2™ (v1=72)
resolve this problem. Since the balls can be treated as particles, t k(y—yp)sinVkyit) K(y—y,)sin(vky,t)
the kinematic coefficient of restitutiogl betweerB; andB, can =3t =72 (K1) A 71— 72) (8)
be used to obtain one additional velocity relationship: ! vore 2 rore

@) t, kysinvknt)  kysinkyat)

Js=7+ 37 - 32
3 (k - k -
where the superscript+" denotes the quantity at the end of the (k7)™ (n=72) (k2™ y2)
collision. One encounters problems in applying the restitution lawhere y,; =1+ y++1— y+ ¥2 and y,= 1+ y— J1— y+ 42 The
betweerB, andB3; because two assumptions regarding their coreft and right impulses acting oB, can be written as follows:

+ + _ Ko — -
vy —vy; = —e(vy —vy)

9)

t 3y—27,)¥2sirt(2 Vkyt) — (3y—2,) y2 sirf( 5 Vkyot
3= [ gy quaem YIS S8R ST (10)
0 2 Y172(v1—v2)
! 1- k —[1- K
Arem J PP el G200 27 E cos vkl lyve w
0 Y1Y2( Y1~ ¥2)

Now, we investigate the relationship betwekn, andA 5. First Considering the first extreme case when the first spring is much
we form the following linear relationship between the impulsesstiffer than the secondy<1) in Eq.(13) yields

= arATy+ATs. (12)
tSaLiJrE)Stltutlng Eqs(10) and(11) into (12) and simplifying we ob- (gt y)[1—cos Jakt)]
2[3a,y+(y—2«a 1
5= [ 272 (y 2) 71l Sinz(— kylt)
Y1(y1=72) 2
_ Thus, the impulses can be related &s;= yA 7, when the first
_ 2[36"27;(7 2a27)7.] sinz(l k?’zt)- (13) spring is much stiffer than the second. Next, we consider the other
Y2(y1—72) 2 extreme,y>1 in Eq.(13) yields
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Fig. 3 Velocity-impulse graphs

2y(1+2a,)si?(y/3k/8t _ 1
~— 4 2)SirT( ):0 for a,=—1/2. V1=V~ T (20)
3y my
(15)
Once again we have a proportional relationship in the form of o 1mapg
A7'3:1/2A’7'2. V2= U + m2 2 (21)

Based on the two extreme trends that we have shown, we form ] ) ] )
the following hypothesis that we assume is valid for triplets dNOW, settingu,=v; and solving for the maximum compression

balls: impulse 5, results in the following expression:

Consider a linear sequence of three balls_ B, B;, and B,

where B_; impacts B while it is in contact with B, ;. Then, . Mmy(vy —vy)

the impulses that develop subsequent to the impact between the Tfm- (22)

pair B;_-B; and the pair B-B, ., are proportional, and related
through a constanty;=0. This constant, we term as the ImpulseNext, we compute the work done during the compression and
Correlation Ratio, depends on the specific sequence, mass, aastitution phases and use the definition of the energetic coeffi-

material properties of the three adjacent balls cient of restitution to get the following equation:
We can apply this hypothesis to establish a relationship be-
tween the normal impulses whé) establishes contact and ini- 5[ .
tiates a collision withB;, ; during the impact ofB;_; andB;. € o (v1=vp)d7ot . (v1=v2)d7=0 (23)
This relationship is given by "2
where e, is the coefficient of restitution betwed; and B,.
Arip1=ai AT (16) Solving Eq.(23) for 7} yields

This relationship should be understood in the context of the o
impact direction, as in this chapter we assume that the impact ¢ (Ate)mmy(vy —vy)

propagates in the increasing direction of ball indices. Adaptation T2~ (1-apzmy+my (24)
of these definitions to cases with reverse impact direction is a ) .
matter of reversing the indexing. Moving on to the second diagrateee Fig. 8)) where we have
In the next subsection we use the momentum-based approach
and the Impulse Correlation Ratio, to formulate an energetically  l-ay, _ .
consistent solution to obtain the post-impact velocities. v, + o 3m; T3 if O<Tg<ays7,
2.3 The Solution Method. Solving Egs.(1), (2), (3), and vp= o oo | (25)
(16) for the velocity changea\v,, Av,, in terms of A7, and vk — 3 T8z g 4=yt
Av,, Avg in terms of A 5 yields m; '
where
1
AU]_:__ATZ (17) _ _
ml - (1_a2'3)(1+e2)m1(vl_02) 26
M (1= azzmy+m; (26)
1— o3 1- o3
Avg=———ATy=—— " A (18)  Note that, whenr;=a, 475, the impact betweeiB, andB, is
2 23Nz over. Thus, only the right impulse; acts on the ballB,
(*mz(vzfv’g):Tg*az’:;T;). This leads to the second part of
Av :iAr (19) the expression given far, in Eq. (25). Finally the expression for
S my T ¥ v3 can be written as follows:
Figures 3a) and 3b) depict the velocity-impulse diagrams for the _ 1
collisions between the ballB;,B, and B,,B;, respectively. In v3=Us TS (27)

this study we use the energetic coefficient of restitutidi2]) to
determine the terminal impulse for each collision. Accordingly, Once again, we compute the maximum compression impulse
for the first diagram we havésee Fig. 8)) betweenB, andB; by settingvz=v,, which yields
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¢ {1 —vy)(I+e)mi+(vy —vg)[My(1—azg) +my]imymg 28
i (1= a9 my + myl(my ) | )

Now, set up the energy equation as of restitution would lead to different outcomes. Although we are
K N dealing with particle collisions, simultaneous impacts lead to the
e%f (v~ vg)d7s+ f *(v—v4)d73=0 (29) two segment configuration af, in the velocity impulse diagram
0 TC

(see Fig. &)). Thus, one has to use the energetic definition of the

wheree; is the coefficient of restitution betwedy andB;. Itis  Ccoefficient of restitution to get energetically consistent results.
important to note that using different definitions of the coefficieflow, solving Eq.(29) for 73 yields

7i={(vy —v3)(1+e)mi+(v; —v3)[My(1—ayz)+my]tm,ms
(v —v3) (I—azami+my|

my
l+e \/1*& (—+1) ——
% 3 2.3 m3 (Ul_l)z) (1+62)m1

[(1—azgmi+my](my+ms)

1+

(30)

The post-impact velocities can now be computed as follows: two limiting values of the Impulse Correlation Ratio. Our method
exposes a spectrum of solutions that bridge the gap between the

vi=pr— —;f (31) two limiting outcomes. The lower bound corresponds to sequen-
b mg 2 tial impacts while the upper limit represents simultaneous time of
compression at two contacts. By specifying the value of the Im-

T3 Q23T

(32) pulse Correlation Rgtio, one can (_)b_tain a uniquc_a solution for Fhe
m, problem. The question of the validity of the ratio as a material

constant remains to be answered. In the latter part of this section
_ (33) we vyill present the results of an experimental study that addresses
ms this issue.

We note that the positiveness of the inside of the radical in Eq.2.4 Multiple Impacts. To explain the multiple impacts that
(30) can be used to establish an upper bound on the correlatigiay arise during the present problem, we consider a specific ex-
ratio e, 3. If we considera, =<1, and impose the two underlying ample that leads to the velocity impulse diagrams that are depicted
conditionsv; —v, =0 andv, —v3; =0, we can write the upper in Fig. 5. The example corresponds to a three-ball case with initial
limit of the correlation ratio as follows: velocities ofv; =1 m/s,v, =0.8 m/s, and; =0 m/s. At the on-

set of the collision, we have the ball, having simultaneous
(34) impacts withB; and B3. The firstB;-B, collision takes place
during the impulse intervals s@rzsrg,l (O=<7y=<73,

Figure 4 depicts the three post-impact velocities fior=m, =a, 37 ‘2']). Meanwhile, the firsB,-B3 collision takes place dur-
=Mm;=6,=6;=v; =1 asa, 3 is varied in its limiting interval O ing the impulse intervals € 7,<75, (0< 73\731) When the
<a,3=<0.5. We note that the two outcomes that are produced By-B, impact ends, the velocity dB, continues to decrease as
the solution method of Han and Gilmof8] corresponds to the result of the continuing collision betwees, and B; during the

m3
my+mg’

Osapss

L2 T T T T T T T T T T T T
O keemeemmmme o 3
08 RN 3

[ . U ]
06F - _'

+ etk A :
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Fig. 4 Effect of a on the post impact velocities
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Fig. 5 Multiple impacts on the velocity-impulse diagram
interval 73 ;< 73< 73 ,. The decrease in, during this interval can ( T3
’ ’ ; ; ; v, +|——1]— if 0<713<73,
be observed as the sudden change in the velocity on the diagram 27y, m,
that corresponds te,. This is true because during this inter&l T
and B, do not interact, and thus the impulsg between these Vi 737 731 if 75 <rme=7%,
balls remains constant. Subsequently, the slowdown in the veloc- ’ my '
ity v, initiates a backward impact betwe® andB, whenuv, . Ta— T .. 4 ;
=v,=v;, at 73=75,. During the next intervalr} ,<7m,<73, < vyt (ago—1) " if 73,=73<73; @7)
! ' . .. ’ ’ Vo=
(755< 7-3s7-gl) we have simultaneous collisions betwe# B, 2 1 ¢
s ) ) o T T .
and B,-Bs. Next, the firstB,-B; collision ends atr,= 75, (73 Vit a__l) 3m 31t 7l iSme<rl,
=71 ). But, when this collision ends the velocity B continues 23 2
to increase as a result of the collisions betwBgrandB,. Once . T3 T§,3 * f
. . o . ' Vi if 73,=73<73,
again, the increase in this velocity can be observed as the vertical 23 m, ' :
jump atrs= Tf310n ther; diagram. Subsequently, the increase in + ; - f
: g Vs if 73=73,
v, leads to a forward collision betweds, and B; at v,=v4 ’ '
. - R f
=v3, and 7,=75,. Then, we have simultaneo-B,,B,-B; vz t73/mg if 0<73<73;, 28
. . . . Ua=—
impacts during the impulse intervats ,<7,<75, (75,<7 ¥ vs, if =7l (38)

<13 4. Finally, theB,-B; collision continues during the interval

The specific computation of final impulses is carried out using

hs<T3=75,, Which is also reflected as the sudden jumpin the energetic definition of the coefficient of restitution. The re-
on the 7, diagram. The overall process ends @t=rf2'2 (73

=71, sincev; ,<v7,.

Now, using the Impulse Correlation Ratio according to the rules
that were enumerated in Section 2.2 along with Edjs.(2), and

(3) we may express the velocities as follows:

v —mlmy if 0=7<7h,
U1: + I.I: - f (35)
U1,2 T2=T22
+(1— Iz if 0sm<r!
vy as3) m =T2 21
2
N 1\7m sz,l et *
vyt 1-— if 75,<7mH<15,
' azap My
*
v,=\ L, T2—T31 : «  (36)
vyt m if 73,7
*
T27 T22 . f
+ , *
vagt " if 75,<7,<7;,
+ i f
P if =75,

Journal of Applied Mechanics

spective final impulses and velocities can be found by sequentially
solving the following equations forb 75, 75,,75,:

c f
e%frzvl(vlfvz)deJrJ‘Tz'l(vlfvz)dezo (39)
0 ’Tgvl
TC Tf
egf SYI(Uz_Us)dTa"‘f *vy—v3)dr3=0 (40)
0 Tgvl
Tc 7_f
egf fzvz(Ulfvz)deJrJ‘CZ'Z(Ulfvz)dezo (41)
T21 72,2
TC Tf
egf ?Yz(vz_va)de"‘fcg'z(vz_vs)d%:() (42)

31 3.2

where 75, 75,, 73,, and 75, are the maximum compression
impulses as shown in Fig. 5. It should be obvious from this ex-
ample that one may have to go through a complex set of compu-
tations in order to solve even this simple example. For this pur-
pose, we have written a computer program using the software
package Mathematica that automatically performs the computa-
tions required to compute the final impulses, the maximum com-
pression impulses, etc.

2.5. Post-Impact Bouncing Patterns of a Three-Ball Cradle
Having developed our solution method, now we study the effect
of various parameters on the possible bouncing patterns that can
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Fig. 6 Bouncing pattern regions on the  r,;—r, plane

be exhibited by the three-ball case. Here, wevlgt=v; =0, and

useda, 3= a3 ,= a,=0.15,e,=e3=0.5 in order to obtain the re-
gions in Fig. 6. Yet, we should point out that the regions would
qualitatively preserved if one chooses to use different values

impulse correlation ratio and coefficients of restitution.

Now, we divide the post-impact patterns according to occu
rence of multiple collisions. Multiple collisions exist if we have at

least one back impact betwedy and B,. This occurs ifv;

=v, during theB,-B; impact. The impulse condition that would

lead to this situation can be obtained by settirfjg=v, and solv-
ing for 73, which yields

L Ma(axmy+ex(my+my))vy
=
3.1 (1—ay)m;+m,

(43)

can continue in the same manner to obtain further alternating

boundaries that lead to more pairs of back and forward impacts.
We may also partition the,—r, plane into three regions that

correspond to post-impact velocity directions. Each of these re-

gions corresponds to a unique post-impact bouncing pattem®

Fig. 6). The expression for the line that separates regicarsd ||

in the distinct-collision region can be obtained by settirg in

Eqg. (31) equal to zero and solving far; as

l—a2
rl: e2 .

(45)

The line that separates regiohs@nd Il in the distinct-collision
region can be obtained by setting in Eq. (32 equal to zero and
solving forr, as

_ / 1 2_ 1 2
I’2—6‘3 l—a2+(§aze3) - Eaze?’.

We may obtain similar partitioning in the multiple collisions
zones by setting respective velocity pairs equal to one another and
obtaining conditions.

Figure 6 depicts all possible solutions and demonstrates the
consistency and uniqueness of the solutions that are obtained by

(46)

btge method proposed in this chapter. One particularly interesting

r&gion of the parameter plane is the lower left corner where we
have a dense set of multiple collisions. This region corresponds to
Fpnfigurations where the middle baB{) is significantly lighter

han the other two balls. Figure 7 depicts the impulse velocity
diagrams of a three-ball cradle withy =1 m/s, e;=e3=1, «,
=0.15, andr,=r,=0.01. The post-impact velocities computed
for this case arev; =-0.003m/s, v; =0.348 m/s, andvj
=0.999 m/s. In this example, we have a very small central ball
and two very large peripheral balls. If we have neglected the
central ball then the resulting post-impact velocities of the large
balls would have been 0 and 1 m/s, respectively. The presence of

the central ball does not effect this outcome, yet it introduces
several microcollisions that transmit the momentum from the in-
cident large ball to the other. As the central ball becomes smaller
we may expect more multiple collisions to arise, which is why we
see a dense region of separator curves in the lower left of Fig. 6.

Multiple impacts take place only Whemzr;ls T3S Tf3’1, which
leads to the following condition:

<(1+e2)(1+e3\ 1*a2(1+r2)) (£ %)

1 ey(1+r5) (1+e_2) (44)

wherer,=m,/m; andr,=m,/ms. Thus, we may divide the

r1—r, plane into two regions that are below and above the uppeg- A General Solution Method for the N-Ball Case
most curve shown in Fig. 6. The region above this curve is the
distinct collision area, while in the lower region we have at least ; X
one back impact. We may continue in the same fashion to obt SSEs; . The_laslN-l balls are arranged in a chain S.UCh that all
the boundary for the region where we have at least one forwacransecutl\{e pr_:urs of balls are m_contact. Ong ball strlkgs one end
impact betweer, andB; as a result of the back impact betweerP! the chain with a nonzero pre-impact velocityw«f , while the

B, and B;. We obtain a condition for the forward impact in aother balls are in contact wittv; =v;,, for i=2N). As in the
similar manner to the one we obtained E4g). This results in the previous section, our objective is to determine the post-impact
dashed curve that is situated below the topmost curve. Then, wdocities:;f’ of the balls.

The system under consideration consistsNoballs of given

T3
0 20 40 60 80 100
6
4 Ul ’U3
2t /l
v ol T 7 t V/L—— A . T T\ \["—
> / / V \ \
4 \—1}2 \_'u2
6
0 20 40 60 80 100
12

Fig. 7 Velocity-impulse diagram of a small center-ball example
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3.1 Generalization of the Three-Ball Approach toN-Balls

Finally, a symbolic analysis of the velocity outcomes similar to

We start by writing the conservation of momentum equations fthe three-ball case yields the following bounds on the Impulse

a ball B;, which yields the followingN equations:

mAv;=A7r,—A7,, for i=1N 47)

with

AleATN+1:o (48)

where,Av; andA 7; are the changes in velocities and impulses as
a result of the collision. The Impulse Correlation Ratios for each

ball B; can be used to obtain additiondl-2 equations in the
following form:

for ieZ;C{1,...m¢}
for i e Z,C{1,...mp}

ai—l,iATi—l
ATi: A
Qi+1iRi+1

(49)

Correlation Ratios for thé\-ball case:
miiq
m 1 +mi(l—ajiq)

fOI’ |:2,N_1 W|th aN_1'N=O.

OSai,lviS

(53)

3.2 Intermittent Collisions. There is a special situation that
ay arise during collisions for chains wibh=4. Figure 8 depicts

a 4-ball collision withm;=my,=mz=my=e,=ez;=¢e,=1, a,
=a3=0.1, and initial velocities ofv;=1, v,=0.5, v3=v,

=0 m/s. At the onset of the impact we have simultaneous colli-
sions at all three contact points. The fit-B, collision takes
place during the impulse intervalsscrzsffzyl(Os T3S<T31).
Meanwhile, the firsB,-B; and B3-B, collisions occur during 0

whereZ; andZ, are index sets that represent the triplets of balls 7'3S7';’1 (0O<m=<7;, and 0$T4ST£’1, respectively. Yet, the
undergoing simultaneous collisions in the direction of increasingntinuing B,-B; impact leads to a secori,-B, collision that

and decreasing ball indices, respectively. Solving£for yields
solutions of the form

Avl:_m_lATz (50)

1-aj_yj 1-aj_y; :
TAF= AT for ieZ;C{1,...m¢}
A m "gm T
V=
@iy~ 1 @i~ 1 -
’ = — for i eZ,C{1,...my,}
ajegm m o 51)
(52)

Avy=—ATy.
N My N

causes the slope changergt, on ther; diagram. The special case
arises when thd3,-B; impact ends atrgyl. At this point, we
encounter an unusual case on thediagram(see Fig. 8a)). We
observe an upward vertical jump i, due to the continuing sec-
ond B;-B, collision and downward jump in; caused by the
ongoingB;-B, impact. The problem that is encountered here is to
determine the point where we have the onset of the seBorifl;
impact. If we continue th&,-B, andB,-B, collisions by ignor-

ing the possible contact betwed-B; we obtain the shaded
region that is shown in Fig.(8). The onset of the secori,-B;
collision will be somewhere in the shaded region where the two
velocities overlap. When this situation arises, we assume that the
two balls meet in the midpoint of the overlap region. This assump-
tion leads to the final diagrams that are depicted in Fig).8

The next step in solving the impact problem is to proceed as we Experiments

have done for the three-ball case. That is, the velocities should be

tracked on the impulse diagrams. The points where the balls loset.1 The Experimental Setup. The objective of the present
and reestablish contact should be calculated and the related study was to analyze multiple impacts in a multibody system for
pulse expressions should be adjusted properly. As we have mé#re nonfrictional case. For this purpose the classical collision ex-
tioned in the three-ball case, this is a very complex procedure aperiment known as Newton’s Cradle was set(sge Fig. 9. Vari-

we have developed a Mathematica package that will automaticatiys chains with three to six balls of different masses and materials
set up the calculations fod number of balls. were arranged by suspending each ball from a frame using two
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Fig. 9 The experimental set-up Fig. 10 Velocity predictions in four ball experiments

threads. The strings are attached to the frame through slidi{me A, B, and C balls were 45, 53, 53, and 166 grams, respec-
guides to ensure properly aligned balls before impact. Propgfe), " an initial set of experiments with pairs of balls were con-

allgnment of the mass centers ensured the ellm_lnatlon_of the icted to determine the coefficients of restitution that are pre-
tation of the balls and tangential forces at the points of impact. nted in Table 1

chain of central impacts was generated by releasing the first ba
in the chain from a predetermined elevation. 2 Experimental Verification of the Impulse Correlation
The experimental data was captured by using a high-speﬁ tio Th% hypothesis of the Impulse Corr[t)alation Ratio is based
video system capable of 1000 frames per second. Retro-reflectlveth'e fact tha}ﬂt is a constant wr?ich depends on the material and
markers were used to mark the mass center of each ball. (raéometric properties of triplet of balls iﬁ contact. To check this
Sael?élr\r/ﬁinpec:jscxllic;ﬂsr eosf tehc? tgagsﬁfee;or:]eaig? 322[1 t;s rleTeprZ(r:]tcgve gothesis, we first determined the Impulse Correlation Ratios for
. ; resp ! * all"possible combinations of the three balls arranged in triplets.
acquired video images were transferred to a personal (:ompu%rr thi : .
- e is purpose, 27 experiments were conducted. Each experi-
where a specialized program was used to digitize the marker%ent involved a chain of three balls. The analytical algorithm and
positions. The digitized positions were used to compute the drop- fici f itution in T bI' 1 Y d 9 h
ing height of the first ball and the maximum post impact heigh e coefficients of restitution in Table 1 were used to compute the
gttained by each ball. Finally. the pre-impact velocity of the fird pulse correlation ratios that produced the best fit to the experi-
y ea ’ by P p y entally acquired post-impact velocities. The resulting impulse
ball and post-impact velocities of all balls were computed from d . - .
; h correlation ratios are listed in Table 2.
the calculated heights. The experiments were conducted usih

. ow, to test the hypothesis, we conducted ten sets of experi-
three types of balls, designated as A, B, C, and D. The massesmczf\‘ms: five with four-ball, three with five-ball, and two with six-

ball sequences. Each set of experiments included four individual
experiments with four incident velocities of the first ball. The drop

Table 1 Coefficients of restitution height of the first ball was adjusted such that we would have

Ball Type A C D approximately 0.5, 1.0, 1.5, and 2.0 m/s pre-impact velocities
Next, we used the proposed analytical procedure and the experi-
g\ 8% 8'2% 8‘% 8'2% mental values listed in Tables 1 and 2 to compute the post impact
C 0.31 0.28 0.27 0.3 Vvelocities. _ _
D 0.94 0.38 0.3 0.85 Figures 10, 11, and 12 depict the experimental results. The
figures depict the results of eight sets of experiments conducted
Table 2 Experimental impulse correlation ratios
Sequence ICR Sequence ICR Sequence ICR Sequence ICR
AAA 0.167 AAB 0.232 AAC 0.218 AAD 0.131
BAA 0.374 BAB 0.296 BAC 0.088 BAD 0.050
CAA 0.495 CAB 0.499 CAC 0.400 CAD 0.129
DAA 0.215 DAB 0.090 DAC 0.101 DAD 0.782
ABA 0.127 ABB 0.104 ABC 0.111 ABD 0.600
BBA 0.340 BBB 0.310 BBC 0.216 BBD 0.390
CBA 0.435 CBB 0.455 CBC 0.342 CBD 0.390
DBA 0.416 DBB 0.710 DBC 0.755 DBD 0.730
ACA 0.262 ACB 0.268 ACC 0.216 ACD 0.664
BCA 0.389 BCB 0.408 BCC 0.319 BCD 0.731
CCA 0.462 CCB 0.414 Cccc 0.338 CCD 0.744
DCA 0.430 DCB 0.449 DCC 0.441 DCD 0.744
ADA 0.101 ADB 0.055 ADC 0.001 ADD 0.329
BDA 0.041 BDB 0.046 BDC 0.001 BDD 0.446
CDA 0.196 CDB 0.171 CcDC 0.122 CDD 0.495
DDA 0.056 DDB 0.058 DDC 0.001 DDD 0.080
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Fig. 12 Velocity predictions in five and six ball experiments

Multi-impact problems pose many difficulties and unanswered
questions. The simplest of these problems, the linear chain or the
Newton’s Cradle, represents the simplest and the most basic prob-
lem of this type. The dynamic problem is simple because one only
has to deal with motion of particles, yet it includes the difficulties
that are encountered in more complex systems. The solution of the
multi-impact problem has been confounded by the lack of suffi-
cient means in the rigid-body impact theory to resolve the colli-
sions of stationary bodies that are in contact. This shortcoming
manifested itself as the nonuniqueness of solutions obtained using
the theory.

Here, we amended the rigid-body theory by introducing the
Impulse Correlation Ratio. This constant serves as a mechanism to
coordinate the force transmission through the chain. Effective use
of the energetic coefficient of restitution leads to energetically
consistent results. Moreover, the method is the only one we know
of that captures the commonly observed grouping of balls through
the proposed back-propagation process.

Finally, we conducted a set of experiments to verify the pro-
posed theoretical methods and procedures. We have shown that
the Impulse Transmission Ratio can be measured with relative
ease. We have also demonstrated that the predictions of our
method produces excellent agreement with the experimentally
measured outcomes.

Acknowledgment

The authors express their appreciation to Dr. Bernard Brogliato
(Laboratoire d’Automatique de Grenobl®r his valuable discus-
sions and suggestions that contributed to the completeness of the
paper.

References

[1] Marghitu, D. B., and Hurmuzlu, Y., 1995, “Three-Dimensional Rigid-Body
Collisions With Multiple Contact Points,” ASME J. Appl. Mech62, pp.
725-732.

[2] Johnson, W., 1976, “Simple Linear Impact,” ImechE. IIMEE,No. 2, pp.
167-181.

[3] Han, I., and Gilmore, B. J., 1993, “Multi-Body Impact Motion With
Friction—Analysis, Simulation, and Experimental Validation,” ASME J.
Mech. Des. 115 pp. 412-422.

[4] Brogliato, B., 1996,Nonsmooth Impact Mechanics: Models, Dynamics and
Control, Springer-Verlag, New York, LNCIS 220.

[5] Smith, E. A. L., 1955, “Impact and Longitudinal Wave Transmission,” Trans.
ASME, 77, pp. 963-973.

[6] Walkiewicz, T. A., and Newby, N. D., Jr., 1972, “Linear Collisions,” Am. J.
Phys.,40, pp. 133-137.

with a specific sequence of balls as shown on individual graphsl7] Newby, N. D., Jr., 1979, “Linear Collisions With Harmonic Oscillator Forces:
The results clearly demonstrate that the theoretical outcomes arg, The Inverse Scattering Problem,” Am. J. Phy&7, No. 2, pp. 161-165.

in agreement with the experimental results.

5 Discussion and Conclusion

Hinch, E. J., and Saint-Jean, S., 1999, “The Fragmentation of a Line of Balls
by an Impact,” Proc. R. Soc. London, Ser. 455 pp. 3201-3220.
[9] Cholet, C., 1998, “Chocs de Solids Rigid,” Ph.D. thesis, University of Paris 6
and LCPC-CNRS.
[10] Moreau, J. J., 1994, “Some Numerical Methods in Multibody Dynamics: Ap-

In this paper we develop a new method that produces a unique plication to Granular Materials,” Eur. J. Mech. A/Solids3, No. 4, pp. 93—

and energetically consistent solution to tNeBall linear chain

114.

problem. The method is based on the impulse-momentum meth:t Fremond. M., 1995, “Rigid Bodies Collisions,” Phys. Lett. 804, pp. 33~
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Dynamic Crack Analysis Under
»nosseini-enrani | GOUPled Thermoelastic
M. R. Eslami Assumption

Fellow ASME

H. R. Daghvani A boundary element method using Laplace transform in time domain is developed for the
analysis of fracture mechanic under coupled thermoelastic assumption. The transient

Mechanics Department, coupled thermoelastic field is solved without need for domain discretization. The singular

Amirkabir University of Technology, behavior of the temperature and displacement fields in the vicinity of the crack tip is
Hafez Avenue No, 424, modeled by quarter-point elements. Thermal dynamic stress intensity factors for mode |
Tehran, Iran are evaluated from computed nodal values, using the well-known displacement and trac-

tion formulas. The accuracy of the method is investigated through comparison of the
results with the available data in literature. The conditions where the inertia term plays

an important role is discussed and variations of the dynamic stress intensity factor is
investigated. [DOI: 10.1115/1.1364490

1 Introduction region technique to solve thermally loaded crack problems using a

. . . S houndary only formulation. Portela et §2] presented a formula-
In many practical engineering applications, severe therm@%

shock is the dominating load on the structure. When this type alysis of arbitrary crack problems in a single region. This

load is applied into a structure in the presence of a crack, fie,hod was later extended to steady-state and uncoupled transient
result; may be catastrophic. In.these cases, where thg or.deE. rmoelasticity problems by Pasad ef#0,11 Chen and Weng
magnitude of the thermomechanical coupling parameter is signifs] geveloped a general finite element model dealing with the
cant, the coupling with energy equation must be taken into aggupled transient thermoelastic problems of fracture in an edge-
count. The initiation of rapid crack growth, the path and speed gfacked plate, without considering the inertia term. Katsareas
the propagation, crack branching, and arrest are of particular #t-al. [12] used a boundary-only element method to compute
terest in dynamic fracture mechanics. They are controlled by tBRock stress intensity factors for a surface cracked infinite strip
dynamic stress intensity factors. and a finite edge cracked plate. They considered uncoupled quasi-
Just now there is no report on the evaluation of the dynamitatic thermoelasticity.
stress intensity factor for thermal shock problems with the This paper presents a boundary element formulation for the
coupled thermoelastic assumption with the inertia term. The prerack analysis under the coupled thermoelastic assumption. An
vious works are limited to evaluation of the stress intensity factégotropic and homogeneous material in two-dimensional plain-
and/or the thermal shock stress intensity factor for transient sirain geometry with an initial edge crack on its boundary is con-
coupled thermoelasticity problems where the inertia term is igidered. The body is exposed to a thermal shock on its boundary
nored. and the resulting thermal stress waves are investigated through the
In the classical study of thermoelastic crack problems, the thgoupled thermoelastic equations. Due to the short time interval of
oretical solutions are available only for very few problems i€ imposed thermal shock, the Laplace transforms method is em-
which cracks are contained in infinite media under special thernfipy€d to model the time variable in the boundary element formu-
loading conditions, such as in the work of $ij and Kassir and lation. The discretized forms of the equations are obtained by the

Bergman(2]. For cracked bodies of finite dimensions, exact sol@PProximation of boundary variations by quadratic elements, and
tions are impossible to obtain. Wilson and & employed the the quarter-point singular element is used at the crack tip. The

finite element method to deal with these problems. The methodRESent approach is used to evaluate the thermal dynamic stress

) . oo . intensity factor at the first opening crack mode. An infinite strip
gﬁ?gﬂ% V\'Ill'we“:)?hrgroglrflefgillinr:ggr;a;ttr?(fgsrye?]:g?oc;seedd &/ m@on with a crack on its surface under sudden cooling is considered.

The thermal dynamic stress intensity factor is computed from

and Chen and Wenfp] is based on the concept of principle Su.'crack-opening displacement of a quarter-point element, consider-

perpolsmog.t')l'hat IS, In th? absem;? ?]f.a craqk, tlhe therhma[ Ioadlgl% the one-point and two-point displacement formulas. For ther-
Is replaced by a traction force, which Is equivalent to the Interngly; shock loading the time-dependent thermal dynamic stress in-

force at the prospective crack face. Lee and $ihsolved the gty factor is obtained using the Durbin method. The results are
problem of a surface cracked infinite strip under sudden Condl{ﬁjmpared with the available quasi-static results.

tive cooling and evaluated the mode | thermal shock stress inten-

sity factor using Bueckner's weight function method. RiZK

analyzed the same problem with heating instead of cooling, under ) )
which crack closure occurs. Raveenda et[@] used a sub Governing Equations

A homogeneous isotropic thermoelastic solid is considered. In
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  the absence of body forces and heat generation’ the governing

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- : : s -
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The detailed mathematical formulations may be found in
Hosseini-Tehrani and Eslarfi3]. In order to solve numerically
the boundary element integral E®), the standard boundary el-
ement procedure may be applied. When transformed numerical
a comma refers to partial differentiation with respectxg@i  Solutions are specified, transient solutions may be obtained using
=1,2), and\, u, Ui, p, T, To, k, 7, andc, are Lame’s constant, an appropriate numerical inversion technique. In this paper, a
the components of displacement vector, mass density, absolutethod presented by Durbiri4] is adopted for the numerical
temperature, reference temperature, thermal conductivity, strekgersion in the time domain.
temperature modulus, and specific heat at constant strain, respec-

ToY?

T ez M0 @

where a dot indicates time differentiation and the subscrafter

tively. The dimensionless variables are defined as

~ X ~ tCl - U'ij
X=—; t=— ij:_
o 1o vTo 3)
R ()\+2;L)ui. T-To
" ayTo ' - To

Here, a=k/pc.C, is the dimensionless unit length and;

=N F2u)lp is the velocity of the longitudinal wave stress

propagation. Théatis dropped from the terms of Eg4.) and(2)
for convenience. Transfering Eqggl) and (2) into the Laplace
domain with respect to time yields

M A )
N ui,jj+)\+2Muj,ij_T,i_s Ui:0 (4)
T 2
T, —sT-—2 0. (5)

peaht2p) "I
Equations(4) and(5) are rewritten in matrix form as

The boundary conditions are assumed to be as follows:

ui=u; on I,

Ti:Ti:(Tijnj

I @)

on
T=T on 't

q=0,=qin; on Iy

whereu, 7, T andq are the specified displacement, traction,
temperature, and heat flux vector on the boundary, respectively.

Evaluation of the Thermal Dynamic Stress Intensity
Factor
The stress intensity factor may be determined either from nodal

traction or from the crack-opening displacement defined by Kan-
ninen and Popeldr5]:

K =tay2ml 11)
K|| :tlji\ 2’7T|

whereK, andK,, are mode | and mode Il stress intensity factors,
respectively;t, refers to traction at node A in Fig. @he crack
tip), while superscripts 2 and 1 indicate the opening and shearing
mode, respectively. The length of the singular element at the crack
tip is represented bl

From the crack-opening displacement shown in Fig. 1, consid-
ering two-point displacement on each edge of the crack, the stress
intensity factors are given by Blandford et f16] as follows:

K=\ [4(0s - vo) +oevc)
= at1 | U~ Up)TVE~ VUc

2w
\V/ |_[4(UB_ Up)+Ug—Uc]

where a=3—4v for the plane-strain and3—wv)/(1+v) for the
plane stress condition. The points B, C, D, and E are shown in
Fig. 1, whereAC=| andAB=1/4.

For symmetric crackg= —vp andvc= —vg, and the expres-
sion forK, is simplified to

(12)
1
=t

In order to drive the boundary integral problem, the following

weak formulation of the differential equation &) for the fun-
damental solution tensar}, is considered,

Q

2 2m
|:m |_(4UB_UC) (13)
K||:O. (14)

A different formula is obtained if g atr =1/4 is considered. This
formula is[17]

After integrating the byparts over the domain and taking a limiting

procedure approaching the internal source point to the boundary

point, the following boundary integral equation is obtained:

CyUk(y,s)= jFTa(XIS)VZj(vavS) —U,(x,5)23(x,y,s)dl'(x)

+ frT,n(Xls)ng,n(lels)

—T(X,9)V3j n(X,y,8)dI'(x) 9)

whereU ,=u,(a=1,2) andU;=T andC,; denote the shape co-

efficient tensor. The kernd’;j in (9) is defined by

2
( Vi + Toy
N2u KT pe (N+2u)

Ezj: SV§]) (saﬁ

2
*irze Vet Vi) |ne- (10)

Journal of Applied Mechanics

% 2
Kiari Vi ve (13)
K||:O. (16)

To evaluateK, , the quarter-point singular element at the crack tip
is used.

Y, v
T
C
B A
T, u
/
E
Fig. 1 Element geometries for stress intensity factor
computations
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Results and Discussion K*(max) difference (%)

Structures covered with coatings and lining may be subjected to ® 1 point disp,
the severe loading conditions. The load might be applied in the 6 %2 point disp,
form of mechanical and/or thermal shocks. If the period of shock
duration is small enough compared to the first natural frequency,
then the solution is found through the coupled field. Consider an 5 -
infinite strip shown in Fig. 2, initially subjected to a uniform tem-

peraturef, with an edge crack perpendicular to its top surface. ©
The strip is rapidly cooled by conduction at its upper surfage 24
=0, whereas the bottom surfacg=W is insulated. This is a

mode | crack-opening problem. The crack edges are assumed to 4

be thermally insulated. Due to the symmetry about xhexis,

only half of the strip is discretized. 6
To solve the problem by the boundary element method, a : : : . :

proper length-to-width ratio must be defined. Different length-to- 0.1 0.2 03 04 05 0.6 0.7

width ratios have different effects on the maximum stress inten- Ia

sity factor. Katsareas and Anifanfi$2] showed that the ratios of

L/W=1 have a minor effect on the maximum stress intensityig. 3 Effect of crack-element length to crack-depth ratio Il

factor around the crack tip. Therefore, to select a minimum ar@ accuracy of computed ~ K* peak value

reliable solution domain and consequently a minimum number of

boundary elementd,/W=1 is selected. The boundary element

model is presented in Fig(1d, for a crack depth ok*=.05 and compared. The analytical solution of Lee and Sié) and the
L/W=1, wherea*=a/W. K} is defined as the dimensionlesshoundary element method solution used by Katsareas and Anifan-
thermal dynamic stress intensity factor, which for a plain-straitis [12] are obtained ignoring the inertia term. The analysis of the
condition is Kf =K,(1—v)/[EyW(6y— 6,)]. Where E is the present work with the assumd®) has good agreement with the
modulus of elasticity ant* = Kt/pcW? is the dimensionless time analytical and boundary element method results. To study the ef-
known as the Fourier number. fect of thermomechanical coupling, the variationkgf versus the

In all preceding computations the thermal dynamic stress intedimensionless time for different coupling parameters are shown in

sity factors are obtained using the one-point displacement fdfig. 5. As the coupling parameter is increased, the peak value of
mula, and the crack-element length to crack-depth rHtiois KF increases. As it is shown in Fig. 6 when the coupling param-
considered 0.3. The justification for this choice is illustrated ister is increased the temperature gradient rises, consequently the
Fig. 3. Many investigators such as Boley and Wih#8] and crack opening that is a result of the temperature gradient in-
Jadeja and Lo¢19] indicated that the effect of the inertia termcreases. The increase of the coupling parameter, however, causes
becomes more significant only when paramdier the ratio of the peak value oK} to occur at larger time. This is the same
the characteristic thermal tim&$pc. /k) to the characteristic me- resylt obtained by Chen and Wef&]. They considered coupled
?r:]amtcal ttlr;eéproportlonal t|(|3 :[I'hhe' n'attuhral pegptd of V'brat'ondc?fthermoelastic equations without consideration of the inertia term.

e structurg becomes small. This is the condition corresponding r; ; ;
to the very thin structures. For comparison purpo&asis con- Scz;guirsessélleirt]gdSBarre the plots Kf versus time, but the tlr_ne

- - . > ) ge enough to compare the results with the
sidered in the order of ¥Q therefore the effect of inertia term is known data(t* =1 is of the order of 10 secTo see the effect of
negligible. Figure 4 shows the variation of the stress inter§fty the inertia term, however, the time scale must be selected small.
versust*. The calculations are carried out for a quarter-pointo opserved the effect of the inertia terti,=1 must be in the
crack-tip element using the uncoupled theory of thermoelasticityyqar of 10 sec, which is equivalent to 400 timés 1.

In Fig. 4 the variation oK versus time derived by the analytical
method obtained by Lee and Sifi6] the boundary element
method([2]), and the method described in the present work are g

0.25

—Analytical .
] “=-BEM
0, 1 -
st ° / e 1 i --Present
3 0.2 - /-
a /
w o @
X2 6o 0.15
‘ ]
7 ]
06 01 7
AR ;
© 0.05 -
o i
w| g v () ]
e 0 T T T T
° 0.00001 0.0001 0.001 0.01 01 1
P T t
q9=0
Fig. 4 Comparison of the dimensionless thermal dynamic
Fig. 2 (a) Cracked strip initially at  6,, under sudden cooling stress intensity factor K} versus dimensionless time  t*, with
6., (b) boundary conditions analytical and numerical quasi-static results
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Fig. 5 Comparison of the dimensionless thermal dynamic
stress intensity factor K7 versus dimensionless time  t*, with
analytical and numerical quasi-static results for different cou-
pling parameters
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Fig. 6 Temperature distribution for different coupling param-
eters at different dimensionless times
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Fig. 7 Variation of the dimensionless thermal dynamic stress
intensity factor K7 versus dimensionless time  t*, for coupled
and uncoupled models
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In Fig. 7 K} is increased instantaneously after the application
of sudden cooling. At tima* =0.0025, the thermoelastic wave-
front reaches the tip of the crack. This cold shock produces tensile
stress in thex,-direction and due to the effect of the Poisson’s
ratio, compressive stress is produced inxhelirection. This phe-
nomena results in the crack opening and th{js increases by
time, as shown in Fig. 7.

When the thermoelastic wavefront passes through the crack tip,
a compressive stress is produced inxhalirection and the tensile
stress in thex;-direction. This phenomenon results in the crack
closure and thuk[ decreases by time. This decrease is shown in
Fig. 7 following t*=0.0025 to aboutt* =0.0035. Fromt*
=0.0035 theK value is increased with a slower rate compared to
the initial increase. As time is advanced, the thermoelastic waves
are reflected from the boundaries and cause fluctuations idjthe
value versus time.

The K -curve for the coupled case @=0.6 is shown in Fig.

7. This curve is below th&} -curve for the uncoupled case. This
result is justified with Fig. 5 for the small values of time.

Conclusions

A boundary element method and Laplace transform in the time
domain are developed for the analysis of fractured planar bodies
subjected to thermal shock-type loads. The transient coupled ther-
moelasticity are solved without domain discretization. The singu-
lar behavior of the temperature and displacement fields, in the
vicinity of the crack tip, is modeled by quarter-point elements.
Thermal dynamic stress intensity factors for mode | are evaluated
from computed nodal values, using the well-known displacement
and traction formulas. The accuracy of the method is investigated
through comparison of present results with other analytical and
computational works. The important features of this study are as
follows:

1 The fracture analysis due to thermal shock with the consid-
eration of the thermomechanical coupling term through the
coupled thermoelasticity equations shows that as the coupling pa-
rameter is increased the peak valuekgf increases and occurs at
larger time.

2 Treatment of the time domain in this paper is through the
Laplace transform method. This is an essential concept to realis-
tically evaluate the field variables under the coupled thermoelastic
filed assumptions.

3 The appropriate time scale in which the effect of the inertia
term is observed is considered and the importance of the inertia
term is shown. When the inertia term is considered, higher values
for K is achieved. The maximum value &f is about double
compared to the case where the inertia term is ignored.
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1 Introduction 2 Formulation of the Problem

The problem of a rigid regular-shaped indentor moving across aConsider a smooth rigid indentor on a viscoelastic half-space as
viscoelastic half-space has been addressed by a number of autsbesvn in Fig. 1 under total load/(t).
over the last four decades. The pioneering experimental work of The indentor, initially at rest, starts moving across the half-
Tabor[1] on the phenomenon of rolling friction within the elasticSPace in the negative direction of thexis at timet,, taken to be
range(i.e., no plastic flow lead to the conclusion that resistance&Z€ro for convenience, with speed(t). The region of contact
to rolling is a bulk effect due primarily to elastic hysteresis; and tgétween the indentor and the surface underneathC{s)
the work of Huntef2] and Morland 3], modeling the effect in the —[&(t),b(t)]. The indentor is of circular cross section and its
linear viscoelastic context. Goldén,5] and Golden and Graham "2diusR is large compared with the length of the contact interval
[6,7], developed a general methodology for problems of this I(in(a(t). The boundary conditions for the vertical displacement
based on a decomposition of hereditary integrals. The transiém('t) and pressur@(x,t) are

case is discussed in Golden and GraH&n while Fan et al[9] (X—Xo(1))?
solve the two-indentor steady-state problem. Inertial effects are u(x,t)= d(t) - 2R xe C(1), )
included in Golden and Grahaf0] for the one-indentor case. !

In this paper we consider a uniformly infinite cylindrical inden- unknown, xe C(1),
tor of large radius rolling in one direction across the surface of a unknown, xe C(t),
viscoelastic half-space, the response of which is modeled as that p(x,t)= 2)
of a standard linear solid. In the contact region, the indentor shape 0, xe C(1),

can be approximated as parabolic for small indentation as requikgflerex,(t) is the coordinate of the point of deepest indentation,

by the linear theory. Thus, we are also modeling a parabolic @(t) the vertical displacement a(t), while x andt are current

cylindrical indentor moving on a frictionless viscoelastic halfspace and time coordinates, respectively.

space. This is a plane-strain configuration. There is no dependenc8tarting from the viscoelastic Kolosov-Muskhelishvili equa-

on thez-coordinate, taken to be along the axis of the cylinder. tions as described by Muskhelish\ilil] and Golden and Graham
We adopt the noninertial approximation. This configuratiof6], these boundary conditions can be reduced to the following

provides a framework for theoretical analysis of the phenomengglations obeyed by the complex potentia(z,t), wherez=x

of hysteretic friction allowing at the same time for substantiat-iy is @ complex variable:

mathematical simplifications. An integral equation is derived to- + e _

gether with subsidiary conditions and an algorithm for their nu- [¢ b —¢ (x)=0, x&C(1),

merical solution is developed. Alternately accelerating and decel- ¢ (X — ¢ (xt)=iv(x1), xeC(1).

erating periodic and aperiodic motions are considered and tH@re the limits taken from above and below thaxis are

results compared with those for the steady-state solution known

from Golden and Graharf6]. The model developed and the re- ¢T(x,0)=lim ¢(z1);¢ (x,t)= lim ¢(Z1), (4)

sults obtained are of potential significance in assessing the effect 920+ Jz=0%

of material hysteresis on the startup and slowdown of movirghd the overbar denotes complex conjugate. The funet{osnt)

machinery; and also in evaluating the effect of vibrations on hy#s given by

teretic friction losses.

®)

t
v(x,t):f dt’l(t—t")u’(x,t"), (5)
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Inverting the convolution in Eq(5), we obtain
t
u’(x,t)=f dt’k(t—t")v(x,t"), (13)
wherek(t) satisfies

t t
fdt’l(t—t’)k(t’)=f dt'k(t—t")I(t)=8(t). (14)

Substituting from Eq.(13) into the first term of Eq.12) and
interchanging the order of integration over an infinite triangular
region allows us to rewrite the above-mentioned equation as

Fig. 1 Schematic representation of the problem: C(1) t ty(x)
=[a(t),b(t)]—contact interval, O—center of the cylinder, v(X,t)=f dt’l(t—t’)u’(x,t’)-i-f dt’' T.(t,t";x)v(x,t"),
R—radius of the cylinder, x,(t)—point of deepest indentation t(x)

of the half-space, x—current point coordinate, u(x,t)—vertical (15)
displacement at x, d(t)—maximum displacement, V(t)—
indentor speed, W(t)—total load

—w

where

ty(x)
Tl(t,t’;x)=J dvl(t—t")k(t"—t). (16)
t

’

for a material with unique Poisson’s ratig where " denotes

Fourier transform and. is the complex modulus of the material. g first integral in Eq(15) is evaluated over the period of time

This latter quantity is the Fourier transform of the singular V'S\ivhenu’(x t) is known, because for eath betweert,(x) andt

coelastic shear modulys(t). For a standard linear solid the pointx lies inside C(t). The second integral contains the
[(t)=18(t)+ 1,67 *H(1), (7) values ofv(x,t") for x¢ C(t"). Substituting for these from Eq.

where |y,l; are experimentally determined constanét) the (10, we obtain the main integral equation

Dirac delta function,« the inverse relaxation decay time, and ty(x) b(t')
H(t) the Heaviside step function. The nonvanishing resultant of v(x,t)=f dt’J dx'K(x,x";t,t o (x',t") +1(x,1),
external forces acting on the half-space implies that abs¢age o
opposed to relatiedisplacements cannot be calculated. In par- xeC(t) 17)
ticular, d(t) in (1) is indeterminate.

The quantityv (x,t) is not known. If, however, we proceed as ifwhere
it were known, then Eqs(3) constitute a Hilbert problem for

a(t’)

n(x,t")T,(t,t";x)

¢(z,t), and the solution without singularities at the ends of the K(x,x'it,t/) = (18)
contact interval is found by Muskhelishv{lL1] and Golden and B am(x’,t")(x"—x)’
Graham[6] to be .
X(z,1) v(x',t) I(x,t)=f dt'l(t—t")u’(x,t"). (19)
d(z,t)= ' (8) ty(x)

27 Jew L XXX D)
The two subsidiary conditions have the form given by Golden

where and Grahanj6]

X(z,t)=[z—a(t)]¥qz—b(1)]¥3 X (z,t)= lim X(zt).

N b(t) v(x',t)
Jz—0+ 3
dx’ = 20
9) fam X0 (20)
From the second of3) it follows that for anyx ¢ C(t) bO  x'o(x'.1)
dx' ————=—-W(t), 21
Lm <0 (t) (21)

b(t) ’
u(x,t)=¢n(x’t)f dx’(v(x—'t) (10)
at)

T X' =x)ym(x’',t)"

where EQ.(20) is a condition necessary for a suitably smooth

Here solution to exist andV(t) in Eq. (21) is the normal load acting
m(x,t)=[b(t)—x]¥qx—a(t)]¥? ) upon the indentor.
n(x,t)=|x—a(t)|"x—b(t)[*4

and “—" corresponds tax>b(t) and “+" to x<<a(t). 4 Standard Linear Solid

Equation (10) allows one to express(x,t) outside C(t) in

terms of its values insid€(t). This fact plays an important role For the case of a standard linear sdid) in Eq. (13) has the

in the derivation of the integral Eq17) below. form
, . k(t)=Kod(t) + ke PH(t). 22
3 The Fundamental Integral Equation and Subsidiary (O=kod() +y ® (22)
Conditions Herek,, k; and g are related tdg, |, and « as follows:
Let t;(x) be the time when the point first enters the contact 1 I kq
interval C(t)=[a(t),b(t)]. in other wordsx=a(t;(x)). Then, ko=~ ki=—p2, B=a— i~ (23)
from Eq. (5) for anyx e C(t): 0 0 0
(%) t It is assumed that the system is in equilibrium up to time
U(X’t):f dt’I(t—t’)u’(x,t’)+f dt'l(t—t" )u’(x,t"). =0. Equation(17) can be given for a standard linear solid by
— t1(x) employing Eqs(7), (22), and(23). The result, after carrying out

(12) all relevant integration, yields faa(t) <x<b(t)
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1 ((
_ _ — 2
U(X,t)—lle at+(a=p)ty(x)) _ R(X+ XZ,aO) o NN O t.
[ X Xt

al’l)=’£(;) X(;) x(r:):BI) 1
kO (%) , CisiR) (i+12) (i#l2) _(i+l2)
+—= dt'n(x,t")e?t a_=x, R
T Jo G— —O0 0O t =t+A,
RECy M << b(m/z_)(){:lm i+1/2 1 A
1 2 ~ hel
bemd . u(xLt) k) (24) o o
X — 7 X,1), D (e
ary - MO =X) o (¢
° (ix) (m)}/ (irl) ?M) (i+1) ti+1= LH-1/2
where Xy Xy Ky X, =b
1 I Fig. 2 Schematic representation of the discretization proce-
I D==g1{lot ] (X=X(1)) dure for the spatial domain

- %e*““*‘ﬂ*”(x—xo<tl<x>>>
Using Eq.(26) and noticing the symmetry of the initial contact
t , interval, we obtain the starting point for the iterative procedure:
+e*at1<x>f dt' e V(t’)]. (25) 0=y (x,0).
a0 To construct an algorithm allowing us to evaluat®(x,t), we
and wherea, is the semi-contact length for an indentor at rest. knust discretize both the spatial and the temporal domaint At
is easy to observe that for the limiting case of an indentor at rest,=0, when the motion has started, we use a uniform spatial
(Xo(t)=0, t1(x) = —) Eq. (24) reduces to grid. During each iteration we use an unequally spaced mesh as
1 | explained below, but then revert to equal spacing. The temporal
v(x,00=1(x,00=— = ( lo+ _1) Xo (26) grid is naturally chosen to be adaptive to accommodate the change
R o in the indentor velocity.
Therefore, Eqs(17) and (20) are satisfied identically, while Eq.  The discretization procedure for the spatial domain is illustrated
(21) gives the elastic solution for the constairiitial) load (cf. N Fig. 2. Suppose that we have computéd=uv(x;,t;), where
Golden and Graharf6)): (x{".t;) are the mesh points such thata(t)=x{’
a <x{, . xW <xW=np(t;) and[a(t;),b(t;)]=C(t;) is the con-
70 ) (27) tact interval att;. In determining a new temporal mesh point
2R ti,1=t;+At;, we require that the size of the time stap; be

Following the procedure outlined by Muskhelishvili1], we small in the following sense. We wish to retain all the “old”
obtain an expression for the pressure inside the contact inter@@sh pointsx(’ that are in the interior of the “new” contact
C(t), interval C(t;,,), specifically, we require thag(t;,1)<a(t;)

=xI; xW . <b(t;,1)<b(t;). This allows us to compute*) at
(28) the pointsx{", j=0,1,2 ... n—1, since for such points the itera-

tion scheme is explicit in the sense that the expressiom for”
Hysteretic frictional effectdsee, e.g., Golden and Grahd], at these interior points depends only on previously computed
Rabotnov[12]; also Moore[13] for a phenomenological discus-quantities. This point is discussed further in Section 5.2. We
sion) result in a force resisting the motion of the indentor in thehooseAt; so as to satisfy
horizontal direction. The coefficient of hysteretic friction is given
by At;<D

1 (b
fhzv—v dx p(x,t)u’(x,t). (29) whereD is a constant determined by trial and error axgl_, is
a(t) the previous time step.

We takeAt, to be 0.01 and =0.3. These values delivered a

reasonable balance between accuracy and computation time. We

5.1 General Algorithm. The general Eq(17) and the sub- now computev(x{' "% t; ;) at all x{' "V eC(t)), ie., at the
sidiary conditiong20), (21) present a system of three equations ifiold” mesh points that coincide with the “new” ones using Eq.
three unknownsa(t), b(t), anduv(x,t). Traditional methods of (24) and(25) (or (26), which is applicable to the initial stgpWe
solving such systems, e.d14,15, cannot handle the unknown evaluate the spatial integrals using interpolated values (®rt)
contact interval boundaries at an arbitrary titmévoreover, the in the combination of modified Clenshaw-Curtis and Gauss-
dependency of the upper limit of time integration on the spad@onrod formulas used in an IMSL routine DQDAWS. For the
variablex provides yet another obstacle, which renders any altdgemporal integral in Eq(24), which involves multiple evaluation
native method known to the authors, e.g., the finite elemeat spatial integrals, we employ the trapezoid formula modified as
method, the Nysinm method or collocation methods inapplicabledescribed in Section 5.2.

A comprehensive survey of numerical techniques applicable toNext we compute (a@(t;,1),ti+1) andv (b (t;,1),ti1) by
problems similar to the one under consideration, together witheatrapolation, respectively carried out over the known values of
justification for the suggested algorithm can be found in Chertak(x;,tj;1), j=0,1,2...,n—1 for some initial approximation

2
Iy

W(0)= lo+ —

m(x,t) (PO  dx'v(x’,t)
T awy (X =x)m(x’ 1)

p(x,t)=—

2 min; gl %)+ 1= X
V(ti—)+V(ti_1+At_y)’

(C1Y)

5 Numerical Algorithm

[16]. o o _ _ _ aO(t;, 1),bO(t;, ) to a(t;.).b(t;,1). These estimates are ob-
“We begin with the initial solution given by Ed27), which tained by adding-V(t;)At; to a(t;) andb(t;). Now construct a
yields cost function

2RWO b ' 2 b ' , 2
ag= ill) (30) f(a,b)—{f dx';&,':;] +:j dx’%#-wa) .
V ”('“ 3) (32)
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Clearly, a, and b satisfying the subsidiary condition&0), (21) m(x,t) b®) dx'[v(x’,t)—v(X,1)]
will deliver a minimum tof (a,b). This is an iterative procedure. p(x,t)=— p [ f MmO (X —x)
At each iteratiork, v(a®(t;,1),ti+1) andv(b®(t;,1),ti,,) are awm '

the minimizing values of andb asa* andb(+Y and com- +ov(x,t)
pute v(a® Y t;1),v(b1"Y t;,,) using the integral Eq(24).

These two new values together with(x{'*D t;.;), j However, the second term in E(®6) is equal to zero, whereas
=0,1,2...,n—1, form the numerical solution of _Ea[l?) with ' —v(x.0)

subsidiary conditiong20), (21). Note here, thafa( 9 x{*1)] lim u:
and [x{ ") b0+ D7 differ in length from [x{'"*Y x{" )] for | xox XX
=0,1,2...,n—2. These (+2) points are now replaced by (
+1) equally spaced points as indicated in Fig. 2.

Sincev (x,t) is infinitely smooth insideC(t), the error arising
from approximatingv(x,t;.;) by a cubic spline i€0(h%) for all
interior points(de Boor[17]). Thus, for a sufficiently large num- . .
ber of sgatial (mesh poEnts])inside the contact inter):/al, g\J/ve can e§<- Results and Discussion
pect the error in estimating(al* Y.t ;) andv(bi*Yt;,,) to The computational realization of the algorithm described in

re-evaluated using cubic spline extrapolation, respectively. Denote b(t) dx’ J
. (36)

ay MX",D(X" =x)

v’ (X,1) (37)

andp(x{(" t;) can thus be numerically evaluated for an',t;)
without difficulty. Thereupon the hysteretic friction can be com-
puted from Eq.(29).

be negligible. Section 5 was carried out on a networked SUN SPARC 20 work-
Further description of the algorithm can be found in Chertoitation with available 163 Mb RAM and two 150 MHz CPU. The
[16]. program required 18—20 Mb of operating memory and a single

) = ) _computational run at the given level of discretization extended
5.2 Treatment Of Integl’al Slngulal’ltles. The |ntegrand n from 25to 72 hours of CPU timel depending on the Chosen pa’[-
Eq. (17) possesses integrable singularities xt=a(t’), X' tern of speed/loading variation. Such a substantial difference in
=Db(t’') that can be handled, e.g., by employing Gaussian-tyj@PU time can be explained bearing in mind that for high speed/
quadrature formulas. Another singularity occurs whérin the loading amplitude, smaller time steps are required, which leads to
time integral becomes equal to,(x). In this casea(t’) substantial increase in the computation time.
:a(tl(x)):)( and the inner integrand becomes undefined’at For the discretization of the spatial domain we chbke=51
=a(t’). Nevertheless, mesh points, whereas the time domain had up16=3000 mesh
points. The results presented below pertain to a viscoelastic ma-
. terial with G;/Gy=1/4. Computational experiments with higher
bt) - u(xL,t) E (33) viscoelasticitieG, /Gy=1/2 andG, /G,=1) did not reveal any
X m(x’,t)(x'=x) qualitative difference from the case under consideration. We also
chose the dimensionless combinatiBe /Vy=12.5¢=1.25 and
R=10, whereV, is a characteristic speed for each case.
whereE is finite and so no non-integrable singularity arises. How- On the graphs below the subind@xcorresponds to the tran-
ever, in choosing an appropriate quadrature formula to evaluaient solution and corresponds to the steady-state solution. What
the temporal integral in Eq24), it is desirable to avoid handling this means, is the following: A steady-state solution assumes a
the values o (x,t) att=t;(x). To this end, we apply the trap- velocity constant over all time. The current velock(t) is as-
ezoid formula forte[Of;] and the rectangle formula fot signed as this constant velocity. The quantitigsandCg are the
e[t;,t1(x)] as follows: normalized lengths of the transient and steady-state contact inter-
vals, respectively, computed a€4(t)=(bg(t)—ag(t))/(2R),
1100 ot 4 F(xt CT_(t)=(bT(t)—aT(t))/(2R), hg and h; are the indentor tip
f Mariry~ S, LTI shifts: hr(t) =~ (ar(t) + br(t) ~ 2xo(1))/ (br(t) ~ ar(1)), hg(t)
0 ' &l 2 =—(ag(t) +bg(t))/(bg(t) —ag(t)), where xq(t) is the current
position of the indentor tip. Transient and steady-state coefficients
+ (X, 1) (t1(x) — 1)), (34)  of hysteretic frictionfy,andf,,_ are computed with the help of
Eqg. (29). The normalized speed ¥y(t)=V(t)/(KaR), where
where K=10 for the graphs containinGs andCt, hg andhy, while
K=100 for the graphs containin‘g13 andeT. The different scal-
b(t) (X' 1) ing of V for the different graphs is done in order to conveniently
f(xlt):n(x,t)eﬂlf dx' —— (35) fit the plot of velocity on the graph. The loadi(t) is taken to be
an ML =x) unity when constant, while the pressure coefficigiix,t) lies
between 0 and 1. In our subsequent discussion we shall assume

v(@i11,ti+1) does not contaim (a;1,ti+1), but only previously g3 constant Acceleration. As our first example we choose
computed values. This is true in any case for a pointin the interigi_ tor t=0 andv=0 for t<0. The length of the contact inter-
of the contact interval. Thus, as noted earlier, the iteration scheqg 5 the shift of the indentor tip are each plotted against time in
is entirely explicit, in contrast with one which would emerge frorq;ig_ 3. The hysteretic friction and the speed of the indentor are
a standard Fredholm-type equation, e.g., Atkingb#] and Davis shown in Fig. 4.

and Rabinowitz[18]. For a fine temporal mesh a reduction in the contact interval width eventually tends to a stable value

accuracy in the quadrature formula due to the correction given g:fﬁich corresponds to the “high speed” elastic limit as described
Eq. (34) is outweighed by a substantial gain in the computationgl 5oiden and Graharf6]. The hysteretic friction, however, in-

speed. . , creases to its maximum value and then deceases steadily tending
To evaluatep(x{" ,t;) using Eq.(28) and the known values of to zero. Observing the curve in Fig. 4, we can see a time delay
v(xj(') ,t;) we have to eliminate a first-order singularity in the inbetween the steady-state peak of the hysteretic friction and its
tegrand. Utilizing the Kantorovich methd®avis and Rabinowitz transient counterpart. Initially, the transient hysteretic friction is
[18]) and bearing in mind the differentiability af(x,t), we ob- less than the steady-state value, but becomes larger soon after the
tain time corresponding to the peak in the steady-state value. Follow-

lim n(x,t")
t'—ty(%) a(t’)
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Fig. 3 Constantly accelerating indentor: V=t. History of con-
tact interval width  C, indentor tip shift h and speed V. Fig. 5 Alternately accelerating and decelerating indentor with
V(t) varying as described by (38). History of contact interval
ing the peak in the transient value of the hysteretic friction, thidth C, indentor tip shift / and speed V. The solid lines indi-
difference between it and its steady-state counterpart steadily g8 the transient solution and the broken lines indicate the
clines to zero, as do both quantities at large speeds. Observe ffigfdy-state solution. The dotted line indicates the speed.
the history of the indentor tip shift mimics the history of the
hysteretic friction here and in all cases described below. This is an
cipresior of U act i hytertc Ml = et 1 10 U he resuls are presened in Figs. S and 6 We can observe the
a measure of such asymmetry phqracter!stlc trough in th.e length of the contact interval after the
) initial period of acceleration. Thereupon, for the constant speed
6.2 Acceleration Followed by Deceleration. We now con- motion the lengths of the contact interval for the transient and the
sider the case of an indentor accelerating smoothly from rest ttgady-state case merge and for the deceleration phase the tran-
prescribed speeW; and then, after a period of constant Ve|ocity5ient contact interval width lags behind the steady-state case

motion, decelerating to the spe# (which is substantially less catching up to the latter shortly after the speed has become con-
thanV,). As an example we consider stant. The behavior of the hysteretic friction is a mirror image of
that of the contact interval width in that for those periods of time

sint O<t< m when the transient contact interval width exceeds its steady-state
' 2 counterpart, the transient hysteretic friction is smaller than the
- steady-state one. It is also interesting to notice that, even though at
1, —<t<7 the beginning of the deceleration period the transient hysteretic
B 2 friction is slightly smaller than the steady-state one, by the end of
V(= . (38)  this period it is larger. We also obser(€ig. 7) that the pressure
1+0.9siMt+7—7), 7<t<7+ — distribution at the end of the simulation period is very close to the
initial pressure distribution.
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Fig. 6 Alternately accelerating and decelerating indentor with
Fig. 4 Constantly accelerating indentor: V=t. History of hys- V/(t) varying as described by (38). History of hysteretic friction

teretic friction f, and speed V. The solid lines indicate the tran- fy and speed V. The solid lines indicate the transient solution
sient solution and the broken lines indicate the steady-state and the broken lines indicate the steady-state solution. The
solution. The dotted line indicates the speed. dotted line indicates the speed.
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Fig. 7 History of pressure distribution for an alternately accel- Fig. 9 Periodically accelerating indentor: V(t)=1+0.9sin (7).
erating and decelerating indentor History of hysteretic friction  f, and speed V.

6.3 Periodica”y Varying Speed and Load. For the case of down Shortly after the Speed reaches its maximum. The hysteretic

a periodically varying speed, we consider frictipn attempts to stabilize at a cgrta_in _Ievel. As the speed further
continues to decline, the hysteretic friction drops rapidly and then
V(t)=A+B sint, (39) starts to increase with the beginning of a new acceleration period.

Maximum and minimum values of hysteretic friction and the in-
whereA>B>0. Three combinations @& andB were considered: dentor tip shift are larger in the transient analysis than in the
A=1.0, B=0.9, A=1.0, B=0.25 andA=0.5 B=0.25. The steady-state analysis. The shapes of the resulting graphs some-
graphs for the first set of values are presented. These are the mysit resemble those of the ones in Figs. 5 and 6.
interesting results that were obtained. For the case of a medium mean value of speed and a medium

Consider the case of a relatively high average speed with pesimplitude (A=0.5, B=0.25 the transient and the steady-state
odic variations of large amplitude about this valué=1, B contact interval width are very close. The transient indentor tip
=0.9 (see Figs. 8 and)9 shift and hysteretic friction follow their steady-state counterparts

The width of the transient contact interval follows its steadywith a time delay as in the case discussed above. The instance of
state counterpart, but with a delay. The steady-state hysteregtitatively high mean speed varying with small amplitude=1,
friction qualitatively follows the velocity, but the neighborhood of8=0.25 qualitatively lies between the first and the second of the
the peak is “inverted,” i.e., the friction decreases as the normapreviously considered cases Cher{d).
ized speed//100xR increases to values above 0.01. Thisis inline For a periodically varying load moving with constant speed
with the fact that for the steady-state problem the hysteretic frigFigs. 10 and 1), we notice that the transient and the steady-state
tion reaches its peak at medium velocities and decreases as sprgfilact interval widths become equal after a short period of initial
deviates to either side of these values Hurd@ Golden and stabilization. The transient indentor tip shift and hysteretic friction
Graham[6], Fan et al[9], and Golden and Grahaf8]. follow the variations in the contact interval width with a time

The transient hysteretic friction, however, presents a totally difielay. The transient hysteretic friction mimics its steady-state
ferent picture. After a sharp increase corresponding to the accebunterpart with a time delay as well. However, the steady-state
erating indentor, it starts to decrease after the normalized speedentor tip shift varies very slightly, in contrast with the transient
V/100xR becomes greater than 0.01. The rate of decrease slaw8entor tip shift, which varies significantly.
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Fig. 8 Periodically accelerating indentor: V(t)=14+0.9sin(f). Fig. 10 Periodically varying load: =~ W(t)=140.9 sin (f). History
History of contact interval width C, indentor tip shift h and of contact interval width  C, indentor tip shift h and speed V. W
speed V. is scaled by a factor of 10 to fit on the graph.
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Vibrations of Tapered Timoshenko
Beams in Terms of Static
Timoshenko Beam Functions

School of Mechamcagégﬂgrﬂg In this paper, the free vibrations of a wide range of tapered Timoshenko beams are
Nanjing University of Science and Technology, investigated. The cross section of the beam varies continuously and the variation is
Nanjing 210014, P. R. China described by a power function of the coordinate along the neutral axis of the beam. The
static Timoshenko beam functions, which are the complete solutions of a tapered Timosh-
Y. K. Cheung1 enko beam under a Taylor series of static load, are developed, respectively, as the basis
Department of Civil Engineering, functions of the flexural displacement and the angle of rotation due to bending. The
The University of Hong Kong, Rayleigh-Ritz method is applied to derive the eigenfrequency equation of the tapered
Hong Kong Timoshenko beam. Unlike conventional basis functions which are independent of the
cross-sectional variation of the beam, these static Timoshenko beam functions vary in
accordance with the cross-sectional variation of the beam so that higher accuracy and
more rapid convergence have been obtained. Some numerical results are presented for
both truncated and sharp-ended Timoshenko beams. On the basis of convergence study
and comparison with available results in the literature it is shown that the first few
eigenfrequencies can be given with quite good accuracy by using a small number of terms
of the static Timoshenko beam functions. Finally, some valuable results are presented
systematically. [DOI: 10.1115/1.1357164
1 Introduction quite high accuracy and the first few eigenfrequencies can be ob-

ined by using a small number of the static Timoshenko beam

Beams with varying cross section are widely used as structu% ctions

elements in aeronautical, civil, naval, and mechanical engineering.

Therefore, it is necessary for designers to understand their dy-

namic characteristics. It is well known that the Bernoulli-Euler

beam theory has been successfully applied to the slender beam The Eigenfrequency Equation of a Tapered Beam
analysis. This classical beam theory, however, overpredicts all th he tapered Timoshenko beam considered here and its coordi-
eigenfrequencies for thick beams and the higher eigenfrequenciee;{e p

for slender beams, as it neglects the effects of transverse sHAAE System are shown in Fig. 1. The cross section of the beam
Varies continuously and is described by a power function of the

deformation and rotary inertia. This shortcoming of classical bea . . -
theory results in the presentation of the Timoshenko beam the&&ord!nate along the neutral axis of the beam. The origin of the_
- : : : - 3 coordinate system is fixed at such a position that the power func
([1]). Unlike the single Qeflectlon var_la_ble n B_ernoulll-EuIer ion describing the cross section of the beam takes up zero value
beam theory, the governing ch_aracter_lsnc equations of T'mosﬁx}'infinity. Both truncated beams and sharp-ended beams are stud-
enko beam are two coupled_ dlffer_entlal equations expressediégi in the present analysis. The length of the sharp-ended beam is
terms of two independent variables: the flexural displacement ayids . \cated beam is considered as part of a sharp-ended beam
the angle of rotation due to bending. Therefore, the analysis Qrf\d has the length=(1— a)L wherea is referred to as trunca-

glmcr)nshegkcrn] beamfmls nr:orexdlfftlcultl tEa: tri'r?ttﬁf Bfmoguf"frl# ion factor. Assuming that the cross-sectional aféa) and the
eams. Lonsequently, no exact solutions e closed 1o oss-sectional moment of inertiéx) can be, respectively, writ-
vibrations of tapered Timoshenko beams have been obtamedT in the form of

most cases approximate numerical methods have to be used, suc
as the finite element methgf2—4)), the spline function method _ r _ s
([5]), the optimized Rayleigh-Ritz method6]), the Galerkin ACO=ALIL), - T00=11(xIL) @)
method ([7,8]), the transfer matrix method[9]), the step-
reduction method[10]), and series solutions based on the meth L. Indicesr ands are referred to as tal
. . =L. per factors. Equatibn

of Frobenius([11]). A survey on the study of Timoshenko beamg,, esses a wide range of tapered beams at different values of
([12]) can be found in the literature. _ands. Some common linearly tapered beams are shown in Table

In the present analysis, the static Timoshenko beam fU”Ct'Oi‘fsAccording to the Timoshenko beam theory, the strain enbrgy

are developed as the basis functions to analyze the free vibratighs; the kinetic energy of a nonuniform Timoshenko beam can
of tapered Timoshenko beams. The Rayleigh-Ritz method is usggd given as follows:

to derive the eigenfrequency equation of the beam. Both conver-

hereA, andl, are, respectively, the values A{x) andI(x) at

gence and comparison studies show that the present method has 1 (L de(x,)]2
U= Ef {Ell(x/l_){— + KkGA(XIL)'

1To whom correspondence should be sent. al
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paper should be addressed to the Editor, Professor Lewis T. Wheeler, Department of
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and will 1(t ay(x,1)]? de(x,1)]?
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A®) Introducing the following nondimensional coordinate and

parameters
L
&=xIL, Q?=pA;0?*El], 6=El /(kGAL?),
s Ay _ 2
i — x & 7=11/(AL7) (4)
3 and substituting Eq(3) into Eq. (2), the Lagrangian functiom
I=(-a)L can be given as follows:
@ 1 (Y [dw(®]* 1 dy(é)]?
= —_— S| — _— r —
1o A ZJa[f[ de TS8O+ BT d¢
L QZ ' 2 2
—_ r S
........ "”T’i I 2(1_61/)4 fa[g Y(é) + 7]6 l/f(g) ]d§ (5)
- x & . . .
e Assuming that the displacement functidi{é) and the rota-
P tional angle function/(¢) can be written as
ol I=(1-a)L " -
®) Y(E)=2, aYi(8), WE= D bun() (6)
i=lo n=io
A® where botha; and b, are unknown coefficients anf} is the
L lowest order of the basis functions. For truncated beggs,
however, for sharp-ended beanjg,is determined by the taper
3 factor s of cross-sectional moment of inertia, which will be dis-
\NLAI cussed laterY;(£) and ¢,(£) are the basis functions, which sat-
° x, & isfy at least the geometric boundary conditions of the beam and if
/—‘"7\_ possible, all the boundary conditions.
Truncatingj andn, respectively, aftej,+J, then substituting
oL | I=A-a)L Eqg. (6) into Eq. (5) and applying the Rayleigh-Ritz method
© dA S . .
EZO’ 1=JosdotLljot2,...)0td,
I(x) ]
aA o ) )
L o.=0 N=lodotLiot2, ..ot )
i n
K\Ml one obtains the eigenfrequency equation as follows:
’ | ——r »e Kio Kil[{A}] Q% [Mj Mjg [{A} :{01 @®
Knj Ko {B} (1-a)*|M M.l{B} (O
ok © y=g-a)r where
(CY) _ 11 dY(é) dY(é)
Ki=3), dg “ag 9
Fig. 1 The sketch of beams with continuously varying cross
section; (a) the variation of cross-sectional area when r>0; (b)
the variation of cross-sectional moment of inertia when s>0; Orite) 1(5
(c) the variation of cross-sectional area when r<0; (d) the 5 Ya(§)dE,
variation of cross-sectional moment inertia when s<0

d
Knj= f (€ YTf) ——dé,

wherey(x,t) is the flexural displacemeng(x,t) is the angle of
rotation due to bending artds the time E is the Young’s modulus T dyn() dt!/‘(f)
andG is the shear modulug. is the mass per unit volume of the K —— {g n g’z,// &)y &) |de,
beam andk is the shear correction factor. " de  deé mesrn

For the free vibration of a beam, the flexural displacement and
the angle of rotation due to bending may be written as

y(x,H=Y(x)e " p(x,t)=y(x)e L ®)
where w is the eigenfrequency of the beam and,/— 1.

1
Mu_:f EY(HY(HdE, Mjp=M;=0,

1
Mpn= nf () Yr(§)dE,

Table 1 Some common linearly tapered beams {A}:[ajo CHNP 'aioﬂ']T’ {B}:[bjo bj0+1 -bjo+J]T-
Type of tapered beams Taper factors (9)
A uniform beam r=0, s=0 . .
A rectangular beam with linearly varying width =1, 5=l Using the standard eigenvalue program to solve @&, 2(J
A rectangular beam with linearly varying thickness =1, 5=3 +1) eigenfrequencies and the unknown coefficiemts (j
A rectangular beam with linearly varying both width and thickness r=2, s=4 :jO ,j 0+ 1, L ,J O+ J) and b (n JO! 0+ 1 . ’j 0+ J) corre-
A circular beam with linearly varying radius r=2, s=4

sponding to every elgenfrequency can be easily obtained.
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3 The Static Timoshenko Beam Function§STBF) where &, is the center of the Taylor series expansion dhd

Once again consider the tapered beam analyzed in the last s:eél/[k!(.j _.k)!]' . .
tion. The differential characteristic equation of the tapered beam>Ubstituting Eq(14) into Eg. (13), the general solution of the
under a transverse nondimensional static IQ4d) can be given angle of rotation due to bending can be easily given as follows:

as follows: w
5 [éf[dY(f)—«p(e)an (10a) #O= 2 Qui(® (15)
a a4 where
d | dy(d) Jdv(e) }_ j

The bending momenl (¢) and the transverse shear fol¢gf) (16)
of the beam are, respectively, given as

and
El, _dy(é) kGA; |dY(§)
M(f):*TTIESZ_(;, V( =Tl§f{d_(;¢(§)} ()= 1 In(¢), k=s-3
(11) T (k1) (k+2) | &37%(k+3—5), k#s-3,
At each end of the beam, two boundary equations can be pre- _ In(¢), s=2 17
scribed. For example, at the edé «, one has USA £275(2—s), s#2, (17)
Y(a)=0, (a)=0 for the clamped end (B2 In(é), s=1
Y(a)=0, M(a)=0 for the simply-supported end 1 :[515/(1—5), s#1.

(120) Substituting Eq.(14)—(17) into Eq. (10a) or (10b), the general
M(a)=0, V(a)=0 for the free end. (1@ solutions of the transverse displacement can be solved and written

Similarly, the boundary equations at the e&dl can also be In the form of

written. *
From equations(10a) and (10b), an uncoupled differential Y(§)=E Q;Y;(é), (18)
equation about/{(¢) can be derived as follows: j=0
d2 dl/f( -f) where
S— =
a2 BT Q(&). (13)

i
) = —_1Vi—kpl £i—krplke gy _ sp2k
An arbitrary loadQ(¢) can be expanded into a Taylor series i kzo (=D Dide IFHE — R [+ [Foul£)

- P ! o — SF o €)]CL+F,(£)Cl+£Ch+Cl, 19
QO=3, Qe £)1=>, Q) (1) Dl K&k (14) oA §)]1Co+ Fa£)C1+£C; (19)
j=0 =0 k=0 and
|
glIn(é)—1], k=s—3
Flk(g):m In(é), k=s—4
AT [(k+3—s)(k+4—s)], k#s—3; k#s—4,
o e 1 In(é), k=r—2
FHO= 151 &2 (k+2—1), Kk#r—2,
&In(é)—1], s=2
Foi(&)=1 In(&), s=3
E78[(2—s)(3—9)], s#2; s#3,
In(¢), r=1
Fod =1 arj1or), 121,
&In(é)—1], s=1
Fi(&)=1 In(), s=2 (20)

£278[(1—s)(2—9)], s#1; s+2.

In Eq. (16) and(19), C|, (k=0,1,2,3) are the unknown constantsthe four boundary equations of the beam for evjelyowever, for
) a beam with rigid-body movements, these unknown coefficients
3.1 Truncated Beam. For the truncated beams withoutcannot be determined directly from the boundary equations of the
rigid-body movements, the unknown coefficient§} (k peam. In such a case, one can divide the basis functions into two
=0,1,2,3) in Eq.(16) and(19) can be uniquely determined from parts: the rigid-body modes and a set of basic solutions which are
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Table 2 The static beam functions  (SBF) y;(§) (i=1,2,3,...) Table4 The convergence study on eigenfrequencies of a can-

for truncated tapered Timoshenko beams with rigid-body tilevered beam clamped at the wider end and with linearly vary-
movements ing width, h,//=0.3
B.C. | The first STBF | The second STBF The third and higher STBF J Q, Q, Q, Q,
F-F =1; —E_(-a)i2; The first and higher STBF a=0
Y, ¢)=1; L&) =(-(1-0)/2; e first an gher 0 64302 2,426
v, (&)=0 v, (&) =1 for the S-S beam 1 6.4264 21.548 84.686 10379
. 2 6.4102 21.546 43.220 84.675
S-F V) =¢-a; The first STBF for the S-S | The second and higher STBF 3 6.4099 21151 43218 67.344
v,(E) =1 beam for the S-S beam 4 6.4098 21.147 40.977 67.314
' 5 6.4098 21,145 40973 61.631
F-S Y¢)=£-1; The first STBF for the S-S | The second and higher STBF 6 6.4098 21.145 40.929 61.631
& =1 beam for the S-S beam 7 6.4098 21.145 40.929 61.389
o= 8 6.4098 21.145 40.929 61.389
9 6.4098 21.145 40.929 61.385
Table 3 The static beam functions  (SBF) y(§) (i=1,2,3,...) a=05
for sharp-ended Timoshenko beams with rigid-body move- 0 4.0250 79.766
ments 1 4.0020 17391 81.982 100.17
2 4.0020 16.734 38.350 82.148
B.C. | The first STBF The second STBF The third and higher STBF 3 4.0020 16.732 35.702 61.416
F-F Y& =1; Y,E)=£-1; The first and higher STBF for 4 4.0020 16.732 35.638 55.671
5 4.0020 16731 35.626 55.432
v,(§)=0 v, (=1 the F-C beam 6 4.0020 16.730 35.613 55.353
. 7 4,0020 16.730 35.608 55.292
F-S Y (€)=£E~1; The first STBF for the | The second and higher STBF s 40020 16730 35.605 55266
v, &) =1 F-C beam for the F-C beam 9 4.0020 16.730 35.604 55.258
=075

3.6037 79.271

3.5781 16.848 81.714 100.05
3.5780 16.092 38.218 81.928
3.5780 16.092 35.143 61.603

0
1
the basis functions of the beam with additional restraints elimine 2
ing the rigid-body movement$13]). The authors used this simple i 35780 16092 35.125 $5.005
method time and again to analyze the vibrations of beams a s 3.5780 16.091 35.114 54.927
plates([14—16). Up to now, no failure case has been found. It 6 3.5780 16.090 35.103 54.850
the present analysis, the static Timoshenko beam functions for 1 7 o i foped) Bt
beam with simply supported two ends are selected as the be 35780 16.090 35.002 54760
solutions, which are supplemented by the modes of rigid-bouy

movements as given in Table 2.

3.2 Sharp-Ended Beam. For the sharp-ended beams, the ) ) )
sharp end cannot sustain a bending or a shear force, hence onetha¥2. This phenomenon can be easily explaingd= (1+ @)/2
) . can provide the optimal convergence for the Taylor series expan-
C,=0, Ci=0. (21) sion in the intervala,1]. Without lose of generality, in all the

Moreover, the displacement and rotational angle of the bedRylowing computations, only the tapered beams with rectangular
should be finite at the sharp end, so that there is a limit to t{0SS Section are analyzed and paramedgrs(1+ «)/2, k=56,

lowest order of the Taylor series load as follows: Poisson’s ratiov=0.3 are used unless otherwise stated. In such a
_ case,5=0.26(1— a)?(h,/1)? and = (1—a)?(h,/1)?/12 where
j>s—2. (22) h, is the thickness of the tapered beamé¢atl andh, /| is the

Therefore, the lowest order of the Taylor series should be takentigkness-length ratio of the beam. . .
The convergence study on eigenfrequencies of a cantilevered

jo=Max{Int(s—1),0} (23) beam with linearly varying width, which is clamped at the wider
end, is first considered. The first four eigenfrequencies versus the
and Eq.(13) should be replaced by . number of terms of the static Timoshenko beam functions from 1
> 2 ! . o to 10 are given in Table 4 for the beam with a thickness-length
Q6= E Qj(é—&)'= E Qj 2 (—1)1“‘D{(§JC"‘§k ratioh, /1=0.3. It can be seen that in general, four to eight terms
i=lo =0 k=lo of the static Timoshenko beam functions are sufficient to give the
(24)  first four eigenfrequencies with quite satisfactory accuracy. It
For the cantilevered sharp-ended begR<C beamy the un- should be reminded that when the value of the truncation factor
known coefficientsC, and C} in Eq. (16) and (19) can be is close to 1, the tapered beams approximate to the uniform
uniquely determined from the boundary equations of the beamkams. However, it is obvious that E¢$6) and(19) are singular
£=1 for eachj. While for a beam with rigid-body movements, thedt a=1. Therefore, the larger ia (especially whem>0.8), the
static Timoshenko beam functions for the cantilevered sharpMaller number of terms of the static beam functions can be used
ended beam are taken as the basic solutions, which are supflehe computation. For example, whes=0.9 only no more than
mented by the modes of rigid-body movements as given in Tadferee terms of the static Timoshenko beam functions can provide
3. stable numerical computations under double precision. In order to
prevent the occurrence of ill-conditioning and increase the number
. of significant figures, quadruple precision is used in the following
4 Convergence and Comparison Study computations by taking=7 for «<0.7; J=6 for 0.7<a<0.8;
Using the static Timoshenko beam functions derived in the la3&5 for 0.8<a<0.9, andJ=4 for «=0.9.
section as the basis functions of the tapered Timoshenko beamsThe comparison study on the first four eigenfrequencies is
the convergence and comparison study is carried out in this sgéven in Table 5 for both thick beamimoshenko beamswith
tion. It should be pointed out that the convergence is concernkkarly varying thickness and slender beafernoulli-Euler
with the centerf,. of the Taylor series expansigfl3]). The best beams with linearly varying thickness. The reference data come
convergence can be obtained when the midpoint of the beamfrism finite element method[4]), step-reduction metho{10]),
taken as the center of the Taylor series expansion,&ees(1 Frobenius’ method[17]), and series solutioff 11]), respectively.
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Table 5 The comparison study on the first four eigenfrequen-
cies of tapered beams with linearly varying thickness

o, k1 B.C. Sources Q, Q, Q, Q,
0, 0.001 F-C Present 5.3151 15.207 30.020 49.765
Naguleswaran (1994)*  5.3151 15.207 30.020 49.763
0.2,0.001 F-C  Present 4.2925 15.743 36.884 68.158
Naguleswaran (1994)* 42925 15.743 36.885 _—
0.5,0.001 F-C  Present 3.8233 18.313 47.345 90.476
Naguleswaran (1994)" 3.8238 18.317 47.265 —_—
0.0, 0.001 F-S  Present 10.902 24.631 43205 66.688
Naguleswaran (1994)" 10.902 24.631 43.205 66.683
0.2, 0.001 E-S Present 10.739 29.407 58.115 97.105
Naguleswaran (1994)* 10.739 29.407 58.115 —_
0.0, 0.001 E-F Present 12.757 27.755 47.577 T72.571
Naguleswaran (1994)" 12.758 27.755 47.576 72.295
0.2,0.001 F-F Present 13.384 34,488 65753 107.36
Naguleswaran (1994)* 13.384 34.488 65.737 —
06, 0.0443 FC  Present 3.7250 18.783 48.385 90.442
Rossi et al. (1990) 3n 18.77 4836 90.46
06,008y3 F-C  Prosent 36804 17890 43735 77155
Rossi et al. (1990) 3.69 17.88 43.74 7732
06,0.12¢3 F-C  Present 36326 16659 38450  64.527
Rossi et al. (1990) 3.62 16.65 38.48 6477
0.6, 0. 1643 F-C  Present 3.5579 15.309 33.646 54.482
Rossi et al. (1990) 355 15.30 33.69 5475
06,02y3 FC  Present 3.4688 13.984 29.618 46.704
Rossi et al. (1990) 347 13.98 29.68 46.97
0.5,0.09928 C-C  Present™ 15.638 40.923 75.554 117.24
Tong et al. (1995)** 15.639 40923 75.543 116.96
08, 0.04/3 SC Present” 14.034 43.411 86.952 142.75
Lee and Lin (1995)" 14.035 43.400 87.008 142372
08, 00443 CC  Present” 19.563 52223 98419 15611
Lee and Lin (1995)™ 19.561 52.208 98.365 155358

+ Bernoulli-Euler beam theory is used; ++ k =0.667 and v =0.3125 are used; * v =29/96 is used;
**y =7/24 is used.

Table 6 The accuracy comparison of the first two eigenfre-
guencies for a simply-simply supported Timoshenko beam
with linearly varying thickness, respectively, using the static

Timoshenko beam functions

vibrating Timoshenko beam functions

(STBF) on the tapered beam and
(VTBF) of uniform beam

o4 R/l Methods J Q, Q,
0.1 0.1 STBF 3 3.8731 17.866
7 3.8712 17.863
VTBF 3 4.1072 19.707
7 3.9164 18.162
0.3 STBF 3 3.7353 16.184
7 3.7332 16.179
VTBF 3 3.9792 17.517
7 3.8019 16.401
02 0.1 STBF 3 4.8911 20.984
7 4.8911 20.930
VTBF 3 4.9607 21.687
7 4.9003 20.987
0.3 STBF 3 4.6793 18.465
7 4.6792 18412
VTBF 3 4.7683 18.919
7 4.7137 18.451
03 0.1 STBF 3 5.7055 23.621
7 5.7055 23.508
VTBF 3 57290 23.820
7 5.7097 23.522
0.3 STBF 3 5.4164 20.242
7 54164 20.140
VTBF 3 5.4604 20.336
7 5.4433 20.150
uniform beam 0.3 STBF 3 8.6839 27.319
7 8.6839 27315
Exact solution 8.6839 27315

thickness based on three values of truncation factbes
=0.1,0.2,0.3, respectively, by using the static Timoshenko beam
functions developed from the tapered beam and the conventional
vibrating Timoshenko beam functions developed from the uni-
form beam are given in Table 6. It is seen that accuracy and
convergence of the vibrating Timoshenko beam functions are
worse than those of the static Timoshenko beam functions. This is
always true for fundamental eigenfrequencies of tapered beams
with any truncation factor although the vibrating Timoshenko
beam functions are the exact solutions for uniform Timoshenko
beams. It is shown that using the vibrating Timoshenko beam
functions as basis functions in the Rayleigh-Ritz method, the ac-
curacy and convergence of eigenfrequencies of a tapered beam
will decrease with the decrease of the truncation faetoiThe
above analysis demonstrates that when developing the basis func-
tions for tapered beams, especially for the beams with a small
truncation factor, the effect of both the variation of cross section
and the shear correction factor should be considered.

5 Numerical Results

A survey on the literature reveals that the available results for
vibrations of Timoshenko beams with varying cross section are
very limited and only results about beams with larger truncation
factor («=0.6) can be found. Therefore, it is meaningful to sys-
tematically provide some data what can serve as a benchmark of
further reference for researchers and present useful information
for designers. In this section, three types of tapered beams are first
analyzed in detail: beams with linearly varying thickness; beams
with linearly varying width; and beams with linearly varying both
width and thickness. In the analysis, three kinds of support con-
ditions are considered: clamped-clamped bed@C); simply-
simply supported beams$S-S; cantilevered beams with the
clamped larger en¢-C). The first three eigenfrequencies of the
tapered Timoshenko beams with three types of varying cross sec-
tions are given, respectively, in Table 7, Table 8, and Table 9 for
truncation factow varying from 0 to 0.9 with an increment 0.1. In
every case, two kinds of thickness-length ratios/| =0.1; h, /I
=0.2 are considered. From these tables, one can see that in most
cases, the eigenfrequencies of the beams increase with the in-
crease of the truncation facter. However, for the F-C beams
with linearly varying thickness and the F-C beams with both lin-
early varying thickness and linearly varying width, the fundamen-
tal eigenfrequencies decrease with the increase of the truncation
factor. And for the F-C beams with linearly varying width, the first

Table 7 The first three eigenfrequencies of Timoshenko
beams with linearly varying thickness, Case A: F-C beams;
Case B: C-C beams; Case C: S-S beams

o Case A | Case B Case C
Ql QZ QJ QI QZ QS Ql QZ 93

0.1 46047 14.685 31.739 97429 26.136 49.829 38712 17.863 38.796
0.2 42680 15426 35319 11.609 31.052 58.868 4.8911 20930 45528
0.3 4.0576 16230 38.513 13.148 35.024 65995 57055 23.508 51.069
0.4 39100 17.008 41.403 14.512 38470 72038 64142 25822 55937
0.5 3.7992 17746 44.056 15759 41.558 77337 7.0552 27960 60.343
0.6 37120 18444 46.795 16920 44373 82071 7.6475 29967 64.395
0.7 36411 19.106 48.825 18.011 46970 86520 82026 31.869 68.181
0.8 3.5821 19736 51.012 19.045 49391 90.583 87279 33.685 71,740
09 3.5317 20335 — 20.031 52420 — 9.2282 35793 —

4.5294 14016 29.057 9.3525 23.969 43530 3.8178 17.159 35.827

0.1
Three kinds of support conditions are considered: beams with t 02 4.1971 14586 31677 10987 27.730 49.597 4.8082 10.845 41.045

clamped thicker end and the free thinner érelC); beams with

0.3 3.9880 15204 33912 12280 30.550 53.933 55912 22019 45.070

two Clamped endsc_c); and beams Clamped at the thicker end 0.4 3.8401 15786 35841 13.382 32.835 57309 6.2655 23.905 48.407

and simply supported at the thinner e(®C). Good agreement 3§

has been observed for all cases.
The comparison study on the first two eigenfrequencies of 08 35070 17.658 41613 16725 39.091 66.132 84048 29.828 58.082
simply-simply supported Timoshenko beam with linearly varyin 09 34550 18028 — 17387 40554 — 8850 31500
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3.7284  16.321 37533 14351 34.754 60.049 6.8685 25.689 51.272
3.6401 16.808 39.036 15220 36.400 62330 74193 27.120 53.781
0.7 3.5677 17.253 40384 16.007 37.831 64310 7.9290 28525 56.022
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Table 8 The first three eigenfrequencies of Timoshenko 35
beams with linearly varying width, Case A: F-C beams; Case B:

SE
C-C beams; Case C: S-S beams 301 "”’L.,.A
o Case A | Case B [ Case C 25 1 A
Q o o 9 9 9 9 9 q 20 R m gy 4
e @ee o,

hil=01 15 9---0---0--.0...9... 4. ey N :I
0.1 59984 25804 60.448 19.434 51368 94370 93397 36.988 78.048 10L£Z o o
0.2 53395 24302 58483 20.103 52484 95746 9.4891 37.113 78.208 sy e g
0.3 48822 23406 57452 20.452 53.017 96357 9.5734 37.132 78217 54—t —0—t—0—+ L
0.4 45418 22786 56789 20.659 53317 96.689 9.6256 37.127 78.202 X » )
0.5 42760 22315 56312 20.789 53.498 96.885 9.6391 37.118 78.186 0 ' ' ' j
0.6 40611 21937 55943 20871 53.611 97.005 9.6807 37.109 78.173 0 0.1 0.2 0.3 0.4 0.5
0.7 3.8829 21.622 55.646 20922 53681 97.077 9.6942 37.103 78.164 hii
0.8 37318 21.353 55397 20.953 53721 97.120 97023 37.099 78.159 1
0.9 36018 21118 — 20964 53778 — 97063 37.099 — . . . . .

B 11=02 Fig. 2 The first two eigenfrequencies of cantilevered sharp-

0.1 5799 22532 47837 16599 39.188 66621 88012 31751 eogos  ended Timoshenko beams with linearly varying thickness

02 S1777 20303 46413 17214 40.133 67627 90027 32033 61204  and/or width via the thickness-length ratio  h,//: -@- €, and
03 47438 20553 45.643 17529 40.580 68.073 9.1098 32118 61.399 - -@- - Q, for the beams with linear varying thickness; - A—- Q,
04 44195 20022 45137 17715 40832 68315 9.1746 32149 61436 and - - A- - Q, for the beams with linear varying width; —  H— Q;

0.5 41656 19615 44767 17.831 40984 68458 92155 32160 61.450 and - - M- - Q, for the beams with linear varying both thickness
0.6 39600 19.284 44478 17.904 41078 68.545 9.2417 32165 61.455 and width

0.7 37890 19.005 44.244 17950 41.136 68.598 92581 32.166 61.457
0.8 3.6440 18765 44.051 17.977 41.170 68.629 9.2678 32.166 61.458
0.9 3.5190 18554 — 17.992 41215 — 92726 32170 —

same thickness and width variations are given in Fig. 6 with re-

three eigenfrequencies all decrease with the increase of the trapect to the thickness-length ratfg /I for 0.001 to 0.5. Six
cation factor. Furthermore, it is seen that the effect of the truncgroups of taper factors:==4 ands=8; r=3 ands=6; r=2 and
tion factor on the eigenfrequencies of C-C and S-S beams wih-4;r=1 ands=2;r=—1 ands=—2;r=—2 ands=—4 are
linearly varying width is substantially lower than that on theconsidered. In Fig. 7, the first two eigenfrequencies of cantile-
eigenfrequencies of other cases. vered sharp-ended Timoshenko beams are given with respect to

In Fig. 2, the first three eigenfrequencies of the sharp-ended
Timoshenko beams clamped at the larger end are also given with
respect to different thickness-length ratig/l. Three types of
varying cross sections are considered. Moreover, the first three

eigenfrequencies of the truncated tapered beams with the clampe %0 ;- ey
larger end and the free smaller end for thickness-length hatib 40 I —a— 02502
from 0.001 to 0.5 are given, respectively, in Fig. 3, Fig. 4, and Fig. r —— 0=02553
5. Three types of varying cross sections are also considered, re 30 i Iggﬁ;
spectively. From the results, one can find that the thickness-lengtt, C —e— =053
ratio h, /I has an important effect on the eigenfrequencies of Ti- 20 I {
moshenko beams, which increases with both the increake/bf W
and the order of the eigenfrequencies. It is seen that increasing thu 10 i '
thickness-length ratio trends to lower the eigenfrequencies. L .

When the truncation factoe=0.5, the fundamental eigenfre- oL . A ,
guencies of cantilevered truncated Timoshenko beams with the 0 0.1 0.2 0.3 0.4 05

hl
Table 9 The first three eigenfrequencies of Timoshenko
beams with linearly varying both width and thickness, Case A: moshenko beams with linearly varying thickness via the

F-C beams; Case B: C-C beams; Case C: S-S beams thickness-length ratio  h, // for two values of truncation factors
o Case A Case B Case C a=0.25 and a=0.5

Q Q, Q, Q, Q, Q, Q, Q, Q,

Fig. 3 The first three eigenfrequencies of cantilevered Ti-

0.1 7.1452 18327 35809 10597 27299 51.109 3.0302 18794 40.176
0.2 6.1488 17.987 38.088 12.128 31.743 59.608 4.3201 21.490 46.364
03 54681 18.178 40.582 13483 35462 66451 53150 23.866 51.602
04 49720 18.528 42.985 14727 38750 72321 6.1527 26.051 56276
0.5 4.5009 18929 45262 15893 41.730 77.507 6.8874 28.102 60.551
0.6 42865 19.343 47416 16998 44474 82166 7.5474 30.049 64.516
0.7 40351 19757 49.486 18.052 46.925 86.615 81498 31.912 68.244
0.8 3.8282 20175 51.340 19.060 49433 90.586 87055 33.703 71.759
09 3.6453 20538 — 20035 52428 — 9.2230 35.800 —

0.1 6.9749 17.382 32.626 10.142 24983 44562 29692 17.988 36.975
0.2 60125 16940 34.06! 11456 28311 50156 4.2261 20322 41.701
0.3 53505 16985 35666 12575 30907 54258 5.1894 22312 45467
04 4.8661 17.170 37.168 13.567 33.055 57.499 59941 24.084 48.648
0.5 44932 17394 38534 14464 34.886 60.157 6.6930 25.696 51.413
0.6 4.1948 17.622 39.773 15284 36474 62388 73137 27.179 53.859 Fig. 4 The first three eigenfrequencies of cantilevered Ti-
0.7 39491 17.838 40.898 16.039 37.867 64.358 7.8727 28555 56.062 moshenko beams with |inear|y Varying width via the thickness-

08 37399 18025 41987 16738 39.105 66133 83811 29840 58067  |ength ratio h,// for two values of truncation factors — a=0.25
09 3564 18211 — 17390 40557 — 88463 31519 — and @=0.5
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—— =0.25,02
—— 025,03
=¥ 0=0.5,Q1
—%—=0.5,02

ha/l

Fig. 5 The first three eigenfrequencies of cantilevered Ti-
moshenko beams with linearly varying both thickness and
width via the thickness-length ratio ~ h4// for two values of trun-
cation factors @=0.25 and a=0.5

30
—— =458
25 3 48— r=35=6
——r=D oA
20 4 —¥—r=1 52
——r=1, 52
- 15‘ ——[=2,5=4
& _—:_"':NH::\‘_‘Q:
10 1
5
0 t t m— .

0 0.1 02 03 04 05

hl

Fig. 6 The fundamental eigenfrequencies of cantilevered Ti-
moshenko beams with the same thickness and width variation
via the thickness-length ratio  h,// for the truncation factor
a=0.5

&1
Y
G 15¢

10§

hit

Fig. 7 The first two eigenfrequencies of cantilevered sharp-
ended Timoshenko beams via the thickness-length ratio hyll:
-@-Q, and - - @- - Q, for taper factors r=1,s=2; —A- Q, and
- -A- - Q, for taper factors r=1/2, s=3/2; -l- Q, and - -H- - Q,
for taper factors r=1/2, s=1/2

the thickness-length ratio, /| from 0.001 to 0.5. Three groups of
taper factorsr=1 ands=2; r=1/2 ands=3/2; r=1/2 ands
=1/2 are considered. It is seen that the present method can be

6 Conclusions

The static Timoshenko beam functions which are the complete
solutions of the tapered Timoshenko beams under a Taylor series
of static loads, are developed as the basis functions of the flexural
displacement and the angle of rotation due to bending to analyze
the vibrations of Timoshenko beams with varying cross section in
the Rayleigh-Ritz method. Unlike conventional basis functions
such as vibrating Timoshenko beam functions for uniform Ti-
moshenko beams which are independent of the cross-sectional
variation of the beam, the static Timoshenko beam functions de-
veloped in this paper closely tie with the cross-sectional variation
of the beam. Therefore, they are, in a sense, a set of optimal basis
functions for vibration analysis of tapered Timoshenko beams. A
wide range of tapered Timoshenko beams with the cross section of
power variation is studied for both truncated beams and sharp-
ended beams. The convergence and comparison studies show that
the first few eigenfrequencies can be given with sufficiently satis-
factory accuracy by using only a small nhumber of terms of the
static Timoshenko beam functions. Finally, some valuable results
are presented systematically.
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r...vip | Wave Oscillation in a Circular
r.sahoo § Harbor With Porous Wall

A. T. Chwang
Fellow ASME The wave resonance in a circular harbor surrounded by a porous seawall is analyzed.
Matching the velocity and pressure along the porous seawall and the harbor entrance, the
Department of Mechanical Engineering, full solution is obtained. The resonance condition is found to depend on the wave fre-
The University of Hong Kong, quency, the complex porous-effect parameter and the internal dimension of the porous
Pokfulam Road, seawall. The oscillation characteristics are analyzed in different cases. The condition for
Hong Kong natural oscillation is derived by studying the wave resonance in a closed circular harbor
surrounded by a porous seawal[.DOI: 10.1115/1.1379955
1 Introduction Hwang and TucK11] and Lee[9] developed integral equation

In the last decade, there has been a significant change in methods while Mei and Chefll2] provided a hybrid element
P 19 -hang &thod. Numerical studies for harbors of arbitrary geometry have
nature of harbor traffic in Hong Kong, which results in the dete:

S L : : also been verified by field and experimental dédag. [9,11]).
r|orat|o_n of wave c_ondltlons in \/_lctorla Ha_rbor. As a result, the\Ryecently, certain amount of numerical work is available to include
dynamic and mooring forces acting on ships and docks are s

: o . &He reflectivity of the harbor wall[13,14]). However, because of
ously affected by the high wave oscillation and in turn crea e deficiency of numerical methods, the results can only repre-

serious problems to different marine structures, affecting loading gpecial conditions, not the general relationship between the
and unloading of cargoes. As a means to dissipate wave energyaictivity and the harbor oscillation.

porous seawall is introduced inside an existing harbor, which W'ﬁeln recent times, porous breakwaters are being constructed for
reduce the_wave oscillation and improve the general_wa_ve C"maﬁf?ssipating wave energy in order to reduce the hydrodynamic
_The vertical-wall harbors are widely used for their simple déwrces on breakwaters. With the assumption of Darcy’s law, Sollitt
sign and construction. In the presence of waves, a vertical harlefy crosg15] and Chwand16] separately developed models to
wall reflects most of the wave energy incident on it. With strongdy the flow past porous structures. These methods were unified
harbor oscillations, vertical walls are subjected to large wavghq combined by Yu and Chwarig7] to become the most ac-
forces. Recently, permeable breakwaters, detached breakwatggptable one in the recent literature of flow past porous structures.
and submerged breakwaters have received much attention §tand Chwand17] studied the problem of wave resonance in a
their capability to dissipate wave energy is widely studied. Somgarbor with a porous breakwater. It is observed that a porous
of the energy-dissipating breakwaters are being tested in harbpreakwater can reduce the amplitude of resonant frequency sig-
([1,2). nificantly. A small but finite permeability of the breakwater is
On the other hand, wave agitation in harbor due to an incomifgund to be optimal to diminish the resonant oscillation.
wave of a particular frequency may last for a long time. This In the present paper, we investigate the problem of wave reso-
agitation leads to a resonant state and is the cause of extremedyice in a circular basin surrounded by a porous breakwater. The
high wave oscillations inside the harbor. The dynamic and modsasin has an entrance located on a straight coastline. As a particu-
ing forces acting on marine structures are increased during thas case, the wave resonance in a closed circular basin surrounded
high oscillation which usually create serious problems to loadirgy a permeable breakwater is analyzed. Matching the velocity as
and unloading of cargoes. Thus, during the harbor planning, meeell as the pressure along the porous seawall and the harbor en-
sures should be taken to avoid such harbor resonance. Theretearce, the full solution is obtained and the resonance condition is
two kinds of oscillations existing in a harbor, one is the free oslerived. The effect of the porous-effect parameter and the position
cillation and the other forced oscillation. LaniB] analyzed the of the breakwater on wave oscillation are analyzed. The present
effect of free oscillation in closed rectangular, circular, and ellipvork should be useful in future harbor design and modifications.
tical basins. McNowrj4] investigated the forced oscillation in a
circular harbor having a narrow opening. In a rectangular harbor,
the effect of forced oscillation was analyzed by Kravtchnenko and
M_cNown [5]. Further study on harbor resonance was done By Formulation of the Problem
Miles and Munk[6], LeMehaute[7] and Ippen and Godg3]. . o ) ) )
Miles and Munk[6] found that the wider the harbor mouth, the The problem under consideration is three dimensional in nature
smaller the amplitude of the resonant oscillation which is contr@nd is studied in a cylindrical coordinate system with uniform
dictory to the fact that less wave energy will be transmitted to tHE€Pth h. The opening of the harbor is along the coastline at a
harbor through a smaller opening. This phenomenon was kno@fstanceb cose from the center of the harbor witheoeing the
as the harbor paradox. L§@] considered rectangular and circula®P€ning angle of the harbgsee Fig. 1. The circular harbor is of
harbors with their openings located on a straight coastline whfigdiusb with an inner permeable circular wall of radiasAssum-
Mei and Petron[10] dealt with a circular harbor protruding half- N9 that the fluid is inviscid and incompressible and its motion
way into the open sea. To deal with arbitrary harbor configuratiofirotational, we can define a velocity potentidlr, ,z,t) which
satisfies the Laplace equation. Assuming the motion is simple har-

Contributed by the Applied Mechanics Division off AMERICAN SOCIETY OF Tomc in t,lmte’ .We C.an express® as &(r,0,z1) .
MECHANICAL ENGINEERSfor publication in the ASME GURNAL OF APPLEDME- = REL¢(r,6,2)e™'"] with » being the angular frequency. The fluid
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June 24domain is divided into three region6&) the open sea regiofii)

2000; final revision, Sept. 26, 2000. Associate Editor: D. A. Siginer. Discussion qpe region between the porous wall and the solid harbor wall and
the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Department;:af ; f
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and W|§I|ﬂ) the inner harbor region surrounded by the porous wall.

be accepted until four months after final publication of the paper itself in the ASMé’j (i= 17_2,3) den(?tes the. vglocity potential in reg.i.pﬁ—he spa-
JOURNAL OF APPLIED MECHANICS. tial velocity potential¢ satisfies the Laplace equation
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A X
ddo I3
e = —eg<f<e.
o o on r=a, e<b<e 9)

/aé 3 The Method of Solution

The velocity potential for the open sea region is the superposi-
tion of plane waves with the coastline reflection in the absence of
the harbor,¢,, and the scattered wavg; due to the presence of

e | e the harbor,
, . A d)l:Al{efiko[f(xfb cose)cosa+y sina]
< a + glkol(x—b cose)cosa-+y sin a]}fo(z)
b
=A fo<z>2 Bl Qe it Qo 2 Im(kor), (10)
Fig. 1 Schematic diagram of a circular harbor ® :E (A S +AS hS) ———— Hu(ko ) fo(2)
S = mO0% m mo% m m(k b)
+§ (A Aol ) 27 iy Bl 21|, @y
19 a(ﬁ) 1 &2¢ (92¢ 0 (1) “=4 mn¥ m mn? m ( ) n
FEETE LT R Ry i i
rory or 96° 9z where fq(2) = coshky(h+2)/coshioh, f.(z)=cosk(h+2), A
The free surface boundary condition is given by =gH/2w, a is the incident wave anglé{ is the incident wave
5 height, Bo=1, B,=2, (n=1,2,3...), J(-) is the Bessel func-
i o tion of the first kind,H,(-) is the Hankel function of the first

———¢ 0 atz=0, (2)

0z kind, K,(-) is the modified Bessel function of the second kind,

C S H
whereg is the gravitational constant. The bottom boundary conAm”’ Amn are unknown constants to be determined,

dition is given by yL=cosmé, i p=sinmé,

0"_(::0 at z=—h. (3) Q%Z[(*I)melkob cose cosa+(|)meflkob cose cosa]cosma’

S _[ _( _i\Mmaikgb cose cos iyma—ikgb cose cos H
As r tends to infinity, the scattered wave potentiglsatisfies the Qp=[= (Z1)TeTe e e (i) e Hom 2 B¢ ] sinmar.

radiation condition Superscripte ands represent the terms associated witf), and

dps . W, respectively. In(4) and (11), wave numbersk,(n
\/F 7—'ko¢s —0, asr—om, (4) =0,1,2 ...) satisfy the dispersion relations
wherek, is the wave number of the incoming progressive wave. w?= gk, tanhkoh= — gk, tank,h. (12)
?cln(r)wr(]j?tict)r;e straight coastline, the velocity potential satisfies ﬂﬁence, in region 1,
i b1= 1+ ps. (13)
ox 0 atx=bcose. ®) The velocity potentialsg;(j=2,3) are of the form
The continuity of pressure along the harbor opening requires * J (k )
$2= 2, 1| (Bho¥ i1t Bho¥ i) 57 v
$d1=¢, on r=b, —e<b<e. (6) 2T~ mo% m * =m0 ) mo¥ m
The vanishing of velocity along the impermeable harbor wall and K %
the continuity of velocity along the opening is given by +CSous) szkog))} E [(Brcnnlﬂrcﬁ BS %)
0, atr=b, e<0<2m—e, @) "=
bor= 7
27 gy, atr=b, —s<f<e. (k) o e os e Km<knr>}f (Z)] 1)
mn7¥ m mn7¥ m ’ n il
The condition along the porous wall and the opening of the porous m(Knb) Km(knb)
wall is given by " ‘
r
0, atr=a, -—s<6<e, $3= 2, | (Dot ot Dioth ) Il ¢ 2)
ikoG(¢3—2)= (8) = 3! (koa)
¢z, atr=a, e<0<2m—e,
whereG is the porous-effect parameter or the Chwang parameter +2 (DS 5 © s Sy m(Knl ) (2) (15)
([18]), which is different from the Chwang’s wave-effect param- mnEm mml(kpa) "

eter ([19]). The porous-effect paramet& is a complex number

with non-negative real and imaginary parts. The real parGof where B, Ch ., D (p=c,s;m,n=0,1,2...) areunknown
represents the resistance effect of a porous medium against ¢hgstants to be determineg,(-) is the modified Bessel function
flow. The imaginary part o& denotes the inertia effect of fluids in of the first kind, andY,(-) is the Bessel function of the second

the porous medium. kind. _
Finally, the continuity of velocity along the opening of the po- From (6), (7), (13), (14) and the orthogonality off, and
rous wall is given by P (p=c,s), we have
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Z[ o ko) |, Yy(ke) , Hi(kob) ¢z=2HB Intkol) o Ym(kor)}fo(z)

i 193/ (kob) 1Y/ (kob) " I°H] (Kob) w0 |1 ™ In(kob) T ™Y/ (kob)
_ e - Lm(Knl) K (Kqr)
—A B QPYPI(k b)]eP =0, (p=c,s;m=0,1,2...), + mtn m "n
1PR5p ¥ djiRo im Zl an';'n(knb) CmnKr'n(knb) f(z) { cosmé,
(16) (24)
- I (kqb) Ki(kib) K;(kyb) - (Kol ) - Im(Knl )
p N P p__12 P — = —mY + _mn -z
jZO (B'”Ij’(knb) CJnK "(k,b) A]nKj’(knb) €m=0, b3 mzzo {Dmo-]r’n(koa) fo(2) nzl Dmnl " (kna) fn(2) [ cosme.
25
(p=c,s;n=1,2,...m=0,1.2...), 17 (29)
It may be noted thak, (n=0,1,2 ...) arerelated to the angular
frequency of the free oscillation of the harbor. In this case, we
(BPo+CPo)dR = E [AB; QP (kob) +AboTeR, have ¢,, =0 onr=b which gives
Bmn=—Cmn (MN=0,12...). (26)
(M=012...), (18) Condition (8) along the permeable wall becomes
9%, _ 0%

"ok G(s— ) atr=a(j=2,3. (27)

(BR+ChpdR=> eh A, (n=123...;m=0,12...), P
j=0

(19) The orthogonality off, (n=0,1,2 . ..) and cosné leads to
where Ji(koa) Y/ .(koa)
m\ ™0 m\ ™0
|:‘]r,n(k0b) Y (ko) Bnwo=Dmo (M=0,12...), (28)

2
dﬁw:f [¥F1%d6, ef, _f ¥ hde.
0

mn

Im(knd)  Kp(kza)
Im(kab) K/ (knb)

From (8), (9), (14), (15 and the orthogonality off,, and

P (p=c,s), we obtain (n=1,23...;m=0,1,2...), (29)
 [Im(koa) Jn(Kod) Yin(ko2) i | Imko?) _(Jm(koa) Ym(kod) | o } D
IkOG[Jr’n(koa) " _(Jr’n(kob) Y.(kob) ”dp 0% T (ko) In(kob)  Yr(kob) oFmo

- (m=0,1,2...), (30)
=2 KoDlufhy (m=01.2..) O tntkd) (k) Kath)| ]
S (AT (kD) Kp(kyby ) om] = Fn=m
(k) Kn(Knd) o In(Ko2) " N
.koe[%(k - 'E‘”_(K,’n(knb) it T ch) cgm”dfn (N=1,2,3....m=0,12...). (31)

From Eq.(28)—(31), we derive the resonance conditions relat-
b . ing the porous-effect parameter, the radius of the circular basin,
—2 KiDfpfln; (n=123...;m=012...), (21) the permeable wall and the wave number of the progressive wave

mode as
where In(kod) [ In(kod) Y;n<koa>) _(Jm<koa) Yin(kod)
o fz . In(koa) | I(kob)  Yiu(kob)| | Jf(kob)  Y/(kob)
= °dé.
m e l//ml/jj (22) (Jr’n(koa) Yr’n(koa) ( 01,2 ) (32)
== ; m=0,12...),
, v Ji(kgb) Y[ (Kob)
Inkod) o Yi(kod) T , ,
3 (keb) Bmo+ Y (ko) Cho=DPy (p=c,s;m=0,1,2...), i [Im(kna) (Im(kna) Km(kna)) (|m(kna) Km(kna))
Im(kna) | I(kab)  Kp(kab) |\ 1(kab)  Kpy(Kqb)
I m(kna) Kin(kna) ' '
7 Bp nt Cmn_Dﬁm _ Im(kna)_ Km(kna) _ o
[ (knb) Km(knb) =Kl T 0D) K (ko) (n=1,23...;m=0,1,2...).
(p=c,ssm=0,1,2...;n=123...). (23) (33)
The system of equationd6)—(23) can be solved to obtain the From(32) and(33), it is obvious that there is no real root for real
complete solution. G. Hence, there is no steady oscillation in a circular harbor with a
permeable wall, which is similar to the observation of Yu and
Chwang[17].
From (32) after rearrangement, we have

4 Oscillation in a Closed Basin _
In such a case, we hawe=0. The velocity potentiad, will not Im(kod) 1G Im(kod) ~ Im(kod) _

be taken into account. Without loss of generality, the velocityd;,(kob)Y/(kea) iGYy(Kea)Jdr(Kob) =Y (Kob)Jl (ko)

potentials are (34)
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WhenG=0, the inner permeable wall behaves like a solid wall 2.0 o000) TP —
and we have a closed circular region and another annular region. 177 oLy ———- ((0"4::/4) S
From (34), s (©0.1304)

Ji(kpa)=0 (m=0,12...) (35a) ]

R

or 107
Jin(kod) Yin(Kob) = Jp(kob) (ko) =0 (m=0,1,2...). 05 3
(35b) ]

The solution of (35a) represents the wave modes due to a 0.0 e T T
closed circular basin of radius a, while the solution(88b) rep- o 1 2 3 4 5 6 7 8 9
resents the wave modes inside the closed annular basin with inner k.b

and outer radiia and b, respectively. On the other hand, &s

—oo, the permeable wall becomes transparent to the fluid and thig. 3 Variation of amplification factor R versus wave number
resonance is due to the free oscillation of a closed circular basinkgb at different locations with ~ @=0 deg, b/h=0.75, 2e=10 deg,
radiush. In such a case, fror(84), we derive G=1, and (b-a)/A=0.25

J(kb)=0 (m=0,1,2...). (36)

The amplification factoR attains its maximum value at different
locations for different wave numbégb. Generally speaking, the
The amplification factoR which is a measure of wave oscilla-wave amplification is large near the center compared to a point
tion inside the harbor is defined as towards the harbor wall. It should be noted that, for normal inci-
dencea=0 deg, the wave condition inside the harbor is symmet-
R= ¢3(r1010)
A

5 Discussion

ric with respect tod=0 deg.

Figure 4 shows the variation of amplification fact@rat the
. . ) harbor center versus the gap lengt+@)/\ for different values

In the two-dimensional analysis of Chwang and D], of the porous-effect paramet&. The two-dimensional result of
when the porous-effect parametér=1 and gap lengthb(—a)  chwang and Doné20] showed that the wave dissipation is maxi-
=(2n+1)\/4, the reflec_tlon coefficient vanlshes_ and the phgnym at —a)/\=0.25, and the amount of dissipated energy de-
nomenon of wave trapping takes place. From Yip and Chwar&nds on the porous-effect parameBrThe same phenomenon
[21]_ it was noted that the curves for complex_valuei_?q&re of _ was observed later by Fugazza and Nafa®] and Suh and Park
similar shape as those for real values. To avoid repetition of sinb3) although their analyses were different. Similar phenomemon
lar results which have been investigated before, the CurveSI’?§robserved in the case of a circular harbor. However, the wave
complex values of are not presented in the present paper.  gjssipation is more sensitive in the two-dimensional c4ge])

Figure 2 shows the variation o_f amplification fact@rat the pegr b—a)/\=0.25, while in the present case of a circular har-
center versus wave numblegb for different values of the porous- bor, large dissipation occurs at a wider range b&4)/\ near
effect paramete®. As 0O<a<b, we must have &27(b—a)/N .25, |t should be noted that the wave incidence at the porous wall
<kob. The amplification factoR increases generally & in- s not always normal but varying along the porous wall. In gen-
creases. AS5 increases, the porous wall becomes transparent égy| the incidence angle along the porous wall is very difficult to
the fluid and most of the wave energy is reflected back by thgedict for three-dimensional cases. As shown in Fig. 4, the wave
thus an increase in the amplification factor. However, it should g more porous wall and less wave energy is dissipatedGAs
noted that wherG=1, the wave dissipation is maximusee .o the porous wall becomes transparent to the fluid and no
[17,20) and in the process the wave resonance is minimum. Tﬁ%sipation oceurs.
amplification factorR attains maxima for certain values of the Figure 5 shows the variation of amplification factrat the
wave number irrespective of the porous-effect parameter. The rggfpor center versus harbor openingf@r different values of the
pqrous-eﬁect_ parameter only reduces the amplification faCtBbrous-effect paramet&. When the opening of the harbor van-
without affecting the wave number. ishes, the amplification factoR becomes zero, as no wave is

In Fig. 3, the amplification factoR is plotted versus wave gjjowed to enter the harbor. A large amplification fadRis ob-
numberkyb at different locations in the inner region of the harborggryed at moderate values of opening &imilar to “the harbor

. (37)

+a
IEETE FUSEY FEETE FEUU] FUUTS ANETU FURW

v e by

<
]
[ 5]

(b-a)/A

Fig. 2 Variation of amplification factor =~ R at the center versus Fig. 4 Variation of amplification factor R at the center versus
wave number kyb for different values of G with a=0 deg, b/h  (b—a)/\ for different values of G with =0 deg , b/h=0.75,
=0.75, 2¢=10 deg, and (b—a)/A=0.25 2e=10 deg, and kob=3.8
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6 6 Conclusions

The problem of wave oscillation in a circular harbor is analyzed
in the presence of a porous wall. For maximum wave dissipation

i the gap between the porous wall and the harbor wall should be
R, 4 approximately a quarter of the wavelength of the incident waves.
] A moderate value of the porous-effect param&atissipates the
24 maximum wave energy. For a large angle of incidence, wave am-
. E plification inside the harbor reduces. The amplification factor de-
e pends on the wave number of the incident waves and the location
0o E e inside the harbor. The amplification factor in the harbor can be
0 60 120 180 240 300 360 adjusted with a proper opening angle and using a porous wall with
0 moderate porosity.
2%
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Exact Solution for Simply
Supported and Multilayered
Magneto-Electro-Elastic Plates

E. Pan
Structures Technology, Inc. ) ) ) ) ) o
543 Keisler Drive, Suite 204, Exact solutions are derived for three-dimensional, anisotropic, linearly magneto-electro-
Cary, NC 27511 elastic, simply-supported, and multilayered rectangular plates under static loadings.
g-mail: pan@ipass.net While the homogeneous solutions are obtained in terms of a new and simple formalism

that resemble the Stroh formalism, solutions for multilayered plates are expressed in terms
of the propagator matrix. The present solutions include all the previous solutions, such as

piezoelectric, piezomagnetic, purely elastic solutions, as special cases, and can therefore
serve as benchmarks to check various thick plate theories and numerical methods used for
the modeling of layered composite structures. Typical numerical examples are presented
and discussed for layered piezoelectric/piezomagnetic plates under surface and internal
loads. [DOI: 10.1115/1.1380385

Introduction and internal loads. The general solution in a homogeneous plate is
obtained in terms of a new and simple formalism that resembles

Because of their analytical nature, exa_ct solutions for simpl){ﬁe Stroh formalism([25-27). In order to treat a multilayered
supportedlayered plates_ under static I(_)adlngs are still of par_t|cu-p| te, the propagator matrix method is introduced with which the
lar values. These solutions can predict exactly the behaviors '

. ) : corresponding multilayered solution has an elegant and simple
elastic deformations and stresses near or across the |nterfac% ression. To the best of the author's knowledge, it is the first
material layers, and can thus be used to check the accuracyyfde that a piezoelectric and magnetostrictive multilayered plate

\('[T]')OU; num_en;:al _metlhmtj_s for mor_e: Corgp"%%t(g]d gpp]lcatlo%der simple supporting conditions is analytically studied. It is
- FOr anisotropic €lastic composites, rag » SMNVAS * 545 the first time that an internal loading case is investigated and

etal.[4], and Srinivas and Rafb] derived the classic solutions compared to the surface loading case. The present solutions in-

Yude all the previous solutions, such as the piezoelectric, piezo-

. ! - magnetic, purely elastic solutions, as special cases. Since the

corrles_poFdlnlg _multlflaylereq cas(;e, Noor and [Tur{eﬂw derived  hresent solutions are exact, they can serve as benchmarks to test

analytical ZO utllons or ar;nqate zlanlsc_)troplc p _atesr.] imul various thick plate theories and various numerical methods, such
Recent development of piezoelectric ceramics has stimulatgd e finite and boundary element methods, used for the modeling

considerable studies on the electric and mechanical behaviorsopfayered composite structures.

piezoelectric structures. Again, analytical solutions, even thoughag 4 numerical illustration, a piezoelectric and homogeneous
under certain assumptions, are still desirable. Extensions of ‘ﬂ’)‘l%te under surface and internal loads and a sandwich plate made
elasto_static_solutions_ for simply-support_ed plates to the corrg; piezoelectric BaTi@ and magnetostrictive Cog®, under a
sponding piezoelectric cases were carried out by Ray and Qpface mechanical load are analyzed. It is very interesting that
workers [9,10], Heyliger and co-worker$11,13, Bisegna and gyen for a relatively thin plate, responses from an internal load are
Maceri[13], and Lee and Jiandl4]. Very recently, Vel and Batra qite different to those from a surface load. For the sandwich plate
[15] presented an analytical solution for multilayered piezoelectrjgade of piezoelectric BaTiand magnetostrictive CoR®,, it is
plates in terms Qf the double Fourier series to handle more gengsgkerved that responses from different stacking sequences are
boundary conditions at the edges. o _completely different, especially for the electric and magnetic
More recent advances are the smart or intelligent materigj§antities. These new numerical results should be of special inter-

where piezoelectric and piezomagnetic materials are involvesk; 1o the design of magneto-electro-elastic composite laminates.
These materials have the ability of converting energy from one

form (among magnetic, electric, and mechanical eneydieshe
Other([16—lﬂ) FUrth.ermOre,. C_0mpOSI'[es made of plezoelectn@roblem Descrlptlon and Basic Equatlons
piezomagnetic materials exhibit magnetoelectric effect that is not ] . ) )
present in single-phase piezoelectric or piezomagnetic materia/d-€t US consider an anisotropic, magneto-electro-elastic, and
([19-21)). Although various inclusion-related problems in thesd-layered rectangular plate with horizontal dimensiepsandL
materials have been investigated in recent yeéf26—24), no and total thicknessl (in the vertical directiopwith its four sides
three-dimensional solution is available for the simply supportlfind simply supported. A Cartesian coordinate systeqy,¢)
plate made of piezoelectric/piezomagnetic materials. =(X1,X2,X3) is attached to the plate in such a way that its origin

In this paper, we derive the exact solutions for thredS at one of the four corners on the bottom surface and the plate is
dimensional, anisotropic  magneto-electro-elastic,  simpl{? the positivez region. Let layerj be bonded by the lower inter-
supported, and multilayered rectangular plates under both surf4@e€ zj and the upper interface;,; with thicknessh;=z;,

—z;. Itis obvious that, =0 andzy, ,=H. Material properties in

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF eaCh.Iayer can .be dlﬁerent’.and Intemal. andfor surfacg loads
MECHANICAL ENGINEERSTor publication in the ASME GURNAL oF ApPLIEDME-  Chanical, electric or magnejican be applied. Along the interface,
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 2,the extended displacement and traction vecioosbe defined
2000; final revision, January 30, 2001. Associate Editor: W. J. Drugan. Discussionjefter) are assumed to be continuous, with the exception of the
the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departmen

Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and Wﬁ[wemal loading level, which will be discussed later. Without loss

be accepted until four months after final publication of the paper itself in the AsmMEf generality, we also assume that the surface load is applied on
JOURNAL OF APPLIED MECHANICS. the top surface of the layered plate.

([6]) introduced the propagator matrix meth@d]) to handle the
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For an anisotropic and linearly magneto-electro-elastic soliGGeneral Solutions
the coupled constitutive relation can be written(jgs])

0= Cix ¥k~ exiBx— OwiHik

Di=ej vkt eiExt dicHy

up
Bi = dik vkt dikEx+ mikHx 1) U,
whereo;, D;, andB; are the stress, electric displacement, and u=| us

magnetic inductiorii.e., magnetic flux respectively;y;, E;, and
H; are the strain, electric field, and magnetic field, respectively; ¢
Cij, &ij, and u;; are the elastic, dielectric, and magnetic perme-

a, cospxsinqy
a, sinpxcosqy
as sinpxsinqy
a, sinpxsinqy

For a simply-supported and homogeneous plate, we seek the
solution of the extended displacement vector in the form of

(6)

™

(8)

9)

(10)

ability coefficients, respectivelyg;; , g;;, andd;; are the piezo- v s sinpxsingy
electric, piezomagnetic, and magnetoelectric coefficients, respec-
tively. It is obvious that various uncoupled cases can be reducgtiere
from Eq. (1) by setting the appropriate coefficients to zero.
For an orthotropic solid, with transverse isotropy being a
special case, the material constant matrices of @y.are ex- p=nw/Ly, qg=mar/L,
pressed by
- - andn andm are two positive integers.
Cu Cip Cy 0o 0 It is noted that solutiori6) represents only one of the terms in
Coy Cous 0 0 a double Fourier series expansion when solving a general bound-
ary value problem. Therefore, in general, summationsfandm
Css 0 0 over suitable ranges are implied whenever the sinusoidal term
[C]= c o ol appears.
44 Substitution of Eq(6) into the strain-displacement relati¢f)
Sym Css O and subsequently into the constitutive relatidh yields the ex-
tended traction vector
L Ces
[0 0 ey [0 0 Qg 013 b; cospxsinqy
0 0 exp 0 0 Qz 03 b, sinpx cosqy
0 O ez 0 0 dqs3 t=| o3| =e%4 bzsinpxsinqy
[e]=  lal= @ . :
0 ey O 0 g O D, b, sinpxsinqy
es 0 0 Ois O 0 Bj bs sinpxsinqy
L0 O ] | O 0 |
_ ~ _ Introducing two vectors
€11 0 O dll 0 0
[e]l=| O e O [d]=] 0 dp O], a=[a;,a,,33,84,85)", b=[by,b,,bs,b,,bs]"
O O €33 L O 0 d33_
we then find that the vectdr is related toa by
m1 O 0
[ul=] O p22 0| ®3) 1
0 0 s b:(—Rt+sT)a:—g(Q+sR)a

The extended straifusing tensor symbol for the elastic strain
vix)-displacement relation is

¥ij = 0.5(u; j+u; ;)

0
Ei=—¢i, Hi=—4, 4) o
whereu;, ¢, andy are the elastic displacement, electric potential,
and magnetic potential, respectively. R=| —pCss
The equations of equilibrium, including the balance of the body —peys
force and electric charge and current, can be written as
— P05
O'ij J + fi =0
D]yl - fe: O C55

wheref;, f,, andf,, are the body force, electric charge density,
and electric current density, respectively. The electric current den-
sity is also called magnetic charge density as compared to the
electric charge density.

Journal of Applied Mechanics

where the superscriptdenotes matrix transpose, and

0 PCi3 P€s PUa

0 aCy ges, POz
-qCsy O 0 0
—(q€u 0 0 0
— Q024 0 0 0

0 0 0 0
Cu O 0 0
Caz €33 Uss3

—e3z —ds

T M33

(11)
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—(C1p?*+Ceed®)  —pA(CiotCop) 0 0 0

—(Cegp®+C20%) 0 0 0
Q= —(Cosp?+Cy0®)  —(esp?+€20%)  —(dysp®+ 0297 | . (12)
e1p’+ £, dy1p®+dp9°
©11P?+ po?
[
We mention that matriceQ andT are symmetric. slight change in the material constants would result in distinct
The in-plane stresses and electric and magnetic displacemeawntsts with negligible error[28]) so that the following simple
are obtained as solution structure can still be applied.
__— . . . - Therefore, let us assume that the first five eigenvalues have
o1 CiSInpxsinqy positive real partsif the root is purely imaginary, we then pick up
012 C, COSpXxcosqy the one with positive imaginary parand the remainder have op-
09 c3 sinpxcosqy posite signs to the first five. We distinguish the corresponding ten
D, | =eS3 ¢, cospxsingqy (13) eigenvectors by attaching a subscripatandb. Then the general
D, Cs SiINpX cosqy sczjlutionéor thfe extend((ajd Qis;zjlacement and traction vecuirthe
B, Cg cOSPXSingy z-dependent factorare derived as
B, c, sinpxcosqy ul (AL A . [K
S ' o IS Z>{ 1} (18)
where t] |B; B, Ks
~_ [-Cup -Cig Cis  eys QS | where
C1
cy Codd CooP 0 0 0 a, Ar1=[a1,8;,83,84,85], Ar=[25,87,85,89,810]
-C -C C
C3 12P 220 235 €355 Os2S as Bl:[blyb21b3lb41b5]' Bzz[b61b7|b8vb91b10]
Ca|=| €158 0 esPp  —epp —dyp || as .
c a (€%
5 0 €4S &40 —e0 —dxg 4
Ej 05 0 Q5P —dllp — P ag :diag:eslz,eszz,e'53zle'54zleSSZ,e’slz,e*SZZ’e*53Z,e’SAZ,e*552]
- 0 0048 o — ol — i and K, and K, are two 5<1 constant column matrices to be

(14) determined.

. Equation (18) is a general solution for a homogeneous,
Thgse extende@ s:tress@qs..(s) and (13)) should satisfy the magneto-electro-elastic, and simply-supported plate, and contains
equations of equilibriuntassuming zero body force and zero elec-

i d tic ch densitiswhich in t fth ¢ previous piezoelectric and purely elastic solutions as its special
fic and magnetic charge densiieanich in terms ot (n€ VECId,  50g, Clearly, in spite of the complicated nature of the problem,
yields the following eigenequation:

the general solution is remarkably simple. Furthermore, certain
[Q+s(R+R’)+s?T]a=0 (15) thin plate results can also be reduced from this solution by ex-
panding the exponential term in terms of a Taylor seffi28,30).
WhGFER' =—R. ] ) This is particularly easy since one needs only to replace the diag-
Itis noted that Eq(15), derived for a simply supported plate,onal exponential matrix with its Taylor series expansif13)).
resembles the Stroh formalis(i25,26]). However, their solution e mention that although other methods, such as the state space
structures are different because of the Sllght'y different features&ﬁproacf([l4])' may also be emp|oyed to derive a genera| solu-
the R matrix (in the Stroh formalismR’ =R"). It is known thatin tion for such a plate, more algebraic manipulations are needed.
the Stroh formalism, positive internal energy requirement guarapurthermore, reduction to the thin plate result is complicated if a
tees that the characteristic roots of K5 should be complex state space approach is followed.
numbers with nonvanishing imaginary parts; they cannot be realwith Eq. (18) being served as a general solution for a homoge-
([26]). In the present formalism, however, such a feature does ffous and magneto-electro-elastic plate, solutions for the corre-
exist. Instead, since a matrix and its transpose have the sagpending multilayered plate can be obtained using the continuity
determinant value, we conclude thatsiis an eigenvalue of Eq. conditions along the interface and the boundary conditions on the
(19), so is —s. Furthermore, ifsis a complex(or purely imagi- top and bottom surfaces of the plate. In doing so, a system of
nary) eigenvalue, then its complex conjugate is also an eigenvalligear equations for the unknowns can be formed and solved
since all the coefficient matrices in E@.5) are real. We name Eq. ([3,12]). However, for structures with relatively large numbers of
(15) as the pseudo-Stroh formalism because of its similarity to theyers(say, up to a hundred lay@rshe system of linear equations

Stroh formalism. _ then becomes very large, and the propagator matrix method de-
~ With aid of Eq.(10), Eq. (15) can now be recast into a X010  veloped exclusively for layered structures can be conveniently and
linear eigensystem efficiently applied(for a brief review, se¢31]). We discuss this
a a matter in the next section.
NpI=sp (16)
where ; ;
Propagator Matrix and Solution of Layered System
-1p7 -1
_ -TR T 17) Since the matriXN, defined in Eq(17), is not symmetric, the
| -Q+RT R’ —RT Y eigenvectors of Eq16) are actually the right ones. The left eigen-

. . . ) vectors are found by solving the following eigenvalue system:
Depending upon the given material property, the ten eigenval-

ues of Eq(16) may not be distinct. Should repeated roots occur, a N'mp=\7. (29)
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It is a matter of simple fact that & and[a,b]' are the eigenvalue where the four ‘submatrice€; are the multiplications of the
and eigenvector of Eq16), then\ = —s and »=[ —b,a]' are the Propagator matrices in E¢28), andt(H) is the given boundary
corresponding solutions of E€L9). Since the left and right eigen- condition on the top surface, i.e.,

vectors are orthogonal to each other, we then come to the follow- t(H)=[0,0, sinpxsingy,0,0]". 31)

ing important relation:
h ) Solving the unknown extended displacements on both surfaces of
-B, A; the layered plate, we find

Bl —A u(0)=C;3 *(H)
u(H)=C,C5't(H). (32)

I 0
0 1

A A,
B, By

wherel is a 5X5 unit matrix, and the eigenvectors have been

normalized according to
CBAL4 AR = 1) In order to obtain the extend_ed displacement and traction vectors
21t 2R at any depth, sag,<z=<z., in layerk, we propagate the solu-
Equation (20) resembles the orthogonal relation in the Strokion from the bottom of the surface to tldevel ([31]), i.e.,
formalism ([26]) and provides us with a simple way of inverting

(20)

he o B hich | o i formine th u
Eotrarzra]gtfir)l(vector matrix, which is required in forming the propaga- | | =Py(z—z,_ )P 1(hea) .- . - .. Pa(h)Py(hy)] | -
) z 0
Let us assume that EGL8) is a general solution in the homo- (33)

geneous layey, with the top and bottom boundaries locallytat \wjth the extended displacement and traction vectors at a given

and 0, respectively. Lez=0 in Eq. (18) and solve for the un- gepth being solved, the corresponding in-plane quantities can be
known constant column matrix, we find that evaluated using Eq$13) and (14).

K A, AL —Bt A Similar solutions can also be obtained for the first-type bound-
1}: 1 2 ul _ 2 2 ||u (22) ary value problenti.e., for given extended displacement vectors
K> B; B t 0 B‘l fAtl t o on both surfacesand for the third-type, i.e., the mixed boundary

value problem as well. Therefore, for an anisotropic, magneto-
electro-elastic, and simply-supported multilayered rectangular
plate, we have derived the exact solution based on the pseudo-
Stroh formalism and the propagator matrix method.

The present methodology can also be equally and easily ex-
(23)  tended to the corresponding internal loading case, which is of

significance to the Green’s function study. We now seek such a

where solution.

i t If there is an internal sourcéorce, charge, dislocation, eXc.
—B, Az located atz=d, level within layerj(z. ,,), we artificially di-
B! -—A! vide this layer into two sublayergl(dg,z;) (with hj;=dy—2)

_ ) _ and j2(zj44,do) (with hj,=2;,,—do), and define the disconti-
is called the propagator matri7,31]). Listed below are three pities across the source level as

important features of the propagator matrix, which can be proved

The second equation follows from EO0). Therefore, the solu-
tion in the homogeneous laypat any levelz can be expressed by
that atz=0 as

u
t

u
t)~ P(2)

A Az

es*z
B, Bz< )

P(z)= (24)

easily. Au|_(u(do+0)| fu(do—0) 34
| At]=| t(do+0) | 7| t(dg—0) " (34)
P(0)= [ 0 J (25) Again, propagating the propagator matrices from the bottom to the
top of the surfaces and making use of the discontinuity relation
P(z3—21) = P(23— 2,)P(2,— 7;) (26) (34 ([31,32)), we arrive at the following important equation:
o y—p-l5 _ u
P(z3=21) =P (2125 (@7 —Pn(hy)PyoaChy-a) oo Pa(h2)Pi(hy)]
The propagating relatiof23) can be used repeatedly so that H
one can propagate the physical quantities from the bottom surface Au
z=0 to the top surface=H of the layered plate. Consequently, =Pn(hy)Pyoa(hy-g) e e Pj+1(hj+1)Pj2(hj2){ At}'
we have
(35)
ltJ =Py(hy)Pnoa(hyog) e on Pz(hz)Pl(hl)[Ltj (28) Clearly, this equation is more general and includes (26) as a
H 0 special caséwhen there is no discontinuitySimilar to the sur-

whereh; =z, ,—z; is the thickness of layer and P; the propa- face loading case, this equation can be solved for the unknown
gator matrix of the same layer. quantities involved([31]). . .

Equation(28) is a surprisingly simple relation and, for given Before carrying out numerical studies using the present formu-
boundary conditions, can be solved for the unknowns involvel@tion, we remark that the present solution is valid for any integers
As an example, we assume that, on the top surfaceH) the N and m as defined by Eq(7). In other words, the solution we

zdirection traction component is applied, i.e., have derived can be regarded as for one of the terms in a Fourier
) ) series expansion. Because of the linearity, the solution corre-
0z7= 0o SINPXSINQy (29)  sponding to a general loadirigniform or point loading can be

ained by expanding the loading as a finite double Fourier series

hich may represent one of the terms in the double Fourier ser .
wh! yrep ! " un 3,33) and adding the responses together term by term.

solution for a general loading cagéeniform or point loading, and
all other traction components on both surfaces are fzezq the
second-type boundary value problerkquation(28) is then re- ]
duced to Numerical Examples

c. C Having derived the exact and simple solutions, we now present
uH)| &1 2({u(0) . . ; .

= (30) some numerical results. Before using our formalism, we first
t(H) Cy C4l O checked our solutions with some previously published results for
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Table 1 Material coefficients of the piezoelectric BaTiO

107°C%(Nm?), and u;; in 10 "®Ns%C?)
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Fig. 1 Variation of the elastic displacement uy(=u,) along the thickness di-
rection in a homogeneous and piezoelectric plate caused by an internal load on
the middle plane and a surface load on the top surface
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Fig. 2 Variation of the electric displacement D,(=D,) along the thickness di-
rection in a homogeneous and piezoelectric plate caused by an internal load on
the middle plane and a surface load on the top surface
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Fig. 3 \Variation of the stress component o ,, along the thickness direction in a
homogeneous and piezoelectric plate caused by an internal load on the middle
plane and a surface load on the top surface

Table 2 Material coefficients of the magnetostrictive CoFe 204 (Cjj in 10°N/m?2, qjj in N/(Am), g
in 107°C%(Nm?, and u;; in 107®Ns%C?)

Cy=Cyp Cy C13=Cys Cas C44=Css Ce6=0.5(C3—C1d)
286 173 170.5 269.5 45.3 56.5
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Fig. 4 Variation of the electric potential ¢ along the thickness direction in the
sandwich piezoelectric /piezomagnetic plate caused by a surface load on the
top surface
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both purely elastic and piezoelectric plat§8,12,14,34), and amplitude oy=1 N/m?. The bottom surface is assumed to be

found that the present formulation agrees with these solutions.traction-free(2) An internal load is applied on the middle plane of
The first example is for a homogeneous and transversely isottae plate ¢=0.1 m). The extended traction discontinuity has a

pic piezoelectric plate. The symmetry axis of the material is alongmilar expression as Eq31) with amplitudeAo,, equal to 1

the zdirection with material properties being listed in Table IN/m? Both the top and bottom surfaces are assumed to be

([14])). The dimension of the plate is,XL,XH=1X1X0.2m. traction-free. For both cases, responses are calculated for fixed

Two cases are studiedt) A z-direction surface load is applied onhorizontal coordinatesx(y) =(0.79.,,0.29.,).

the top surface of the plaie=H. That is, the extended traction is Figures 1, 2, and 3 show the variations of the elastic displace-

given by Eq.(31) with m=n=1 (i.e.,, p=n/Ly, q=n/Ly) and mentu,, electric displacemerd,, and normal stress,, along
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Fig. 6 Variation of the electric displacement D,(=D,) along the thickness di-
rection in the sandwich piezoelectric  /piezomagnetic plate caused by a surface
load on the top surface
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Fig. 7 Variation of the electric displacement D, along the thickness direction in

the sandwich piezoelectric /piezomagnetic plate caused by a surface load on the
top surface

the thickness direction of the plate. It is clear that these two loa@¢hile the normal stress,, due to the surface load is continuous
ing cases produce quite different responses in the plate, evamd increases monotonically from zero on the bottom surface to
though the plate is relative thifwith a ratio of thickness to hori- the applied value on the top surface, that due to the internal load
zontal dimension equal to Q.2For instance, while the internal is discontinuous across the loading pla#e0.1 m and it has op-
loading solution is strictly symmetric or antisymmetric with re{posite sign on both sides of the middle plane. The internal loading

spect to the middle plané.e., the loading plane the surface case has never been studied and compared to the surface loading
loading solution does not possess such features. The (fitehe

case in the literature.
elastic displacement, and electric displacemei,) is only ap-

The second example is for sandwich plates made of piezoelec-
proximately symmetric or antisymmetric about the middle planéric BaTiO; and magnetostrictive Coi®,. The three layers have
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Fig. 8 Variation of the magnetic induction B,(=B,) along the thickness direc-
tion in the sandwich piezoelectric /piezomagnetic plate caused by a surface
load on the top surface
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Fig. 9 Variation of the magnetic induction B, along the thickness direction in
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equal thickness of 0.1 rtwith a total thicknes$1=0.3 m). While example is assumed hetthat is, az-direction traction with am-
t_he m_aterlal properties for .the piezoelectric Ba;_n@_re those plitude oo=1 N/n?? is applied on the top surface=0.3 m while
listed in Table 1, the properties for the magnetostrictive GOke || other components on both surfaces are zekgain, responses
are given in Table 2[35]). Similar to the piezoelectric BaTi) 4re  calculated for fixed horizontal coordinatesx, y()
the magnetostrictive Cog®, is also a transversely isotropic solid:(o 748.,,0.24.,)

.79.,,0.29.).

Wlt-PWI(t.)s ss)gmmrjnvslté% a)SIIthlsongviE[EEZ);géking sequences BaTiO Figures 4 and 5 show, respectively, the variations of the electric

CoFe0,/BaTiO; (called B/F/B and CoFeO, /BaTiO;/CoFe0O, and magnetic potentials along the thickness direction in the sand-
(called F/B/F are investigated. The surface loading as for the firg¢ich plate. It is obvious that the potential variations for the B/F/B
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Fig. 10 Variation of the normal stress o, along the thickness direction in the

sandwich piezoelectric /piezomagnetic plate caused by a surface load on the top
surface.
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and F/B/F cases are completely different, demonstrating clearlyTwo typical numerical examples presented have also shown
the role played by the material stacking sequences. Furthermaeme significant and interesting features. For instance, responses
the slopes of these quantities can be discontinuous across theténan internal load are quite different from those to a surface load,
terface, even though the potentials themselves are continuouseven for a relatively thin plate. The solution to the internal load
While Figs. 6 and 7 show the electric displacemeits and its comparison to the corresponding surface loading solution
(=Dy) andD,, the magnetic displacementsiagnetic induction have never been reported in the literature. For sandwich plates
B.(=B,) and B, are plotted in Figs. 8 and 9. The followingmade of the piezoelectric BaTi@nd magnetostrictive Cok@,,
general features are observed from these figures: we have observed that the stacking sequeB4s/B and F/B/F
have a clear influence on most physical quantities, in particular, on
the electric and magnetic quantities. These features should be of
special interest to the design of magneto-electro-elastic composite
laminates.

1 The horizontal electric and magnetic displacements are d
continuous across the interfacgdgs. 6 and 8
2 The magnitude of horizontal electricnagneti¢ displace-
ment is very small in magnetostrictive CoBa (piezoelectric
BaTiO;) layer (Figs. 6 and & This is due to the fact that for the
magnetostrictive CoR®, (piezoelectric BaTiQ) material, the pi- Acknowledgments
ezoelectrice;; (piezomagnetiay;;) coefficients are zero. The author would like to thank Prof. Paul Heyliger of Colorado
3 Within the outer layers, the horizontal and vertical electrigtate University for his valuable discussions and to the reviewers
displacementgmagnetic inductionschange dramatically for the for their constructive suggestions.
B/F/B (F/B/F) case(Figs. 6-9.
4 For these dramatically changed physical quantities, the vgsaferences
tical components re.aCh their maXIm.um magthdes in the mlddle[l] Ochoa, O. O., and Reddy, J. N., 19%nite Element Analysis of Composite
of the outer layersFigs. 7 and 9 while for the horizontal com- Laminates Kluwer, Boston, MA.
ponents, the maximums are on the top and bottom surfaces ar[d] Pagano, N. J., 1969, “Exact Solutions for Composites in Cylindrical Bend-
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symmetry problem and an antisymmetry problem, a three-dimensional wave scattering

S. K. Datta problem is then reduced into two quasi-one-dimensional problems. This simplification
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Boulder. CO 80309-0427 cracks (may have arbitrary circumferential crack length and radial crack depth) and they

are shown to agree quite closely with available but limited experimental data.
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Introduction Dispersion of elastic waves in circular cylinders has been stud-
ﬁ’& by many authors. Soldat¢4] reviews the literature on dy-

. T . . i
Circular tubes and pipelines are used extensively in energy and - . T )
transportation industries. These structural components are n Frnics of cylinders and cylindrical shells. Dals has reviewed

mally fabricated from metallic and composite materials. Damat iéﬁgg:cﬁéﬁﬁ{tﬁoeqexiﬁé Af;éotf“eggﬁ'iteugyf'g‘rdgs er:gl ssrgzlls.
to these components occur with handling, service load, naturgl y q Y

of dispersive guided waves in anisotropic homogeneous and com-

disturbances, and environmental causes. Of particular interest INte shells has been discussed in the latter publication.

this study is the stress corrosion cracking that occurs in steel pi;? Studies of wave propagation and reflection in a semi-infinite

lines used in oil, gas, and petrochemical industries. Ultrasonic,: P - . .
rl||nder and wave propagation in a cylinder with a region of

. . . . c
nondestructive techniques are being developed for the mspectlé/ i .
of such industrial pipelines. Ultrasonic waves in steel pipes can gterial inhomogeneity have also been reported. Kohl €64l.

generated quite efficiently by ring transducésee, Alleyne et al. attanawangcharodff], and Rattanawangcharoen et[&] stud-

: ied the wave propagation in a semi-infinite tube by a superposition
[1] and Lowe et al[2]) for launching waves that propagate alon X : X
the pipe axis. Electromagnetic acoustic transduGEMATS) are % all possible traveling waves and end modes to satisfy the end

also used to generate waves guided along the circumference Of\(/iv%g\‘/demsocr;tteRr?r?e?rt]Iyé t:){)t;“gorrlrt]:it:i(r)]dsar;%\i/tee giii, n n?;i?riéoreSt%iy
pipe wall ([2]). A major problem that is faced in the uItrasonicmc inhomo ene%t and crack Ratta?lawan charo)én e[oﬁalandg
evaluation of pipes is the presence of protective coating or in 9 Y ; 9

s#ﬁuang et al[10] used a hybrid technique to investigate reflection

lation on the outside of the pipe wall. The coating or insulatio e A . .
material is much softer than steel and usually has high attenuati Hd transmission of waves in jointed and welded cylinders and in

This makes access to the pipe from outside difficult and variou#é?éiegegﬁl'&ﬂﬁrtﬁgnéi;g'rr]ﬁmaet(;i'gcug[ﬁ;?“al crack. All these
devices for access from inside the pipe have been under develdpy y P :

ment. Also, the ultrasonic waves propagating in the pipe wall ¢ o dee?ii ntl;g,t Lﬁille%?ewivaelﬁiigt?gﬁnreﬁgrfitzglexrin?oenntgil:qi?qnda
be modified by the coating or insulation layer. In a recent pap g Y 9 pip 9

Pan et al[3] examined the effect of a soft viscoelastic layer o i’rcumferential crack. They used a finite element model to study
guided ultrasonic waves in a bilayered plate. It was found th € scattering of thé (0,2) mode(see, the Nomenclature of the

certain(Lamb wave modes in a single-layer steel plate are pref—nOd?S used in that papdry a p.'?lrt-_clrcumferentlal plangr notch..
_this case, even though the incident mode was axisymmetric,

erable for inspection of damage because they do not suffer ; . . :

nificant modification by the soft layer. Thus, mode selection pla cause of .the nogamsymmptnc notgh scattgrlg_g(occgrred '3 both
rv important role in th f ultrasonic non ructiggisymmetric - and  nonaxisymmetric moded.(m,n) an

a very important role in the success of ultrasonic nondest uc“@%m,n)). They reported reflection coefficients for only th€0,2)

evaluation(NDE) techniques. . ; ; .
Guided s/vave)s in cyli(?mdrical tubes are similar in nature as t ode as functions of the circumferential extent and the radial
%Soth of the notch.

than in plategAlleyne et al.[1]). This makes appropriate mode As shown in previogs studies, the hybrid method is effective for
selection very critical for the success of an ultrasonic technig@Symmetric scattering problems. However, for the three-
for pipeline inspection. The problem is further complicated ifilmenspnal scattering problem considered by A!Ieyne Qﬁldl-

there are large cracks in the pipe wall. Thus, it is important {&e hybrid or the full finite element method entails considerable

have accurate theoretical model studies of ultrasonic wave prog&2eunt of computational costs. The objective of the present study
gation and scattering in cylindrical tubes. is to develop a more efficient combined analytical/numerical tool

for the investigation of three-dimensional scattering in a cylindri-
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the cylinder £=0) needs to be modeled. Using superposition of
the solutions to the two problems, a solution to the general three-
dimensional case can be constructed.

In the numerical procedure, a wave function expansion method
is used to represent the three-dimensional incident and scattered
wave fields travelling in the axial direction. There are two major
steps in this method1l) Use the propagator matrix in the radial
direction to form the displacement and stress components in a
cross section of the cylinder, af@) discretize the cross section in
radial and circumferential directions and satisfy the displacement
and traction boundary conditions according to symmetry and an-
tisymmetry conditions. The details of propagator matrix method
and corresponding formulation can be found in Rattanawang-
charoen and Shgli2] and the decomposition into symmetric and
antisymmetric problems was used by Zhuang efHi].

_ . _ ) Wave Modes
Fig. 1 Geometry of a steel pipe. R;, inner radius; R,, outer . . . . . .
radius; d, crack depth: @, , half circumferential crack angle. Time-harmonic wave propagation is considered. The cylinder is

divided into coaxial cylinderglayers, say ng; in number. The
displacement components, , u,, andu,, in the cylindrical co-
ordinates,r, 6, and z respectively, of thekth layer which is
presented here, the crack can be of an arbitrary depth in the radiaunded byr=r, andr=r,,,, are given by(see Gazif13],
direction. In this method, the scattered wave fields are expres$attanawangcharoen and SHaR]),
as sums of admissible wave functions in the axial direction. The
cross section of the tube, in which the crack is located, is divided U=
into a system of six-node planar elements, and the boundary con- '
ditions appropriate for the symmetric and antisymmetric problems
are imposed on these elements. Using a transfer matrix approach, up=i {TH £h,—hy
the problem can then be simplified to a quasi-one-dimensional r
problem.
The crack considered is an ideal mathematical crack occupying u,= i{gf—
an area located in the plaze=0 and can have arbitrary length in
circumferential direction and depth in radial direction. The geomy,
etry of the pipe and crack is shown in Fig. 1. The objective of this
study is to investigate how the length and depth circumferential f(r)=AZy(ar)+B;Wq(ar)
cracks affect the scattering characteristics in pipes. Reflection and
transmission coefficients are presented for a steel pipe for various ha(r)=AxZpn+1(Br) +BaW 1 (Br), @)
incident fields. The principle of energy conservation is used to ho(r)=AsZn( Br) +BsW( Br)
ensure the accuracy of numerical computation. The reflection co-
efficients ofL(0,2) mode are compared with the experiment dagnd

in Alleyne et al.[1]. = wc?— £, BP=w?lci— £ 3)

eimﬁei(gz—wt)

, m
f _ghl_ Thz

eimﬁei(fzf wt)’ (l)

m+1
r

eimeei(gz—wt)

hl_ hi

here

A prime denotes differentiation with respect tom denotes the
Formulation circumferential wave numbeg the circular frequencyt, the time,
the wave number in thedirection, and ==1. Z;, andW,, in
0. (2) are Hankel functionsiY) andH(? | respectively, and\,
&2, Az, By, By, andBj are constants for the layer. The velocity
of dilatational and torsiondkheay waves,c; andc,, are defined

The problem of an infinitely long steel pipe is considered her
The circumferential crack is assumed to be locater=ad and it
can have arbitrary length and depth in both radial and circumf
ential directions. To calculate the wave functions, the pipe is fir
discretized through the thickness intg, sublayers to determine as
wave functions travelling in an axiatdirection. During the cal- A+2u uw

. . .. . . . . 2 2

culation of the reflection and transmission coefficients, the pipe is ci= , Cr=—, 4)
then discretized in both circumferenti&l,and radialy, directions P p
over the cross section=0. A time-harmonic incident wave with where\ and u are Lamés constants ang the mass density.
angular frequency and wave numbeg,, generated ar= + o By using Eq.(1) together with the stress-strain and strain-
travels in the negative-direction. Herek denotes the circumfer- displacement relations, the stress components o,,, ando,,
ential wave number and is the axial wave mode. Because ofat the interface =r, can be expressed as
linearity of the governing equations and boundary conditions at

n = A - ; U A
z=0 the superposition principle can be used in this problem. { k}:Qk{ ]
Also, the displacement and traction components at the ptane S B
=0 can be arranged into two groups: one in which the displacgith
ment components in the radial and circumferential directions and
the traction component in the axial direction are prescribed, and Uk=(Urk Upk Uzl) Ty Sc=(0rrk Orpk 0z (69)
the other contains the axial displacement component and the trac- . T _ T
tion components in the radial arFI)d circumferentf’:ll directions. It can A=(Ar Az Ag)', B=(B1 B2 By) . (60)
be shown that the quantities in the first group are known when tBeiperscriptT represents the transpose, subsckpimeans the
external forces are symmetric about the plared. On the other nodal values at th&th interface. By repeating the above proce-
hand, quantities in the second group are known if the exterrdure at the surface=r, . ; and considering Ed5), the following
forces are antisymmetric abomt=0. In either case, only half of relation is then achieved:

®)
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Uia| o Uk 7
[SHJ‘PKK Sk] @

Pi=Qus1Qi & (8)

The six by six matrixP, is called the propagator matrix for tkéh
layer. Once the wave numbe¢, is known for the given fre-
quency,w, Eq. (7) can be used to evaluate the displacements and
stresses at each sublayer.

For a solid cylinder, there is a special consideration at the core
cylinder. In order to have a bounded solution in the region of 0
<r=r,, the functionZ,, is taken asl,,, the Bessel function of
the first kind, andB;=0 in Eq. (2). The displacement and stress
components at the interface=r, satisfy the relation

SlzKU]_. (9)

When the wave numbef and the displacement componehis

are known, Eqgs(9) and (7) can then be used to calculate therig. 2 A typical mesh in the cross section. The shadow region
displacement and stress components at each interface. The madpresents the crack.

ceskK, P, andQ, can be found in Rattanawangcharoen and Shah

[12].

with

M Np

AT, 0,2,1)= 2 E o'zz,mn(r)akl mnel‘fmnzelmeeilwt

Modal Expansion m=—M n=1 '

Assume that the incident wave field is generateg=at- - and M
travels in the negative-direction. Scatteringreflection and trans- = E Syam(NEm(2)ag me'mie !
mission occurs when the incident wave strikes the crack located m=—-M
atz=0. The scattering wave fields consist of a finite number Qf;i,
propagating modes and an infinite number of nonpropagating
modes. Due to the symmetry and antisymmetry consideration,  U; m(r)=[Up ma(r) Uy ma(r) < ur,mNm(r)]eC“Nm
only the reflected wave field needs to be evaluated in the positive
z-direction. The displacements and stresses of the wave field can U gm(r) =[Ugmi(r) Upma(r) -+ Ugmy (1)1 CHMNm (12)

be expanded as follows: 1XN
Uz,m(r)Z[uz,ml(r) uz,mZ(r) uz,mNm(r)] eC m

M Ny
ur(rvavz-t):mEM nEl ur,mn(r)akl,mnelgmnzt:'\lm(,(:-rIwt SN =Lozrmi(r) oz ma(r) -+ U'Zr,mNm(r)] e CNm
M Sza,m(r):[Uze,ml(r)aza,mz(r) T Uze,mNm(r)] € ClXNm1
= Z Ur,m(r)Em(z)akl,meimee_im (13)
m=—-M
" N Szz,m(r):[o'zzml(r)a'zz.mz(r) O'ZZ,mNm(r)]EClXNm
m
Up(r 0,2,0)= Dy D Upmn(N) g mee imeimPe ot a,m={&k,m1@m2 ** &mn, € Clm (14)
m=-M n=1
and
M
_ E u (),m(r)Em(z)akl,meimee_iwly (10) Em(z) = diade'fmlz e EmoZ ... e gmNmZ] e CNmXNm
m=-M where a, .S are unknown complex coefficients to be deter-
M Np mined. The first two subscript& and|, indicate the wave num-
uy(r,6,z,t)= 2 2 uzymn(r)aklymneiémnzeim"e*iw‘ bers in circumferential and axial directions of the incident wave,
m=-M n=1 and the last two means the coefficients of the scattered wave fields
M corresponding to the wave numbensandn, in the circumferen-
_ U, (1) En(2)ay oeMe it tial anq axial directions, (espfectively. The symkelC™*" means
iy emmm TSk m thatx is a complex matrix with ordem by n. It may be pointed
out that the number of axial modés,,, need not be the same for
and different circumferential wave number. The factore™ ! will be
M Np suppressed in the sequel.
041, 0,2,1)= 2 2 Uzr,mn(r)akl,mneigmnzeimaeiiwt For the computational purpose, the continuous functions in the
m=-M n=1 expansiong10) and (11) are evaluated at discrete points on the
M cross section. The cross section is divided into six-node elements
_ 2 Syr (1 En(2)ay me™e ot v_vith uniform distr_ibut!on both in circumferen@iz_al _and r_adial _direc-
may m kl.m tions, as shown in Fig. 2. The number of divisions in radial and
circumferential directions arp and g, respectively. In order to
M~ Nmp , ) ) represent the circular curve in the circumferential direction, three
To(1,0,200= D, D 0pgmnl(N) 8y me€ Emiel Mgt nodes are used in this direction. Two nodes are used in the radial
m=-M n=1 direction in each element. With the geometry of the mesh shown
M in Fig. 2, the consistent forces can be obtained from the stresses
= 2 S,6m(NEm(2)ay me™fe et (11) associated with the wave modes using standard procedsees
m=M ' Bathe[14]).
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The expansionél0) and(11) satisfy the traction free conditions M
on the inner and outer surfaces of the cylinder. Hence, only Ni= 2 Np
boundary conditions at the erze=0 have to be satisfied. Because m=-M
of the emstgnce of the crack in the Cross section, care ”.“”St \BﬁereNm is the axial modes corresponding to the circumferential
taken on this part of the cross section when dealing with t

boundar nditions. Traction-free boundar nditions for both mberm. P is the total number of nodes in the cross section
oundary conditions. 'raction-iree boundary conciions for both g Pc the number of nodes in the cracked region, &hg=P

symmetric and antisymmetric cases are imposed on the crack fac ; h P
Therefore, for the symmetric case, the boundary conditions agt-:ef)C the number of noo!gs in the uncracke_d re%mm'.m |ng|ven
Yy Eq. (14). The specific forms of matrices¢, ,, F¢C om»

iven b
9 y | - F& ,ms FRim» FRom, andUg , . are given in Appendix A.
S—9 4 SR Sc n Sc —0. atz=0 15 In a similar manner, the incident wave fie®l can be con-
sy T|sy[TY Az (15 structed as
with Se=aidck:  Su=2aOn - (23)
fl fl fR fR Here, the vectomg. ,, is obtained from theth column of the
Se=9 fyr, S\=9{ Ty, SB={fh, SR={f; matrix G§  after replacing each and ¢-directions force compo-
f'Z U'z f? qu nent by the negative value of it. The vecgim is obtained from
(16) Ith column of the matrixGﬁk after replacing eaclz-direction
and for antisymmetry, they are force component by the negative value ofeit1 is the amplitude
’ | ’ . of the incident wave.
A A Equation(15) (see also Eq(19)) is solved using the principle of
N R_|"C Cl_ —
A=ATA _[A}\I] +[Aﬁ] =0, atz=0 @7 virtual work. To accomplish this, vectorgg and TR, which are
with the dual components of the vect®§ and S, are formed,
f u i o -[351-[ el 9
Ac=1{fyr, Ay={upr, AR={fGi, AR={uUj N) O LEN
f il i r with
(18) R R
wheref,, f,, andf, are the consistent force components ,ir#, TR= urR TR= uk (25)
and z-directions at the boundary=0, respectively. The super- ¢ gl N fg
scriptsl andR represent the quantities associated with the incident Uz z
and scattered wave fields, respectively. The subs&igind N HR:[HR ... HR ... HR e C3PexN
represent whether the point considered is located in the cracked or coteem C,m cM ' (26)
the uncracked region, respectively. HR=[HR -+ HR -+ HR ;] e C3Pn N,
Without loss of generality, we assume that the nodal sequence ' m ’
is arranged such that the firBt points are located in the cracked UR,m UR'im
region and all the resPy=P— P points are located in the un- | \r _| 4R 3PexN,, R _|uR 3PyxNy,
cracked region. HEm Ug,e,m eC . H\m Fg,g,m e C3PN <N,
We now first consider the symmetric case. It should be pointed C.zm N,zm @)

out that when the mixed displacement and force comporfents
f,, andu, are known, the dual components, u,, andf, are The specific form of block matrices appearing in E28) can be
unknown for the point located in the uncracked region and vigeund in Appendix B.

versa. For the cracked region, all the force components are knowrNow applying the principle of virtual work to boundary condi-
and the corresponding dual displacement components are ygns(15) by multiplying the dual componentsg and TR, on the

known. _ o both sides of Eq(15) yields
Evaluating the sums if10) and (11) pointwise at the cross o o |
Hel™| Ge *[9ck
7 (28)
IN kI

sectionz=0, it is seen that
R R
E(0)=diagl 1 --- 1]e RNm*Nm, Hn) LGN

The vectorsSE and Sy in the boundary conditionél5) may be

* HE

HR

a=—ay

The superscript® denotes the complex conjugate plus matrix

written as transpose. . .- .
The solutions of Eq(28) are the reflection coefficients associ-
SE:GEa, Sﬁ:Gﬁa (19) ated with the wave modes. Having known these coefficients, val-
ues of the displacement and stress components at different loca-
where tions in the cylinder are readily obtained by substituting them into
GEZ[GE BIVIEES Ggm GE,M] e C3PcXN, 20 expansiong10) and (11).
R_ R R R 3P XN (20) Reduction to Quasi-One-Dimensional Problem. It is noted
GCN=[GR,-m =" G m " Gl eCTN, that Eq.(298) is derived by using pointwise conditions. Due to the
_ .. T_ ~NX1 large number of nodes in the two-dimensional mesh in plane
a={au,-m Am e Baut €C (1) =0, as shown in Fig. 2, it is a computationally demanding proce-
FRim FRom dure. If we consider the idea of a transfer matrix from radius to

R _| R 3PN R _| R 3P, XN radius, instead of point to point, calculations can be performed
Gem= Fg'f”m eCTe I Gym= F“F‘{ﬁvm e G, more efficiently. This idea is based upon the circular symmetry of
Fczm UN.zm the geometry and the physical characteristics of the prolftem
(22)  the expansion$10) and (11)).
The total number of wave modebl;, considered in the wave Take two vectorsc, mne CPe*t and fy , mae CPV*E, which
function expansion is given by are in thenth column of the matrice§f§'r,m and Fﬁyr'm in (A1)
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Fig. 3 Frequency spectrum of a steel pipe.  H/R=0.135, »=0.287. (a) Longitu-
dinal wave (m=0); (b) Flexural wave (m=1).
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Fig. 4 Phase velocity versus frequency for a steel pipe. HIR=0.135, »=0.287.

and (A4), as an example. It is noted that these two vectors adéus pair in the following. Without loss of generality, we assume
evaluated at all the nodes of the cracked and uncracked regiahsitqc number of radii pairs are located in the cracked region and
respectively. We first construct two vectof§) .. and f{!) .=~ dy in the uncracked region.

corresponding to these two vectors but evaluated at the two adjaBy considering the wave functions in Eq40) and(11), it can
cent radii #=0 and 6= /q, whereq is the number of subdivi- be shown that the values of the two vectdrg, mn andfy  mn,
sions in the circumferential direction. Also, we denote two radipn thejth radius pair are obtained only by a rotati@d™<™'9, of

6=2jm/q and = (2j+1)w/q, for j=0,1,... g—1, thejth ra- that of the first radius paif") __andf{}) . Therefore we have

C,r,mn N,r,mn*
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fU) )\jflf(l) . 1s<j< 20a Table 1 Amplitude of reflection cqeﬁicients as a function of
Crymn™ Cr,mn 1=0c (2%) total wave modes for Q=0.74 with circumferential length 50

i - : ercent and crack depth 0.5 H
f“,)r,mn:)\gn lf#\ll,)r,mnl QC+1$J$QZQC+QN (290) P P
where M N |Roz,01 |Ro2,04 [Roz,11 |Ro2,14 |Roz,14
imar 0 51 0.242 0.195
Ap=e?mma, (2%) 1 131 0241 0.154  0.161  0.041 0.118
. . 2 211 0.254 0.169 0.155 0.034 0.100
Thus, the VeC'[OI’SfC'ern and fN,r,mn can be written in a more 3 201 0.237 0.153 0.151 0.033 0.099
compact form as 4 371 0.252 0.168 0.152 0.032 0.096
O 1 5 451 0.233 0.147 0.149 0.032 0.096
f =A~ f¢ ,f = A 30 6 531 0.240 0.157 0.150 0.032 0.096
crmn=AcmfSrm:  Turm=Annfirm  (30) 7 611 0236 0152 0149 0032  0.096
with transfer matrices\¢ ,, and Ay ,, given by 8 691 0.237 0.153 0.149 0.032 0.096
’ ' 9 771 0.235 0.152 0.149 0.032 0.096
Aem=[1 A -+ AT~ T e c2Pacx2p 10 851 0235 0152 0149 0032  0.096
Cm m m 11 931 0.235 0.152 0.149 0.032 0.096

(CHY)

A=A Nl =+ AINVHT e c2Pan<2p,
displacement components by their reference vectors, which are
only evaluated at the first radius pair. Similar relations hold also
for the matricesH, HY and vectorsS;., Sy .

With the above simplification, we have the following results:

Here, | is the unit matrix with order @ by 2p, 2p being the total
number of nodes in a radius pair. With the help of E2D), the
matricesFg andFR |, can then be expressed as

FC,r,mzAC mFE:l)rle N r, m=An, mFg\ll)rRm (32) [ i
. . . R 1R
The matrices=&)%, and Ffvl),Rm have similar forms as the original ~ (HR)*GR=| - semm,(HEM)*GEm -+ | eCNxN
matrices Fg,'m and FN,r,m after changing each column with B
f&) nandf) ., respectively. All the other matrices in Appen- . i (36)
dices A and B have similar expressions, as shown in (Bg). - e
Using these expressions, the matri@% and G} have the fol- R R
lowing forms: (HR)*GR=| == #nmm,(HNim)*GNm, - | eCNN
GE=[Ac-mGE y + AcnGER Ao uGERT,  (33) an
GR=[An,-mGN  AnnGIR -+ AvuGRN,  (34) :
where (HRY*SL.=1{ uc, mk(H“)R)*g(;k eCNx1 (38)
AC,m
Ao = Ac < CBPAc*6p
- A (HO* S\ =1 #n mw<H<“R>*gN1,Lﬁ* sCV (39)
em (35)
Anm and
KN m= AN,m e COPaN>6p, dc, for m{=m,
An ={ 1=\ 40
" pemm =) __ MM for my#m, (40)
The block matriceS&)F and G are obtained from the matri- 1= Nmym,
CESGSm and Gﬁ'm after replacmg the corresponding force and
5 040
g
¥ 035
0.30 | Experimental Numerical
100% —@— --O--
ol el o
b —e— -0 -
0.20 [ EU P
0.15
0.10
0.05
0.00
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Q
Fig. 5 Reflection coefficients for three different crack extensions. ——, crack
depth =0.5H; — — —, crack depth =0.55H.
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(b) Q

HIR

=0.135, »=0.287, crack length is ten percent of the circumference and crack

depth =0.55H. (a) Reflection coefficient;

an s for m;=m,
—{ 1-A\F 41
FEN,mym, M for my#m,’ (41)

1— Amlmz
N, .m, =N A, = €% (M2~ M) 74, (42)
Equations(41) and (42) may also be written as
/-LC,m1m2+ MN,mm, ™ q5m1m2 (43)
1, for my=m,

9, = . 44
MM, for my#m, “4)

Substituting Egs(36), (37), (38), and(39) into Eq.(28) results in
the final equation,
[(HE)* GE+ (HY)* GRla= —ay[(HE)* Sc+ (HY)* Syl.
(45)

It can be seen from Eq$36) to (41) that, in the computational
procedure, all the matrices are evaluated only for the first radius

(b) transmission coefficient.

ces HR)*GE and HF)* GR are reduced to diagonal block matri-
ces. Furthermore, vectors in Eq&8) and (39), (HR)*S. and
(HR)* s\, are reduced to zero. But ttieh block vector remains
unchanged. So the problem becomes one of smaller dimension
and one needs to consider the wave modes only related to the
circumferential wave numbek, the incident wave number in cir-
cumferential direction. In this situation, it is easy to show that the
subdivision in circumferential direction will not contribute to the
complexity of the numerical procedure, because the parameter
will be eliminated from the final linear equation.

Once the linear Eq(28) is established, the reflection coeffi-
cients for the symmetric case are obtained. For the antisymmetric
case, it can be solved by a similar procedure, and it will not be
repeated for brevity. If knowing the solutions of these two cases,
the reflection and transmission coefficierRg, m, and Ty m,, for
the problem considered here are easily derived respectively as
shown below,

S A
_ Al,mn~ Akl,mn

S A
_ akl,mn+ akl,mn
' kl,mn™— I
' 28y,

Rkl,mn* y (46)

2ay,

pair. In other words, the circumferential discretization will not
affect the size of the matrices nor the computational time. Hen@ﬁhereafhmn a”daﬁ,mn represent the solutions for the symmetric

the problem is now reduced to be quasi-one-dimensional.

and antisymmetric problems, respectively. The numerical accu-

Whenqc=d, thengy=0. This corresponds to the axisymmetyacy of the coefficients is checked by the principle of energy con-

ric crack. It is then obvious thatc,mlmZ:O, whenm,;#m,, and

servation. The energy flux of each propagating mode has been

KN, mym, =0 for all my andm,, anduc mm=4a. Therefore, matri- discussed in Rattanawangcharoen ef&ll.
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Fig. 7 Normalized reflection and transmission coefficients in a steel pipe. HIR

=0.135, »=0.287, crack length is ten percent of the circumference and crack
depth =0.55H. (a) Reflection coefficient; (b) transmission coefficient.

Numerical Results and Discussion v=0.287, H/R=0.135. (49)

The method described in the previous section can be used to L
analyze the effect of planar cracks located in a cross section of the € frequency spectrum for the longitudinal wave<0) and
pipe wall. As shown above, the crack can have arbitrary lerigth, first flexural wave (n=1) are shown in Fig. 3. In the following
in the circumferential direction and depth,in the radial direction discussion, we will use the nondimensional frequetityand the
(Figs. 1 and 2 Note that it is not necessary that the crack break¥ndimensional wave numbey, as
the outer surface of the pipe. The problem considered was inves-
tigated experimentally and numerically by Alleyne et[dl] and 0= ﬂ —¢H 50
Lowe et al.[2]. They used the finite element method for analyzing Ccy, y=¢H. (50)
the problem. Here, we will consider the same geometric and ma-
terial properties of the pipe as used by them so that we can presgnis, for frequency of 100 kHZ)=1.06. As Figs. 3 and 4 show,
some results comparing the predictions of the present method wilere are two longitudinal modek (0,1) andL(0,2)) and three
their experimental observations. flexural modes(F(1,1), F(1,2), andF(1,3)) propagating at this
The material constants for the all examples presented below #gquency. There are other propagating moBés,m), n>1, at
for steel with longitudinal wave and torsional wave velocitieshis frequency. These are not shovaee Alleyne et al[1]).
given, respectively, by Alleyene et al.[1] presented results for the reflection of the
_ _ incident modeL (0,2) from circumferential cracks of different
€1=5.96<10° m/s, c,=3.26<10° m/s. (“7) lengths and depths in the frequency range 60—85 (tz0.64 —
The Young's modulus is 216.9 GPa. They considered two diffe@.90. As seen from Fig. 4, the velocity of the(0,2) mode is
ent pipes having diameters 76 mm and 152 mm with thicknessesarly independent of frequency in the rarfge-0.6-3. The ve-
5.5 mm and 7 mm. Results for both cases were found to be quieity in this range is 5.29 mms, which is somewhat higher than
similar. For the present study, we have chosen the inner raditise velocity €=5.22 mmjs) of theL(0,1) mode at very low
R;, and thicknessH, of the pipe to be, frequencies. Note that the phase velocity of E{é,3) mode ap-
_ _ proaches that of the(0,2) mode at frequencies higher than about
Ri=38 mm, H=55 mm. (48) 75 kHz and that of (1,2) approaches the shear wave velocity
Then, the Poisson’s ratio, and the thickness over mean radiusin the following, numerical results are presented for the reflection
H/R, are, respectively, coefficients for mode-converted waves when two different modes
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Fig. 8 Normalized reflection and transmission coefficients in a steel pipe. HIR

=0.135, »=0.287, crack length is 50 percent of the circumference and crack
depth =0.55H. (a) Reflection coefficient; (b) transmission coefficient.

(L(0,2), andF(1,3)) are incident on circumferential cracks. Com-error was less than 6 percent for the 100 percent circumferential
parison with the experimental results, when appropriate, are atsack. Using the same mesh and crack depth, the relative error for
discussed. the reflection coefficient for a 50 percent circumferential crack
First, convergence of the numerical procedure was tested wiémgth was around 10 percent, which was higher than that for the
different mesh sizes and results were compared for several s@tisymmetric case.
tering problems. For each case, a different number of circumfer-There may be various reasons for this discrepancy. One major
ential and axial modes was chosen in the modal expansionreason could be that the notch used in the experiment had a finite
ensure convergence of the series. The incident wave were chogédth. Also, there could be inaccuracy in the measured notch
to be the second wave modl€0,2). It was found that the results depth. Furthermore, the notch may not be planar. For all the re-
convergedcomparing successive sums with increasing number stilts presented here we kept the crack depth to beH.55
terms in the modal expansipmvith the choice of mesh having The comparison between the experimental data and the model
node numberp=100 andg=10,000, and with the number of results is shown in Fig. 5. The results for three different cracks
modes beingM =11, N,,=51 for m=0 and N,,=40 for m=  with circumferential lengths 10 percent, 50 percent, and 100 per-
+1,=£2,...,=M. Table 1 shows the rate of convergence of theent of the total pipe circumference are given in Fig. 5. In this
series for the reflection coefficient from a crack of circumferentidigure, the reflection coefficients for th€0,2) mode are shown as
length 50 percent of the circumference and deptfH0.As noted functions of frequency ranging from 60 kHz to 85 kHz, or in
in the previous section, the convergence was tested by using tfmmdimensional frequency) from 0.64 to 0.90.
energy conservation. Since attention has been focused here ofihe reflection and transmission coefficie®g,mil, |Tozmnl»
reflection and transmission coefficients, singularities at the craakd|Ri3mil, |T1amn are shown in Figs. 6 and 7 for the circum-
corners were not taken into account in the numerical proceduerential crack lengtih.=ten percent. All the reflection coefficients
because they would not affect the far field. This has been verifiade very small, less then 0.07. It is interesting to note that for the
also by comparison with the results reported i incident modd_(0,2) the presence of the crack has little influence
After establishing the convergence, the mesh size and the nuon-this mode, because this mode is transmitted with most of the
ber of modes were fixed for the rest of the calculations. Reflecti@mergy in it. For the inciderf(1,3) mode, most of the transmitted
coefficients were calculated for two different crack depths, namedynergy is shared between the mo&€4,2) andF(1,3), with the
0.5H and 0.5%1. It was found that the results for 0.85crack energy going into the former increasing with frequency and the
depth agreed better with that of the experiment and the relatilagter losing energy with increasing frequency.
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Fig. 9 Normalized reflection and transmission coefficients in a steel pipe. HIR

=0.135, »=0.287, crack length is 50 percent of the circumference and crack
depth =0.55H. (a) Reflection coefficient; (b) transmission coefficient.

In Figs. 8 and 9, we present similar results for the circumfewas studied by a novel solution technique. In this technique, only
ential crack lengthL =50 percent. Again, the transmitted wavethe plane of the crack needs to be discretized into surface ele-
field has very similar characteristics as in the cake ments. This is much more computationally cost effective than a
=10 percent. However, in the reflected fig¢Ry, 0] has the larg- fully two or three-dimensional finite element analysis. It was
est value, followed byRy, o4 and|Rg, 1. It is seen that the found that the results agreed well with available experimental re-
reflection and transmission coefficients have very weak depesults. The effects of the crack on the incident wave moldés,2)
dence on frequency. This would be desirable for ultrasonic meaadF(1,3), are presented in this paper. It is found that the change
surements over long pipes. For the incident m&q#,3), Fig. 9 in the reflection coefficientsRy, \|, k=0(1), andl=2(3), with
shows that the reflected amplitufR 5 ;1 is the largest, followed circumferential crack length is linear inL. This was found to be
by |Ri314 and|Ry301. Thus, the asymmetry of the crack causethe case by Alleyne et al1], who studied only the incident
more energy going into the bending modes, as expected. L(0,2) mode. Also, as observed by these authors, the reflection

Results of the reflection and transmission coefficieliRg; |,  coefficients are found to be nearly independent of frequency in the
[Tozmnl, @nd|Ryzm,l and| Tz, as functions of the circumfer- range of frequency considered. This study should aid in further
ential crack length at frequendy=70 kHz are shown in Figs. 10 investigations of scattering of guided waves by cracks in pipes.
and 11. The experimental results are also shown in Fig. 10. Ake method presented can be easily extended to layered or com-
noted by Alleyne et al[1], it is interesting that the reflection posite anisotropic cylinders.
coefficient,|Ry, |, for k=0, 1=2 is nearly a linear function of  In this paper, planar cracks in a cross section of a circular pipe
the circumferential crack length. We also find that the same holbas been considered. Other types of cracks that appear in pipelines
true for|Rgz0d, |R1314, and|Ry3 4. Itis to be noted thatRy, o are axial. The method presented here would have to be modified
is larger thar|Ry, 04. For the transmission coefficients, the modelo analyze scattering by those cracks. This will be explored in the
results shown in Fig. 10 have the interesting feature ffigto] future.
and|Ty, 0] are also nearly linear functions &f the former de-
creasing with increasing and the latter increasing with. Acknowledgments
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Appendix A
The Specific Form of Matrices in Eq. (22).

frl,ml fr1,m2 frl,mN,.n
fr2,ml fr2,m2 frZ,mNm
FR _
C,r,m— . .
L frPc,ml frF’C,mZ frPc,mNm
ffil,ml f(fl,mz f1‘?1,m N,
f 62,m1 f»‘)2,m2 f02,m N
FR —
C,om— . .
L fflPC,ml fF)PC,mZ fHPc,mNm

Journal of Applied Mechanics

PcXN
eCFc m,

(A1)

e CPCX Nm,

(A2)

le,ml le,mz
R fzz,ml sz,mZ
FC,z,m_ . .
szc,ml szc,mZ
frPc+1,ml frPc+l,m2
R frPC+2,ml frPC+2,m2
FN,r,m:
frF’ +Py.ml frP +Py ,m2
cTIN> cTPN>
e CPNXNm’
f(v"Pchl,ml fHPC+1,m2
f@P +2,ml f&P +2m2
FR _ c c
N,o,m™
fHPC+ Py »ml fHPCJr Py »m2
e CPNXNm’

f=70 kHz. H/R=0.135, »=0.287, crack depth =
(b) transmission coefficient.

fzl,mNm
f
z2,mN
m e CPcX Nm’

szC,mNm

(A3)

frPc+1,mNm

f
rPC+2,mNm

frPCJrPN MmN,

(A4)

fop +1mn,

f P+ 2m N

fop+py.mN,

(AS)
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0.55H. (a) Reflection coefficient; (b) transmission coefficient.
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Uzp.+py.mL Uz +Py,m2 Uzp,+Py . mN,, Uzp.,mi Uzp, m2 Uzp. ,mN,,
(B3)
e CPN*Nm, (A6)
Appendix B
PP Urp +1m1 Urp +1m2 Urp +1mN,,
The Specific Form of Matrices in Eq. (27).
Urp +2m1 Urp +2m2 Urp +2mN,,
UR, m=
Uimi  Urim2 Uramn,, N,r,m
R | Yrzm Ur2ma Urzmn,, P XN Urp +py.mi Urp 4Py m2 Urp +Py mN,,
Ucrm= . . e Ce”fm,
e CPn*Nm, (B4)
L urPC,ml urPC,mZ urPC MmN,
(B1)
- u Ugp,+1m1 Ugp,+1m2 Ugp_ +1mN,,
Ug1mi Ug1m2 o1mN,,
Upp_+2m1 Ugp_+2,m2 Ugp_+2mN
u u UHZ N UR _ c J c I c ) 'm
62,m1 62,m2 MNm N
UR — CPCXNm ,0,m
c.6m= . . € ,
Ugp +Py.m1  Ugp +Py ,m2 Ugp,+ Py .mN,,
Ugpe,m1 Ugp. ,m2 Uppe mN,,
L PyXN
(B2) e C"n"m, (B5)
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Buckling Optimization of
~ | Composite Axisymmetric
A-Rdefaria § Cylindrical Shells Under

J. S. Hansen . I_ . c . .
Institute for Aerospace Studies, Uncertaln Oad I ng Omhlnatlons
UTIAS,
4925 Dufferin Street, Optimal elastic buckling loads of composite axisymmetric circular cylinders under uncer-
Toronto, Ontario M3H 5T6, tain loading conditions are investigated. The mechanical loads applied to the cylinder are
(Canada a combination of axial compression, lateral pressure, and torsion. Additionally, these
loads are allowed to vary within a certain class of admissible loads during the optimiza-
tion search, as opposed to the restriction of fixed loads in the traditional optimization. The
consideration of a degree of uncertainty in the mechanical loads leads to optimal designs
which are inherently insensitive to perturbations and/or randomness in the applied loads.
[DOI: 10.1115/1.1311962
1 Introduction compression, lateral pressure, and torque are maintained fixed and

the buckling load magnitude is maximized for those values of load
"faios. However, if the load ratios are changed the design will no
C%?fger be optimal and may be unstable to changes in the load
PP3iios. This constitutes a potentially hazardous situation since

o . . a9 ctural systems are always subjected to loads which are unpre-
and the possibility of tailoring composite structural componenfg iabie. random. or varying in time

for very sp_ec_ific applications. For exa”!p'e’ cqmposi_te Ia".]in"’mf"sCherkaev and Cherkaeya4]| were concerned with the sensi-
can be optimized through a proper choice of fibre orientations R of optimal designs to perturbations of the applied loads
order to maximize struct.ural characterlstlcs such as stiffnesg,out the design loads. Their proposal was a minimax formulation
strength, natural frequencies, and buckling loads. _ to minimize the design compliance under the most unfavorable
The basis for the numerical analysis of shells of revolution wagaging situation of a defined set of applied loads. In some sense
established in the 196041,2]). The displacement solution for thejr formulation and this work may be considered as a battle
such shells is decomposed into a Fourier series in the circumfgitveen an attacker and a defender. The attacker represents that
ential direction and interpolated by polynomials in the meridiongbad combination from an admissible set which will cause the
direction. Accounting for the uncoupling of the harmonics, thehost damage; the defender is the optimal design of the structure
solution process is carried out for each harmonic individually. which responds to the applied loads. Clearly the “worst” loads
In the 1970s analytical methods to study cylindrical shells Iand the “best” designs are dependent on one another.
the buckling and post-buckling regimes were sharpe(iges]). In this work, the composite cylinders to be optimized are sub-
These works are mainly based on the formulations derived fro@cted to mechanical loads which are assumed to have a degree of
theoretical investigations of Koit¢6] and Budiansky and Hutch- uncertainty; the uncertainty is associated with the idea that the
inson [7]. The remarkable effect of initial imperfections on theapplied load may be any member of a prescribed load set. A
buckling behavior of anisotropic cylindrical shells was modelegarameterization is then adopted to represent the loads and which
and experimentally verified. Also, Thompson and H{8 pro- incorporates their variable nature within the load set. Thus the
vided a thorough analysis methodology which may in some sensgtimization involves a minimax formulation where the objective
be understood as a discrete counterpart of Koiter’s method. is to maximize the buckling load with respect to fiber angles and
Optimization of composite cylinders was not systematically adninimize it with respect to load parameters. The developed for-
dressed until the 1980s when innovative works set the guidelinesilation guarantees that the obtained optimal designs correspond
on the subject[9-12)). Later in the decade Sun and Han$&8] to the most unfavorable loading configuration within the load set
presented results for optimized circular cylindrical shells undand in turn these designs are conservative for any other member
axial compression, lateral pressure, and torsion having the fildradmissible load set. Furthermore, it is guaranteed that the op-
angles as design variables and considering a general axisymmdin@l designs are insensitive to changes in load relative to the
nonlinear prebuckling state. design load for all members of the set of admissible loads.
All the previously mentioned works on buckling optimization
share one characteristic in common; the loading configuration3s EFqrmulation of the Problem
fixed during the optimization procedure. As a result, the obtained o ) ) .
optimal design is able to satisfactorily withstand only that particu- 1he objective function of the problem is the critical load of
lar loading configuration. That is, the load ratios relating axi@0mposite cylinders whose design variables are fiber angles and
mechanical loads. The calculation of the objective function is car-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ried out in j[WO steps: the prebUCk“r.lg prObI.em and. the buckling
MECHANICAL ENGINEERSfor publication in the ASME GURNAL OF AppLIEDME-  Problem. Figure 1 presents the cylinder with applied loads and
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept. 29boundary conditions.
1999; final revision, Feb. 7, 2000. Associate Editor: S. Kyriakides. Discussion on the The elastic stability analysis approach as developed by Koiter

paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departme f . : . . e
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wi is used in the present work for the derivation of the equlllb

be accepted until four months after final publication of the paper itself in the ASMEUM equations and the stability condition. As such, an eqUi”bfium
JOURNAL OF APPLIED MECHANICS. state u, and a perturbed state close tou, are considered.

Composite materials have been gaining increasing importa
over the years in the aerospace industry as an alternative to
monly used isotropic materials. The major advantages of com
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ments are observed because in this case derivatives with respect to
the circumferential coordinatg are identically zero and the pre-
buckling displacements are functions of the axial coordinate
only. A finite element discretization is carried out only in the axial
direction using a two-node element with linear interpolation func-
tions foru andv, and cubic Hermite polynomials fav. Assum-

ing a linear prebuckling state, assembly of the global matrices for
the finite element method yields

fully
clamped

Kap=—\f ®)

whereK is the stiffness matrix andp are the prebuckling dis-
placements. Unfortunately the axisymmetric property used in the
prebuckling problem is not valid for the buckling problem. Thus,
for the solution of the buckling problem, the field variables are
assumed in the form

Fig. 1 Cylinder subjected to mechanical loads and boundary ny
conditions a,(x,y)=a,(x)co R

[ ny
+a|,(x)srn( E) (6)

wheren is the harmonic number aral stands foru, v, or w. In
The perturbed state is written &s= u,+u whereu must be geo- this manner, the buckling problem dependenceyaan be ana-
metrically admissible but are otherwise completely arbitrary pelytically treated while the dependence wiis treated numerically
turbations. Expansion of the total potential eneR{y) in Taylor via finite elements. Thus, discretizationafanda,, is carried out
series aboutl, yields the required equilibrium equation and stain the axial direction using the finite element technique.
bility condition. Details of the derivation may be found in Koiter Even assuming a linear prebuckling state, quadratic terms in
[6] or in Sun and Hansefi3], for example. would be present in the stability equation such that the critical
The shell is modelled using classical thin-shell theory and vagad would result from the solution of a quadratic eigenproblem.

Karman nonlinear strain-displacement relations. Accordingly, theowever, omission of the higher order terms from prebuckling/
in-plane displacements(x,y,z) and v(x,y,z) are assumed to puckling coupling has been evaluated and, for the problems
vary linearly through the thickness with respectztand the trans- considered here, the contribution to the optimal design and the
verse displacement/(x,y,z) is assumed independent af Thus  bucking load is negligibly small. Therefore, for the sake of
the displacements are taken in the form considerably speeding up the optimization procedure the coupling
~ _ _ ~ _ _ term has been neglected resulting in a classical linear eigen-
Uy, Z)=U(XY) =ZWalXy) - v (XY, 2)=v(Xy) = ZWy(x.y) value problem. The linear eigenproblem assumes the form of
W(X,y,2)=w(X,y) (1) Ea.(7)

where the field variables atg v, w representing the midsurface (K=X\Kg)g=0 ©)
displacements. Based on these expressions, the strain vectors

represented as &reK is the stiffness matrixK ¢ the geometric stiffness matrix,

andq an arbitrary geometrically admissible displacement vector.

Uy Notice that bottK andKg are functions of the harmonic number
w —Woxx n; therefore, the eigenproblem must be solved for a number of
{eW}={+z{x}=1 vy+ r(1? —Wyy harmonics from which the least eigenvalue is selected as the criti-
N —2Wyy cal load.
e ()
1] x
{eN(v)}= > wh, 3 Optimization Procedure
2w,W The present work addresses composite laminates and buckling

whereR is the cylinder radius and=(u,v,w). Using the above, 0ad optimization when a structure is subjected to uncertain com-

the expression for the total potential energy can be written as bined loads. Lep be the_vector_of fiber_ angle design va_lriables and
r the vector of uncertain design variablébe load ratios The

1 (P+eNTI[A] [B]|[el+ €N minimax problem is therefore expressed as
P(v)== dQ— | pwdQ
2Jol x ) I[B] [DIJL * 0 maxmin\(p,r)=max¢(p) , G(p)=min(p,r). (8)
p r p r
—f qudF—f N,yvdIl’ (3) The solution of this problem yields the result that the buckling
T T

load obtained will be the maximum buckling load for the worst

where Q is the reference surface domaifi,the domain where combination of uncertain variables Furthermore, Eq(8) guar-

axial compression and torque are applied, N[ B], [D] are the antees that if the vectar differs from that of the optimal design,
laminate stiffness matrices given by then the buckling load is always greater than the optimal buckling

load in the sense that>N\y. Therefore, the optimal design
is insensitive and stable with respect to variations in load
ratios. Thus, the present approach has a major advantage of
_ being capable of treating uncertainties in the loads using a deter-
whereh is the shell total thickness an@] is the material stiff- ministic method which eliminates the necessity of a probabilistic
nesses in structural coordinates. formulation.

The mechanical loads applied to the structure are representedhe significance of vectap is relatively well known from the
by a proportionality parameter and a reference stafesuch that literature. Howevery requires clarification. Consider a composite
f=—\f. Considerable simplifications can be introduced if the axshell loaded as in Fig. 1. The uniformly distributed applied loads
symmetry of the prebuckling and initial imperfection displaceN,, N,, and lateral pressurg, are represented in the form

h/2

([A],[B],[D]):f (12,29[Qldz (4)
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N, =M R=N (R T AR)) Mxy
P,=A R, =N (Ryo+AR,) ©)
ny: )\fxnyyZ Afxy( ny0+ Any)

where\ is a nondimensional load parameter &yd R,, R,, are

load ratios composed of fixe@pecified componentR,o, Ry,

R«yo and variable(unspecified componentsAR,, AR,, AR,,. 1
The fixed component®,,, R,o, Ry, are assigned by the de- reference
signer and reflect knowledge of the loading state. Afgo f,, f,, plane
are constant dimensional scaling factors which must be specified;

these will be discussed in the following. The vector of uncertain

design variables is therefore given by {RR,R,,}. The load

ratiosR,, R,, R,y are assumed to form a convex set defined by

the relationship

stability boundary

R+ R,+Ry=1 (10)

subject to the condition €R,, R,, R,,~<1. Furthermore, the

fixed and variable load ratios are required to satisiyR),, R,q,

Rgyos1 and C<AR,, AR,, AR,,<1. Ry, Ry, Ry, are in- -

cluded to account for specifigdeterministi¢ information avail- the stability boundary such that planes parallel to the reference
able prior to the optimization procedure; they are related to cdtlane can be extended as far as possible from the origin without
tainty of the applied loads. IR,o+R,+ Ry,o=1 the loads are Crossing _the stability boundarylhe first point of intersection of
specified precisely. If, however, the loads are not know precisefje stability boundary and a member of the family of planea as
but there is some degree of confidence in their specification, thisreases from zero defines the optimal design and provides the
fact is again reflected in the choice By, Ry, Ryyo. For ex- optimal value ofA. _ _ _

ample, if it is known that the load sets are such that 70 percent ofT he stability boundary defined in load space can be quite com-
the applied load is always axial compression, tRgg=0.7,R,, Plex in shape, but for special cases of either convex or concave

=Ryy0=0. In such a casaR,, AR,, AR,, account for only 30 surfaceqwith respect to the originrelatively simple conclusions
percent of the apphed load. Fina“yl if no information concerning§an be drawn. For the case when the critical loads are obtained as

the load sets is available théo=R,0=Ry,0=0. the solution of a linear eigenvalue problem a tremendous simpli-
The scaling factorsf,, f,, f,, may be chosen arbitrarily but fication occurs since it can be shown that the stability boundary is

should be chosen to provide a rational reference surface for gncave([16]). In this case, under ideal conditions with sufficient
optimization process; this will become clear in the following. Irflesign flexibility, the optimal design is obtained when the three
the present work,, f,, f,, are equated to the optimal bucklingvertices of the load plane intersect the stability boundary. _
loads obtained by assuming that completely specified unidirec-It is to be noted that the shape of the stability boundary is
tional loads are applied to the structure. Thijsis the maximum controlled by the composite lamina fiber angles; therefore the de-

buckling load that the structure can sustain under the loading cdiee of design flexibility or the ability to control the stability
ditions N,= P, p,=0, N,,=0. Similarly, f, results from the op- surface may be limited. This means that the optimal design may

timization problemN, =0, p,=P,, N,,=0 andf,, from N,=0, correspond to the intersection of three, two or one of the vertices
P,=0, N,y=P,,. of the projection of reference plane with the stability boundary;
It is to be noted that the optimal designs corresponding e of these possibilities will always yield the solution.
f., f,, T, are different; thus, these factors provide a normaliza- If the stability surface is convex the situation is much more
tion of the final results that relates to the maximum capabilitraightforward. The optimal design will be found at a single point
of the structure when subjected to independent loads. Therefoilich has the characteristics of a global minimum. This minimum
the Sca”ng factort)“ fz‘ ny provide the Capabmty of accounting must be Interp_reted n the sense that it is the point on the Stablllty
for factors such as structural geometry, boundary conditions, afidfface that yields a minimum distance from the surface to the
material anisotropy which may result in significant disparitieeference plane. The optimal value ofcorresponds therefore to
in the relative buckling load magnitudes of the individual loadhe plane parallel to the reference plane which passes through this

components. “minimum.” . . . N
From the discussion concerning the concavity of the stability

. . boundary practical conclusions can be drawn regarding the strat-
4 Geometric Interpretation egy to minimize\ with respect to the load ratios. In the case of
Equation (10) describes a plane in load spatbe reference linear eigenproblems it was shown that the optimal design geo-
plang. Any load in the space is represented by a point on theetrically corresponds to a situation where one or more vertices
reference plane multiplied by the load parameteand the con- of the reference load plane triangle are on the stability boundary.
stant load factors; these factors are illustrated in Fig. 2 where thecan be then concluded that the minimum load ratios are neces-
loads have been nondimensionalized according to the scaling faarily associated with one of the vertices. Therefore, the minimi-
tors:n,=N,/f,, n,=p,/f,, n,,=N,,/f,,. As \ varies a family zation of\ with respect tar is easily performed since it is suffi-
of planes parallel to the reference plane is generated. Notice thint to check which of the three vertices yields the Ieasthe
relation (10) and the assumption9R,, R,, R, <1 define a maximization of functiong in Eq. (8) is achieved in a two-step
tetrahedron in the load space which is a convex set. Thus, prgpecess. First a genetic algorithi®A) is used to obtain an opti-
erties of convex modelling associated with mechanics of uncemal design in the neighborhood of the global optimum; secondly,
tainties are applicable to the present studyp]). Powell's method is used to refine the solution obtained bringing it
At this stage a geometric interpretation of the minimax formuo the actual optimum. The stopping criterion adopted for Pow-
lation can be given. Consider Fig. 2 which shows a sketch ofedl’s method is based on changes of the new objective funetion
representative concave stability boundary. The shape of the stahihich is the minimum critical load among the three vertices. The
ity boundary depends on the design variabtesvhich are the optimization search stops when the relative difference between the
composite lamina ply angles. The following interpretation can @evious and the present valuesdiloes not exceed 0.001.
given: the minimax optimization procedure selects a design with The incorporation of the constant load ratiBg,, R,o, Ry

Fig. 2 Geometric interpretation
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z Table 2 Load cases

load | constant load ratios
case | Ry R Royp
/ la | 1.00 0.00 0.00
1b | 0.75 0.00 0.00
1c |0.50 0.00 0.00
1d {0.25 0.00 0.00

Rz0 I { 2 [0.00 1.00 0.00

: n, 2b | 0.00 0.75 0.00

Ryo 2 {000 050 0.00

Fig. 3 Constant load ratios 2d | 000 0.5 0.00

3a [0.00 0.00 1.00

3b [0.00 000 0.75

means that the reference plane is bounded; that is, the values of 3¢ 000 000 050
Ry, R,, Ry, are constrained to lie in a smaller triangular subdo- 3d |0.00 000 025

main of the reference plane. This subdomain is defined by the

. - - > 4 1000 0.00 0.00
constant load ratios via the inequalities

R=Ryo: R=Ry. Ry=Ryo- (12)
Based on Eq(11) these inequalities yield the admissible set for . . . .
AR.. AR Aq% )as q y tation of 50 percent. Each design is encoded as a string
X 1 Z Xy

(chromosomg of genes, each of them representing the fiber ori-
AR+AR,+AR,,=1—R,s— R0~ Ry entations and whose alleles range frer0 deg to+90 deg. The

) ) crossover process is implemented by randomly selecting a break

AR=0; AR=0; AR,=>0 point in two parents’ chromosomes and exchanging substrings in

The minimax criterion still applies but now over the appropriaterder to generate the offspring. Then, mutation may occur with a
subdomain; the optimal stability boundary ideally contains therobability of 50 percent per chromosome. One gene is randomly
three vertices of the load plane subtriangle. As an illustrative eghosen in the child’s chromosome and it is assigned an angle
ample, a two-dimensional situation is shown in Fig. 3 where thgithin the range of alleles. An elitist strategy is adopted such that

torsion load is taken to be zerd?¢,=0) and positive constant the best fitted individual of a generation is cloned to the next

(12)

load ratios exist for the axial and pressure loaBg(R,0>0). generation. This strategy provides a useful stopping criterion: The
search is assumed to have converged if the best design remains
5 Numerical Simulations and Discussion unchanged for three generations. In this work, harmonic numbers

o ) from 1 to 20 are evaluated; advantage is taken of the symmetry/
The cylindrical shells considered have radiRis 83.3mm and  antisymmetry about the cylinder mid length in order to model

length L =152.4 mm with four composite plies 0.123-mm thickonly a half cylinder with 20 element§5,13)). The result of the
each. The material chosen for simulation is Hercules AS4/3501c6nverged GA is then used as a starting point for Powell's
graphite/epoxy; its properties are given in Table 1. method.

In the optimal design process, it is assumed the cylinder isa four-ply laminate[6,/6,/65/6,] is considered where,
initially free of geometric imperfections. This may sound overly.orresponds to the innermost ply. Thirteen load cases are consid-
simplistic; however, it is based on the assumption that there are &@d which involve completely specified loads, partially specified
statistical data available for the imperfection pattern resultingads and completely unspecified loads as described in Table 2.
from the manufacture process. In this situation, once the specimegises 1a, 2a, and 3a refer to the traditional optimization under
is manufactured, the imperfection shape can be measured but thesscribed loads. Cases 1b, 1c, 1d correspond to axial compres-
it is too late to perform the optimization. Thus, the point of viewsjon |oad cases of increasing degree of uncertainty. Similarly,
has been adopted, that if no data on the imperfections is availablgses 2b, 2¢, 2d, and 3b, 3c, 3d correspond, respectively, to an
during the design process, the best procedure is to considefhéeasing degree of uncertainty in lateral pressure and torsion.
perfect structure for the optimization. On the other hand, if sughinally, case 4 represents the situation of completely uncertain
information is available it can easily be incorporated into whagads.
follows. _ S Tables 3a—c) and 4 present the results obtained by the optimi-

As noted earlier, the optimization involves a two step procesgtion procedures. Columns four, five, and six correspond, in each
combining a genetic algorithm and Powell's method. The paramase, to the vertices of the subtriangle defined by the constant load
eters associated with the GA are: population size of 200 individggtios Ry, Ry, andR,y. Since cases 1a, 2a, and 3a possess
als, probability of crossover of 97 percent and probability of muR  + R,,+ Ryyo=1, the three vertices coalesce to a single point

and, therefore, only one column is needed. The critical loads ob-

tained in the final stage by Powell’'s method are accompanied by
Table 1 Material properties of Hercules AS4 /3501-6 graphite /  superscripts “a” or “n” meaning, respectively, active or nonac-
epoxy tive vertices, and the wave number in parenthesis. An active ver-
tex strikes the stability boundary of the optimal design while a
nonactive one lies below the stability boundary.

The buckling load magnitudes achieved when the shell is

property value

Principal modulus of elasticity, Eyy | 146.0 GPa

Principal modulus of elasticity, £z, | 10.8 GPa subjected to certain uniaxial loads are given by,
In-plane Poisson’s ratio, 1 0.290 =8.7770 10N/m (case 1a p,=1.740216Pa (case 23 N,
In-plane shear modulus, Gi2 5.8 GPa =4.6088 18 N/m (case 3§ these values are used to define the

Transverse shear modulus, Gia 5.8 GPa scaling factord,, f,, f,,, respectively, for the optimization with

uncertain loads. This means that, in terms of the nondimensional
load parametek, these values of critical loads correspond to 1.0.

Transverse shear modulus, G 3.4 GPa

Journal of Applied Mechanics JULY 2001, Vol. 68 / 635



Table 3 (a) Optimization under uncertain load ratios—axial
(b) optimization under uncertain load ratios—

compression;

Table 3 (Continued ).

lateral pressure; (c) optimization under uncertain load ratios— load | method | & | R, R. Ry | R R, Ry | Re R, Ry
torsion case [ (2 A(n) A(n) A(n)
load | method | 4, 6| R R. Rey| R- R. Rs | B R. R GA | 746 -23.5]{0.00 0.00 1.00 - -
case 03 ‘A A (n) A (n) A(n) -25.8  66.8 0.89867 (9)
GA | 267 -36.8|1.00 0.00 0.00 - - 3a | Powell | 67.9 -30.0 {0.00 0.00 1.00 - -
69.1 -10.6 | 0.99708 (11) -26.7  69.8|  1.00000 (9)
la | Powell | 27.6 -36.9 [1.00 0.00 0.00 Sun* 67 -30{0.00 0.00 1.00 - -
70.2 -11.8 | 1.00000 (11) 26 70| 0.99899 (n/a)
Sun® 26 -42[1.00 0.00 0.00 - GA | 647 -31.0(0.00 0.00 1.00[0.25 0.00 0.75 [ 0.00 0.25 0.75
76 -3| 0.97033 (n/a) 3b -36.5 619 | 0.97759 (9) 1.1453 (9) 1.1029 (9)
GA | 345 -338|075 025 0.00[1.00 0.00 0.00|0.75 000 0.25 Powell | 70.3 -28.1|0.00 0.00 1.00|0.25 000 0.75]0.00 0.25 0.75
1b 733 -1.2| 0.79510 (10) 0.89998 (13) 0.90410 (11) -30.5 718 | 0.99901* (9) 1.1266™ (9) 1.1443" (9)
Powell | 42.8 -34.8|1.00 000 0.00|0.75 0.25 0.00|0.75 0.00 0.25 GA | 675 -10.5|0.00 0.00 1.00|0.50 0.00 0.50 [ 0.00 0.50 0.50
734 -9.2] 0.84413° (1) 0.84422* (9) 0.99221" (11) 3c 276 144 | 0.93765 (9) 1.0449 (8) 1.2238 (8)
GA | 735 -74.5|1.00 0.00 0.00|0.50 050 0.00|0.50 0.00 0.50 Powell | 64.3 -23.3{0.00 0.00 1.00 |0.50 0.0 0.50 |0.00 0.50 0.50
1c 66.0 -18.1| 0.74377 (7) 0.86103 (8) 0.79710 (10) 302 68.5| 0.98972* (9) 0.99600* (6) 1.2356™ (8)
Powell | 67.0 -80.1|1.00 0.00 0.00]0.50 0.50 0.00|0.50 0.00 0.50 GA | 66.0 -31.7|0.75 0.00 0.25|0.00 0.75 025|000 0.00 1.00
66.0 -33.3| 0.79887 (4) 0.81853 (8) 0.80426* (9) 3¢ -54.2  59.7|  0.89349 (4) 1.0127 (8) 0.92374 (9)
GA |-89.8 -37.7|1.00 0.00 0.00[0.25 0.75 0.00[0.25 0.00 0.75 Powell | 65.3 -20.1|0.75 0.00 0.25[0.00 075 0.25|0.00 0.00 1.00
1d 57.1 358  0.72863 (11) 0.80557 (8) 0.81769 (10) -49.3 625 | 0.95393* (5) 1.0472" (8) 0.95375> (9)
Powell |-85.2 -34.6 | 1.00 0.00 0.00|0.25 0.75 000|025 0.00 0.75 * Sun and Hansen (1988)
-59.3 384 0.75269* (13) 0.82764" (8) 0.75289* (10)

* Sun and Hansen (1988)

load | method 8, 6| R, R, R, |R. R Ry |R R R,
case [ (A A(n) A(n) A (n)
GA |-87.1 36.9|0.00 1.00 0.00 -
-184 882 0.99934 (7)
2a | Powell |-86.7 354 0.00 1.00 0.00
-20.4  88.8 1.00000 (7)
Sun* -84 40 (0.00 1.00 0.00 - -
-17 90 { 0.99780 (n/a)
GA |-86.9 41.5]0.00 1.00 0.00}0.25 0.75 0.00|0.00 0.75 0.25
2b -24.4 817 0.98234 (7) 1.1560 (7) 1.1035 (8)
Powell |-86.9 34.2{0.00 1.00 0.00[0.25 0.75 0.000.00 0.75 0.25
-22.0 884 0.99991* (7) 1.1769" (7) 1.0127* (8)
GA 83.1 -40.0 {0.00 1.00 0.00 [ 0.50 0.50 0.00 | 0.00 0.50 0.50
2c 24 -85.1 0.95447 (7) 1.1014 (9) 1.1457 (9)
Powell | -89.8 -34.6 [0.00 1.00 0.00 [ 0.50 0.50 0.00|0.00 0.50 0.50
22,9 -83.0 0.99670° (7) 1.0995™ (11) 1.0054* (8)
GA 746 -61.60.75 0.25 0.00|0.00 1.00 0.00|0.00 0.25 0.75
2d 52 736 0.83446 (1) 0.91634 (8) 0.88739 (8)
Powell | 77.3 -61.8|0.00 025 0.7510.75 0.25 0.00]0.00 1.00 0.00
-1.2 68.0 0.86577> (8) 0.86587> (1) 0.86596* (8)

* Sun and Hansen (1988)

Small discrepancies occur between the present results and thggg:

“destructor” (the load$ has at its disposdthe larger the set of
possible loading combinatiopsthe harder it is for the defender
(the fibre anglesto do a good job in terms of increasing the
critical load.

Investigation of Tables(@—c) and 4 shows that the majority of
optimal designs possess two active vertices. This is true except for
cases 2d and 3b. In the former three vertices are active while in
the later only one vertex is active. Ideally, the three vertices of the
subtriangle should be active in the optimal design but, because of
the relatively small number of design variablesmposite lamina
ply angles, the degree of flexibility of the stability boundary is
restrained. Moreover, although one can never be completely sure
that the search has not converged to a local optimum, in the
present study a sufficient number of GA runs was done in order to
provide confidence that the global optimum was reached.

An interesting characteristic of the optimal design obtained in
case 4 is worth discussing. If the optimal designs 1a, 2a, 3a ob-
tained under completely specified load ratios are considered, it is
found that there is a substantial variation between the critical
buckling load and the higher buckling loads associated with other
wave numbers. Thus the critical load is a single, well-separated
eigenvalue associated with a single wave number. On the other
hand, if the optimal design of case 4 is considered, a very small
variation is found in terms of buckling loads related to different
wave numbers. It is observed that, for the optimal design of case
4, R,=1, all wave numbers between 9 and 14 produce similar
buckling loads within the interval 0.72%3.<0.7399. This type
of coalescence of eigenvalues is not unexpected since the design
ess has the tendency of flattening the optimal critical surface

due to Sun and Hans¢3]; this results because Sun and Hansen

considered a nonlinear prebuckling state.
For brevity, introduce the notation; for the optimal critical
load obtained for load case Notice that for all the cases pre-

) ) Table 4 Optimization under completely uncertain load ratios
sented in Tables(@—c) and 4 the load parameter is always less P pretely

than 1.0. Furthermore) ;<\ g<A1c<A1p<A13=1.0, Na<Ayq
<N <N 2p<A22=1.0, and A ;<Agg<A3.<A3p<A3z=1.0. An

expected result is observed: the more information available

garding the load ratios or stated otherwise, the greater the g
tainty associated with the applied load the greater the optimal lo
will be. This is related to the ability of the optimal designs td

sustain different loading combinations. The more weapons t

load | method 9, 6| R, R, Ry |R. R. Ryy| R. R. Ry
case 05 A A(n) A(n) A (n)
GA 90.0 -28.81.00 0.00 0.00]0.00 1.00 0.00|0.00 0.00 1.00
4 -52.6  46.9 | 0.70189 (11) 0.73593 (8) 0.74019 (10)
Powell | -87.4 -36.2 |1.00 0.00 0.00{0.00 1.00 0.00|0.00 0.00 1.00
-52.6  49.9 | 0.72787% (13) 0.75056" (8) 0.72790* (10)
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Fig. 4 Effect of uncertainty degree on the optimal critical load

Tables 3a—c) and 4 are grouped in a single plot. Noticeable is the
fact that the axial compression loading case is the most affected
by the uncertainties in the load ratios while the optimafor
lateral pressure and torsion are relatively insensitive for degrees of
certainty higher than 50 percent.

Figure 4 gives a good insight into how the degree of uncertainty
affects the optimal buckling loads. However, this figure provides
neither an insight into design performance over a range of loading
combinations nor a comparison between optimal designs. In order
to do so, it is helpful to define a parameterization of the load ratios
in the form

Re=a R, =B Ry,=1-a—g (13)

wherea, B are parameters such thak@<1, O<a+pB<1. Notice
that Eq.(13) identically satisfies the constraint imposed by Eqg.
(10) and that the vertices of the triangle(ia, B) space correspond
to the uniaxial load ratio cases. Based on @8), Figs. 5a), 5(b),
5(c), and Fd) are drawn which show values ffor all admissible
loading combinations for the optimal designs la, 2b, 3c, and 4,
respectively.

The conclusion readily drawn from Figs(et-b) is that the
optimal design for case 4Fig. 5d)) presents a better overall

and that different buckling loads and modésigenvalues and performance; it possess@s>1 for more loading combinations
eigenvectors are associated with the various locations on ththan the other three casésroader lighter region The enhance-

critical load surface.

ment of the buckling loads with respect to a specified set of loads

The effect of the uncertainty degree on the optimal criticas of course not without penalty and the penalty is paid by the load
loads can be visualized in Fig. 4 where the results obtained sets not in the admissible set; this is in fact the reason for adopting

(a)
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Fig. 5 (a) Load space—case la; (b) load space—case 2b; (c) load space—case 3c (d) load space—case 4
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Fig. 6 (a) Comparative performance—axial compression; (b) comparative performance—lateral
pressure; (c¢) comparative performance—torsion

the present approach. This result is clearly illustrated in Fig) 5 pronounced as those for the axial compression case. Notice again
where the region about=1 (R,=1) yields the largest buckling that, similarly to line 1d, the region defined by line 2d contains
loads. However, the buckling loads decrease quickly as this regigpproximately all the load space triangle.
of influence is abandoned. The same behavior may be seen in Figag expected from Fig. 4, Fig.(6) exhibits a behavior similar to
5(b) aboutR,=1 (8=1) and, less pronouncedly, in Figi& about  Fig gh). The remarkable fact here is that lines 3a, 3b, 3c, 3d
in_ctr;%;g?i\% performance with respect to the optimal bucir_ltercept each other at various points. In geometric teffit: 2,

is means that the stability boundaries of the optimal designs

ling load obtained for case @.=0.72787 can also be carried Omﬁ)btained under uncertain torsion load ratios intersect in the load

case la and define, for its optimal design, the set of faiyg) SPace- 'I_'hi; is a perfectly regsonz_ible result in_t_he region Qutside
which yield A\=0.72787. This set corresponds to a line in théhe admissible set of load ratios since the stability boundaries are
aB-plane that separates the region whare0.72787 from that always concave but they may possess a curvature distribution
wherex<0.72787. Clearly, such a line cannot be drawn for casewhich leads to the behavior presented in Fi(r)6
sincen=0.72787 over the domain of the entire trianglke &<1, The results obtained confirm that a degree of uncertainty in the
0<p, O<a+p=<l. load ratios does have a significant effect on the optimal designs

Figure Ga) illustrates the separation lines associated with thend critical loads of composite cylindrical shells. The sensitivity
axial compression cases 1a, 1b, 1c, 1d. The regions definedi§¥applied loads of traditionally optimized cylinders can be com-
lines 1a, 1b, 1c, 1d that contain the poit1, B=0 (R,=1) pensated for by the use of a minimax formulation which takes into
@%réfspfg ;gﬁ;g\;;ﬁ;}igg:g;i% ergci)(?I;ggeSdo tiI;a\tvim?n rr‘zg'o%ccount the variable nature of the loads. It is concluded that an

: a=y. > o e ; .'~~ increase in the degree of certainty regarding the applied loads
gion 1¢ and regiorr=0.25 is within region 1d. Noticeable is theIeads to higher optimal critical loads. On the other hand, optimal
fact that region 1d contains approximately the entire load SPage.; bl . - !

gns able to withstand a broad range of loading sets yield lower

triangle. This can be explained if the results of Table)3are . . o . .
comgared to those of Tgble 4 and it is noted that t{h()e optimgVCk"ng loads. This reduction in the optimal buckling load has,

designs for cases 1d and 4 have fiber orientations close to ed@y/ever, @ much lower sensitivity to variability of the applied
other. loads and that is the advantage to the present approach. It should

The behavior observed in Fig(t§ is somewhat different than also be noted that the sensitivity of the optimal loads to changes in
that in Fig. 6a); the separation lines are much closer. This can Bead ratio is most pronounced for the case of axial compression. A
rationalized if Fig. 4 is observed because it then becomes clgafative insensitivity to the load ratio change is found for the lat-
that the effects of uncertainty degree in lateral pressure are noteaal pressure and the torsional load situations.
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One-to-One Internal Resonance of
. Symmetric Crossply Laminated
st | SNAIIOW Shells

Fukui University,

Fukui 910-8507, Japan . . . )
This paper presents the response of symmetric crossply laminated shallow shells with an

internal resonancev,~ w3, Wherew, and w; are the linear natural frequencies of the

Y. Kobayashi asymmetric vibration modes (2,1) and (1,2), respectively. Galerkin's procedure is applied
to the nonlinear governing equations for the shells based on the vomafatype geo-
G. Yamada metric nonlinear theory and the first-order shear deformation theory, and the shooting
method is used to obtain the steady-state response when a driving freqeiscyear
Division of Mechanical Science, w,. In order to take into account the influence of quadratic nonlinearities, the displace-
Hokkaido University, ment functions of the shells are approximated by the eigenfunctions for the linear vibra-
Sapporo 060-8628, Japan tion mode (1,1) in addition to the ones for the modes (2,1) and (1,2). This approximation

overcomes the shortcomings in Galerkin's procedure. In the numerical examples, the
effect of the (1,1) mode on the primary resonance of the (2,1) mode is examined in detail,
which allows us to conclude that the consideration of the (1,1) mode is indispensable for
analyzing nonlinear vibrations of asymmetric vibration modes of shells.

[DOI: 10.1115/1.1356416

1 Introduction scales was used. However, no papers have been presented for

internal resonances of laminated shells treated here, and studies on

With the increasing use of fiber-reinforced plastics in industri%e topic have been confined to isotropic matefaB—16
applications, many papers have been published in the area of NOTEQ the purpose of this study, taking into account. the von

linear vibrations of laminated plates and shells.. Chﬁ.] and Karman-type geometric nonlinear theory and the first-order shear
Sathyamoorthy3] have conducted a comprehensive review of th§atormation theory, the nonlinear governing equations for sym-
literature dealing with nonlinear problems in plates. The effects figtic crossply laminated shallow shells are derived by means of
transverse shear pleformatlon, rotatory inertia, and initial gePrmilton’s principle. Chin and NayfefL6] investigated the re-
metrical imperfections on the nonlinear vibration and poskponse of an externally excited infinitely long circular cylindrical
buckling of antisymmetric angle-ply cylindrical thick panels andhe|| with a one-to-one internal resonance to a primary excitation
generally laminated circular cylindrical thick shells with nonunigf gne of two orthogonal flexural modes. They compared the re-
form boundary conditions were discussed by Fu and Chj8l.  sults derived by applying the method of multiple scales directly to
Raouf and Palazottf6] performed a single-mode analysis of thehe nonlinear governing partial differential equations with those
nonlinear free vibration of a curved, simply supported orthotropigerived from a two-mode Galerkin discretization approach, and
panel, based on the Donnell-Mushtari-Vlasov shell theory. Xgointed out that the latter led to incorrect restits., the influence
et al. [7] derived nonlinear equations of transverse motion for @ the quadratic nonlinear terms was neglegtddowever, be-
generally laminated, truncated conical shell and solved the natause displacements for the shells treated here are governed by the
linear vibration problem by the method of harmonic balance. Chewo spatial variables, it is very difficult to solve the present prob-
ung and Fy8] studied nonlinear static and dynamic responses atem with the direct method. Accordingly, we discretize the gov-
dynamic buckling of symmetric crossply shallow spherical shellsrning equations by using Galerkin's procedure. In the present
by using the orthogonal collocation method and the Newmasdnalysis, the displacement functions of the shells are approxi-
scheme. mated by the eigenfunctions for the linear vibration métd) in

In this paper, we study a one-to-one internal resonance of croasidition to the ones for the modé,1) and (1,2). This approxi-
ply laminated shallow shells subject to a harmonic transvergeation yields ordinary differential equations with not only cubic
load, where the linear natural frequenciesand ws of the asym- but also quadratic nonlinear terms and overcomes the shortcom-
metric vibration modeg2,1) and (1,2) have the relationshim, ings in Galerkin's procedure using only the mod2d) and(1,2).
~ws3. As for internal resonances of laminated plates, Hadian Finally, we apply the shooting method to the ordinary differen-
et al.[9] analyzed two-to-one internal resonances of antisymméial equations, and obtain the frequency-response curves of the
ric crossply laminated rectangular plates by using the averag#fiells when a driving frequenc@ is nearw,. The numerical
Lagrangian. The present authors investigated two-nidfel1] €xamples prove that taking th&,1) mode into consideration is
and three-mod¢12] responses of laminated plates, in which thédispensable for analyzing nonlinear vibrations of the asymmet-
combination of Galerkin's procedure and the method of multipldC vibration modes of shells. Furthermore, not only periodic but

also quasi-periodic and chaotic responses of the shells are pre-

1To whom correspondence should be addressed. Present address: Depanmeﬁ?@lted in the form of diagrams.
Information System Engineering, Asahikawa National College of Technology, 2-2-

1-6 Syunkodai, Asahikawa, Hokkaido 071-8142, Japan. 2 Basic Equations
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF . .
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- Figure 1 shows a laminated shallow shell of rectangular plan-

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. 22form, which consists oN layers of an orthotropic sheet, with
1999; final revision, Aug. 22, 2000. Associate Editor: M.-J. Pindera. Discussion ®engthsa andb, thicknessh and radii of curvatur®, and Ry. The

the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departne(gg]é ; : ; :
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, an rdlnates{x, Ys Z) are aSSIQned as in the flgure' The Components

will be accepted until four months after final publication of the paper itself in th@f t'he d_isplacement atan arbitrary_ point of the shell inxpgand
ASME JOURNAL OF APPLIED MECHANICS. z directions areu, v andw, respectively.
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whereN, M, andQ are the stress, moment, and shear stress result-

ants, respectively. The constar§ , Bfj, Df, andS; are de-

rived from
gyt [Cu Ciz O 0 Ci)®
X X
oy Ci Cxn O 0 Cy €y
oy = 0 0 Cu Cps O €z, (7)
Oxz 0 0 C4ps Css O Exy
Txy Ci Cyp O 0 Ces i
hy .
(Aij,BijaDij):E f Ci(1z,29dz, i,j=1,26, (8)
k=1 Jhe_,
N hi
SIJ:KZA”:KZE C?jk)dzv i,j:4|51 (9)
Fig. 1 Geometry of a laminated shallow shell and coordinate k=1 Ty
t
systems A*=A"! B*=-A"!'B, D*=D-BA !B, (10)

in which the stiffness matrix elemenG{ express the stress-

strain relation in thekth layer, K2 is the shear correction factor,

According to the first-order shear deformation theory, the ingndh, is the distance from the midsurface to the upper surface of
plane displacementsandv are linear functions of the coordinatethe kth layer.

z, and the transverse displacemenis constant throughout the  |n this paper, it is assumed that both rotatory and in-plane in-
thickness of the shell. Under this assumption the displacemefitias are negligiblE17]. Therefore, the kinetic energy of the shell

field may be given in the following form: can be written as
U=Ug+Zify, v=v0+Zhy, W=W, (1) p (b2
whereug, vg, andw, are the displacements at the midsurfage, =3 fo fo Wozdxdy, (1)

and s, are the rotations of the midsurface about yrendx axes, . . i
respectively. The nonlinear strain-displacement relations of tMéerep is the mass per unit area of the shell. The strain energy of
shallow shell can be written as the shell is given by

€= ES+ ZKry, €= 63+ Zry, €,=0,

1 (b f(a
0 0 0
== + Ny e, + N, €, +Que,+ Qe ,+ Mk
-0 — _ ) ) U f j (Nyex y€y xy€xy x€xz y€yz xKx
Exy= ExyT ZKyy, €xz= PxtWo.x, €y,= Pyt Wo,y 2J)0Jo

in which +Myky+ M,k )dxdy. (12)
O+ vﬁ+ Ew 2 0_ N er Ew 2 T_he vyork_ done by an external pressurgx,y,t) acting in thez
xTHox T R T o o €T U0y R, 20w direction is
0 _ b ra
€xy=Uo,x T V0:xTWo,xWo,y, ®3) sz J q(x,y,t)wedxdy. (13)
0Jo
Ky= l// ixy Ky=— l/f oy Kyxy™ l/f ’ + l// 1X 1 (4)
i _x o ) Y ey . By substituting Eqs(11)—(13) into Hamilton’s principle
and the subscripts following a comma stand for partial differen-
tiation. t
The constitutive relations of the shell can be expressed as fol- ft S(T-U+W)dt=0, (14)
lows: o
N . . " N . " and taking the variation, in consideration of EG®—(4), the gov-
o 11 12 16 11 P12 Pie erning equations are derived as follows:
€ * * * * * *
Eé iZ iZ iﬁ il iZ iﬁ Ny ,xT Nyy,y=0, Nyy.x+N,,=0, (15)
€0y A16 A26 A66 BGl B62 BGG N
- x_ Ny
I\/)I(Z ~| -Bf; —B3 —Bg Di; DI, Di pWO’“:_R_X_R_y+Q><’X+Qy'V+(NXW0'X+NXVWOvy)’x
M _ B* _ B* _ B* * * *
" TR TR P O Ok + (NyWo g+ NygWo )y + 0, (16)
I 16 26 66 16 26 66- Mx-x+Mxy.y*Qx:0, Mxy'x+Myvy*Qy:0- 17)

N, A stress functiong satisfying Eq.(15) automatically is defined
N as
y
X NX)’ (5) Nx:¢vyyv Ny:d’rxxv ny:_d)vxy- (18)
Kx In the following analysis, we consider symmetric crossply lami-
Ky nated shells. In this case, the following elastic coefficients vanish:
K
o Ale=A%=Bf =D3=D%=Si=0 (i,j=12,6. (19)
Qy S Sus €yz . .
= , 6) By using relations of Eq¥5), (6), (10), (15), (18), and(19), Egs.
Q) [Sus Sss)l €z (16) and (17) can be rewritten as
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1 M max . nay)
PWO-tlqu¢vyyW0-xx+2¢vxyWvay7 ¢vxxW0-yy+ R_¢vyy WOZhE E Wmn(t)sinTsinTy
X m=1n=1
1 v N marX n
+ R_ ¢axx_s44(W01yy+ l/’y ry) _SSS(Wvax+ Py ,X):O, U= 2 2 an(t)COS— sin—y , (25)
y m=1n=1 a b
(20) Mo mmXx  nwy
= Y mn(t)sin——cos——
Dll’r//xv><><+D661/’><-yy+(D12+D66)lr//yvxnySS(Wva+ l/IX)ZO, l!/y mzzl ngl mn( ) a b )
(21) in which W,,,,, are nondimensional displacemens,, and Y,

are nondimensional rotation angles, an@ndn are the numbers
(D121 Dee) Y xyt Desthy st D2athy ryy = SadWo,y + 4hy) =0. of half wave in thex andy directions, respectively. In the present
(22) paper, we consider an internal resonance when the linear natural
frequenciesv, and w4 of the vibration mode$2,1) and(1,2) have
the relationshipw,~w3. It is assumed that only the vibration
mode (2,1) is directly excited by the transverse force. Therefore
q(x,y,t) is defined as

The compatibility equation is obtained by eliminating anduv,
in Eqg. (3) and using Eqgs(5) and (18):

A%, +(2A%,+ Age) ?, +A% b, 27X T
o o o aix,y,t)=do sin—sin—ycosQ’t, (26)
1 1 a b
=Wo2 ~Wo,xxWoyy ™ ﬁxwo’yﬁ R, Wonocr (23) whereq, andQ)’ are the amplitude and angular frequency of the

force, respectively.

Equationg(20)—(23) expressed in terms g, iy, ¥, , and¢ are Th_e stress f_unction sa_tisfying the in-plane boundary conditions
the nonlinear governing equations for symmetric crossply landithe integrals in Eq(24)) is assumed to be of the form
nated shallow shells based on the first-order shear deformation *

pmx  qmy
theory. ¢=E E Bpq COS—— COS——

We assume that the shell is simply supported and free from p=0 q=0 a b

in-plane stresses along its four edges. However, it is very difficult o
to solve the stress function satisfying exactly both the compatibil- . rmX . Smy
ity Eq. (23) and the in-plane boundary conditiofesg.,N,= N, +Z‘1 ; Crs SIn—sin—=, 27)
=0 atx=0,a) in the analysis. As a convenient approach, it is
assumed that the average of the normal and tangential stressn%g#
zero at the boundaries in Referen¢é$and[18]. We adopt this
assumption in the present paper, and the boundary conditions
be written

0

hich B,q andC,s are unknown coefficients. If Eq§25) and
are substituted into the compatibility conditi¢28), thenB
égﬁlcrs can be determined by comparing the coefficients of trigo-
nometric functions in both sides of E(R3). Although details of
B,q and C,s are omitted due to space restrictidsy,, and C,
b b become the quadratic and first-order forma/df,,, respectively.
=h=M.= = = — Substituting Eqs(25)—(27) into Egs.(20)—(22) and applying
Wo= dy=Mx fo Sy fo $yydy=0 " at x=0a Galerkin's proceduré.e., multiplying Eqs(20), (21), and(22) by
a a . sin(mmx/a)sin(hmy/b), cosmx/a)sin(nmy/b) and
Wo= iy = Myzf ¢yxde=f bdx=0 at y=0b sin(mmx/a)cosfiry/b), respectively, and then integrating over the
0 0 area of the shell nonlinear ordinary differential equations are
(24) obtained for the time-dependent variablg,,, X, and Y.
By eliminatingX,,, andY ,,, from the equations and adding on the
The displacement functions, which satisfy the out-of-plane bouneffect of viscous damping, we obtain the following simultaneous
ary conditions(e.g.,wo= ,=M,=0 atx=0.), of the shell can nonlinear ordinary differential equations in terms of the vibration
be expressed by using the eigenfunctions of the linear vibrationmsdes(1,1), (2,1), and(1,2):

Wi+ @ Wi+ 02W; + Gy Wo+ G W5+ GagWa+ G W3+ G g Wi W3 + G 16 W, W= 0
Wo+ e, Wo+ 03 Wy + Gy Wi Wy + Gy WaW, + G Wi+ G WoWa=F cosQ , (28)
W3+ w3 Wa+ 03W5+ Gy Wy W3+ G o W2W; + G WoW5 + G Wa=0

whereu, o, G, F, and() are the nondimensional damping coef- \/ﬁ
ficient, the nondimensional linear natural frequencies, the nondi- T= ,
mensional coefficients of the nonlinear terms, the nondimensional pa
amplitude and frequency of the load, respectively. It is to be noted

; in ' which Et is the minor Young’s modulus. It is important to note
that the termsuw;W; mean the modal dampin@.g.,[19], [20]).  hat the first, second, and third equationg28) express the mo-

Details of w, F and () are written in the Appendix. However, tjon of the vibration mode£l,1), (2,1) and(1,2), respectively. As
details ofG are omitted due to space restriction. Subsdriptthe  can be seen from E@28), whenW, is excited W; will always be
nondimensional displacements is redefined {a8;,W,, W3} activated by the nonlinear ter@,,W5 even if there are no inter-
={Wi11, W5, Wi,}. A dot expresses differentiation with respect tmal resonances between the vibration mode$) and (2,1). The
the nondimensional time amplitude of the1,1) mode affects the response of ##&1) mode

(29)
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through the nonlinear tern@,,; W, W, andG,,W>W, . However, smaliness of nonlinear terms, and the coeffici€qtof the qua-

the effect of the quadratic nonlinear terms ligg, W;W, on the dratic nonlinear term is generated by the curvature of the shallow

response of th€2,1) mode is not considered whew, is ne- shell. The coefficienGG; of the quadratic nonlinear term may be

glected. In view of Eq.(28), it can therefore be said that thegreater than the coefficie@, of the cubic nonlinear term because

addition of the fundamental vibration mode to the displacemetiie radii of curvature of the shallow shell are very large. In this

functions overcomes the shortcomings of the Galerkin discretizease, it is possible that an assumptieB(W?> G, W?) for the

tion for asymmetric vibration modes of continuous systems witherturbation is not established. In the shooting method, such an

guadratic and cubic nonlinearities. assumption is not necessary. Therefore, we adopt the shooting
method in the present analysis. In order to apply the shooting

3 Shooting Method method to Eq(28), we introduce the following vector

In the following analysis, we investigate the steady-state re- T . . oot
sponse of the shells by using the shooting method vhés near X=1{X1,X2,X3,X4,Xs5, X6} = { Wy, W1, W5, Wy, W3, Wa}",
w,. Although the perturbation method is widely used to solve (31)
nonlinear ordinary differential equations, the following problem
seems to arise when the method is applied to nonlinear mod}
equations of shallow shells. A single-mode equation of a shallow

d convert Eq(28) into a set of first-order differential equations

shell can be written as follows: d_)f =X, (32)
W+ 0?W+ €G, W2+ €2G,W3=0, (30) dt
wheree is a small dimensionless parameter to express the orderdiere
|
X:{X11X2:X31X4:X5:X6}T1 )
X1=Xa,
Xo=—{nw10X+ 071+ (Gar + GagX)Xi + (Gap+ GasXy) X5+ (Gagt+ GagXy) XE} w3,
X3=Xg4, , (33)
X4= — X = Xg—{(Gp1+ GppX1)X1Xg + GpaX3 + GpaXaXi— F cog Q/wy) tH w3,
X5=Xs,
Xo= —{ 03X+ ®3Xs+ (Go1+ GeoXy) X1 X5+ GoaXiXs + GeaXa}/ w3,

andt is a new time variable defined &s w, .

Since details of the shooting method were already given by Nayfeh and Balachg?trand Tamura and Matsuzald2], only the
algorithm used in this paper is presented here. According to the shooting method, it is necessary to treat the following equation in
addition to Eq.(32):

dd(t)

dt

=Y®(t), PD0)=E, (34)

in which ® is a 6X6 matrix which is called the transition matrik, is the unit matrix, and¥ is the matrix of first partial derivatives
of X:

X 0 0 (35)
R , 35
2 Yar 0 Yaz Y Ygs
0 0 0 0 0
LYes O Yez3 O Yo Y]
Y21= —{0F+(2G 41+ 3GasX1) X1 + GasX5+ GapXa} w3,
Y= — w1/ 0,Y 5= = 2(Gap+ GasXe) X3/ 3, Yo5= — 2(Gaa+ GaeXe)Xs /w3,
Ya1= — (G + 2GpoX1) X3/ 03,Y 44= — 11, Y 45= — 2GpgXaXs /w3 (36)

Y43= = 1={(Gp1+ GpoX1) X1 + 3Gp3X5+ GpaXi} w3,
Ye1= = (Ge1+2G X)) X5/ w3, Y63= — 2G3XaXs | )
Yes= {05+ (Go1+ GeoX1)Xq + GoaX3+3GeaxaH w3, Yes= — pwz/ws,
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In order to solve Eqs(32) and (34) simultaneously, we combine 0.0 T " r r
the two equations as (a)
X X -0.1 -
d| ¢ Y-y
=y =y - (37) 02k ]
dil : B 0.2 \
be Y- ¢ R \\\
where ¢; is theith column vector of -0.3 Ny
D=[hy.br, o). 38 N
. (61,42 o] (38) -0.4 © —— Two-mode analysis 1
(Step 2 By applying the fourth-order Runge-Kutta method to ——— Three-mode analysis
Eq. (37), x(T) and ®(T) are obtained under the initial guess 05 , , , , ,
x(0)=x° assuming that the period of the solution is o 0.9 1.0 1.1 1.2 1.3 1.4 1.5
2/ (Q/ w,) because EQ32) is a nonautonomous system. ) ’ ’ ’ ’ ’ ’
(Step 2 By substitutingx(T), ®(T), andx® into a successive 2.0 , : . : :
approximation equation for a nonautonomous system | L. Single-mode analysis (b)
[®(T)—E]ox=x"—x(T), (39) — Two-mode analysi;
1.5 | ——— Three-mode analysis i

and by solving the above equation, the correctarfor x can be
determined.

(Step 3 We check whether a certain convergence criterion «
([22]) is satisfied or not. In this paper, the convergence criterion is
defined as

6
0.5 .
> xi(0)—x(T)}?
i=1
- <10 % (40)
0.0 :
;1 {x(0)?+x(T)?} 09 1.0 11 12 13 14 15
If Eq. (40), which measures the relative error betwegf) and 0.030 T . : T 1
x(T), is not satisfied, the initial guesd is updated ta®+ x, ~—— Three-mode analysis (c)

and then we return to Step 1.

(Step 4 If Eq. (40) is satisfied, we examine the stability of the g o915
obtained periodic solution by calculating the eigenvalues of /7N
®(T). If the maximum eigenvalue lies insider outside the unit S
circle in the complex plane, the periodic solution is considered tcg0 000 - N S
be stable(or unstablg : AN

T
1

4 Numerical Results and Discussion -0.015 - N 1

In the following numerical examples, we treat symmetric cross- N
ply laminated shells §=90deg/0deg/90deg) of layers with
equal thickness. Each layer is assumed to be made of graphit -0.030
epoxy with the following material propertig23]): 09 1.0 11 12 13 14 15

Q w-

EL:138 GPa, ET:896 GPa, GLT:71 GPa, VLT:0.3,
andG+; is used as1,=E+/2. The shear correction facts® and zg)ai ;rigiefgy-;ﬁzpolr;}s:;grgis f(o‘:) tiezgr%esll W£h= 28 glgb _wl‘
the damping ratiqu are taken to b&?=5/6 andu.=0.01, reSpeC- _4g 77, ¢, =43.95 and F/m§¥0.615).1(a) (1.1) mode, (b) 2.1)
tively. The nondimensional linear natural frequencies of the sheligode and (c) (3,1) mode.
and the amplitudd= of the excitation are shown in each figure
except Figs. 1, 6, and 7.

In Section 2, it was shown that the vibration coupled with the
(1,1 mode was generated when the system vibrated in2t8 modes(two-mode analysjs and the(1,1), (2,1), and(3,1) modes
mode. This means coupled vibration between an asymmetric Wirree-mode analysisrespectively. It is found from Fig.(B) that
bration mode and symmetric vibration modes. We hence examitie result of the two-mode analysis is in good agreement with that
first of all the effects of not only thél,1) mode but also of the of the three-mode analysis, whereas that of the single-mode analy-
(3,1 mode which is the second symmetric vibration mode in thgs is different from both of them.
primary resonance of the second vibration mode. Figure 2 showsTime histories af)/w,= 1.3 (upper branchare shown in Fig.
the frequency-response curves for a shell with square planfoBnwhereW and T indicate the amplitude of the shell ax,§)
(a/b=1, R,/a=R,/a=10 andh/a=0.01). Since the shell does =(a/4,0/2) and the period of the excitation, respectively. It can be
not have the one-to-one internal resonaneg~ w3), the (1,20 seen in Fig. &) that the periods ofV; and W, which are acti-
mode can be neglected in this case. Note that the natural fieted through nonlinear terms are half of that\W§ which is
quencyw, of the (3,1) mode equals 43.95 and there are no inteexcited directly by the load. MoreoveW,; and W, are always
nal resonances among thig 1), (2,1), (1,2, and(3,1) modes. In negative in a vibratory cycle. Chin and Nayfgb6] through the
Fig. 2, W, indicates the amplitude of th@,1) mode. The dotted, direct approach indicated that responses of shells contained terms
solid, and broken lines denote the results obtained by considerigpressing a drift and a period of half of the period of a harmonic
only the (2,1) mode (single-mode analysisthe (1,1) and (2,1) load (see Eqs(4) and(5) in [16]). This agrees with our results.
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() —— Stable (a)
——— Unstable

—— Two-mode analysis
——— Three-mode analysis

_2 0.0 1 I L
0.00 0.25 0.50 0.75 1.00 0.975 1.000 1.025 1.050 1.075
0.0 T T — T 0.8 T T T
/"\\ // N (b) —— Stable (b)
_0.1 7// \\ // \\\ : == UnStable
. — C— 0'6 | i
—— Two-mode analysis W
N -0.2 r ——— Three-mode analysis 4 ] . .
- x 041 // .
R /
/
0.2 r .
/
I
]
0.0 1 L Ll
0.975 1.000 1.025 1.050 1.075
Q/w,
2 T T T
(c) Fig. 4 Frequency-response curves for the shell with alb
. . =0.704, R,/a=R,/a=10 and h/a=0.01 obtained by the two-
....... =+ Single-mode analysis | mode analysis, (w;=18.79, w,=28.15, w;=28.68, and Fw’
L. — Two-mode analysis =0.01). (a) (2,1) mode and (b) (1,2) mode.
——— Three-mode analysis,.~
R0
h/a=0.01) obtained by considering only th@,1) and (1,2
modes(two-mode analysis The solid and broken lines denote
-1 O stable and unstable responses, respectively. Stable two-mode re-
sponses occur af)/w,~1.028 via a pitchfork bifurcation and
vanish at(}/w,~1.057 via a saddle-node bifurcation. The single-
2 L s : mode response, which loses its stability via the pitchfork bifurca-
0.00 0.25 0.50 0.75 1.00  tion, becomes stable af)/w,~1.053 via another pitchfork

T bifurcation.
Frequency-response curves for the same shell as in Fig. 4 ob-
Fig. 3 Time histories at €/ew,=1.3 (upper branch ) in Fig. 2. (&)  tained by considering thél,1) mode in addition to thé&2,1) and
(2,1) mode, (b) (1,1) and (3,1) modes, and (c) the amplitude of (1 2) modes(three-mode analysisre presented in Fig. 5. In this
the shell at (x,y)=(a/4, b/2). case, a stabl&V;, which is activated by the internal resonance,
occurs a)/ w,~1.000 via a saddle-node bifurcation and loses its
stability at{)/w,~1.011 via a Hopf bifurcation, and the bifurca-
The present second author and Lei24| investigated nonlinear tions are different from those in Fig. 4. It is therefore found from
free vibrations of thick isotropic shells and reported that the irFigs. 4 and 5 as well that th@,1) mode cannot be neglected in
ward displacementW,,,) exceeded in magnitude the outwardhe analysis.
displacement (V) in a vibratory cycle. As can be seen from The coupled response between {¢l) and(2,1) modes loses
Fig. 3(c), the asymmetry of the displacemdie., |Wil#Wmad  and recovers its stability #&/w,~1.003 and 1.018, respectively,
appears in the two-mode and in the three-mode analyses. Haxia pitchfork bifurcations; hence there do not exist stable periodic
ever, the asymmetry does not appear in the single-mode analysgsponses in the frequency region approximately given by 1.011
It can therefore be concluded from Figs. 2 and 3 that the first()/w,<1.018 in spite of the shell being subjected to the peri-
vibration mode is indispensable for analyzing the asymmetradic load. Such a phenomenon was also observed in an isotropic
modes of shells. Furthermore, because the results obtained bydineular shell[16]. In order to examine the vibration characteris-
two-mode analysis are in good agreement with those obtainedtims in this region, the variation of the largest and the second
the three-mode analysis and the effect of (8g) mode is very largest Lyapunov exponenfg5] with Q/w, and Poincaresec-
small, the symmetric modes other than tfiel) mode can be tions on thew,—W; plane at some points are presented in Figs. 6
neglected in the analysis. and 7, respectively. The Poinc¢asections are constructed by sam-
Next, the effect of the first vibration mode on the internal resgling the motion at the period of the excitation, and these figures
nance w,~ w3 is examined. Figure 4 depicts the frequencyshow the results calculated for 30,000 periods after the transient
response curves for a shel/p=0.704,R,/a=R,/a=10 and response decayed. The stable response which loses its stability
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0.0 . 0.002 ,
\ C
~ @ — Largest
TS §o0o001r K 000 2nd Largest 1
-01F ! 5
/ &
. >
R 4 0.000
—— Stable e
-0.2 1 === Unstable é- @ Hopf bifurcation point
5"0'001 I {: B Pitchfork bifurcation point
fil
: P , N
0.3 ' ' ' -0.002— e : "
0.975 1.000 1.025 1.050 1.075 1.0110 1.0145 1.0180
Q) w-
0.8 .
—— Stable Fig. 6 Lyapunov exponents in the region where stable peri-
——— Unstable odic responses do not exist
0.6
and the frequency region &/ is narrower than that in Fig. 5.
§ 0.4 The stableW,;-response occurs and vanishes via the same bifur-
cations as in Fig. 4 where thd,1) mode is neglected. We have
also confirmed that the same tendency is obtained with an increase
0.2 of the thickness ratio. It can therefore be said that increases in the
: radius of curvature and the thickness ratio reduce the influence of
the (1,1) mode on the primary resonance of the second vibration
mode.
0.0 } ' ' In Fig. 9, the effect of damping ratio on the frequency-response
0.975 1.000 1.025 1.050 1.075 curves is shown for the same shell as Fig. 4. Only stable responses
0.8 ‘ , : are plotted in the figure. The symbadls A, andd denote Hopf,
’ — Stable (©) sadd!e-node, and pitchfork bifurcation points, respectively. The
——— Unstable amplitude of the coupled responses between(ith® and (2,1)
modes does not change greatly with the value of the damping
0.6 - ) ratio, whereas that of th€l,2) mode does greatly with it. Espe-
cially, in the case ofu=0.005, there exist two coupled responses
- (\ I among the(1,1), (2,1), and(1,2) modes in the frequency region
R 04r ! /1 1 1.003<Q/w,<1.011.
1 !
‘\‘ ! 5 Summary
0.2 | | i In the present study, we investigated the response of symmetric
! } crossply laminated shallow shells with a one-to-one internal reso-
0.0 L Il : L L
0.975 1.000 bOZS 1.050 1.075 0.50 ‘ 0.50
[@: (a) (b)
Fig. 5 Frequency-response curves for the same shell as in
Fig. 4 obtained by the three-mode analysis. (a) (1,1) mode, (b)
(2,1) mode, and (c) (1,2) mode. W 0.25F 4 0.25+ 4
through the Hopf bifurcation point becomes a quasi-periodic v . .
bration, as shown in Fig.(@). It can be seen in Figs. 6(k), and 0.04) . Point A 0.0 . Point B
7(c) that as the frequency is increased further, the quasi-perioc -0.3 0.1 0.5 7-0.3 0.1 0.5
vibration undergoes a sequence of period-doubling bifurcatior .50 , 0.6 .
eventually giving rise to chaotic vibration. It is to be noted that th () (d)
second largest Lyapunov exponent is not positive, and hence t
is not hyper chaos. Since the largest Lyapunov exponent at 1
point D in Fig. 6 is a very small positive value and can be taken 1W 0250 1 ool |
be zero, its motion is quasi-periodisee also Fig. (d)). In com- 3 ’
paring Figs. 7a) and (b) with (d), it is observed that the type of
the quasi-periodic motion at the point D is different from that a
the points A and B. : .
Figure 8 presents frequency-response curves for a saéil ( 0.0Q3 01 Pomt(é 5 9% 0.0 Point %.6
=0.581,R,/a=R,/a=50 andh/a=0.01) whose radii of curva- ’ W, ) ) W,
ture are five times larger than those of the shell used in Fig. 5. As
may be expected, th@,1), (2,1), and(1,2) modes are consideredFig. 7 Poincare’ sections. (a) Q/w,=1.01200, (b) O/w,

in the analysis. The magnitude Bf; is smaller than that in Fig. 5, =1.01250, (c) Q/®w,=1.01263, and (d) Q/w,=1.01451.
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— Stable
-0.2 === Unstable .
-0.3 ' ' ' '0.98 1.00 1.02 1.04
0.975  1.000  1.025  1.050  1.075 : : - :
1.0 : ,
0-8 T T T
—— Stable (b) — ﬁfg.gtl)s (b)
osl —== Unstable | 08t 120,015 4
X 0.4
0.2
0.0 1 1 1 0.0 ! .
0.975  1.000 1025 1050  1.075 0.98 1.00 1.02 1.04
0.8 T T T 1.0
— Stable ()
——- Unstable 08}
0.6 - .
0.6
X 0.4 ] R
0.4 |
0.2 / b 02+t
I/ ;
/ . i
0.0 : Ly : 00 1.02 04
0.975  1.000  1.025 1050  1.075 0.98 1.00 L L

Q/w, Qw2
alb Fig. 9 Effect of damping ratio on frequency-response curves

for the same shell as in Fig. 4 obtained by the three-mode
analysis, (F/w§=0.01, O: Hopf bifurcation point, A: saddle-
node bifurcation point and  [O: pitchfork bifurcation point ). (a)
(1,1) mode, (b) (2,1) mode, and (c) (1,2) mode.

Fig. 8 Frequency-response curves for the shell with
=0.581, R,/a=R,/a=50, and h/a=0.01 obtained by the three-
mode analysis, (w,=7.075, ®,=16.69, w;=16.90, and F/ew3
=0.01). (a) (1,1) mode, (b) (2,1) mode, and (c) (1,2) mode.

nancew,~ w3, Wherew, and w; were linear natural frequenciesternal resonances, and studied the effect of not only(1h®
of asymmetric vibration mode®,1) and (1,2), respectively. We mode but also of th€3,1) mode which is the second symmetric
attempted to approximate the displacements of the shell by thibration mode on the primary resonance. The analysis consider-
eigenfunctions for the linear vibration mod#,1) in addition to ing the(1,1) mode led to an asymmetry of the displacem@set,
the ones for the moddg,1) and(1,2), and then applied Galerkin’s the absolute values of the outward and inward displacements did
procedure to the nonlinear governing equations for the shell yieldet agree with each otherwhereas the analysis neglecting the
ing ordinary differential equations with both quadratic and cubi,1) mode did not show this asymmetry. We concluded therefore
nonlinear terms. These equations indicated that when(2tl® that the(1,1) mode is indispensable to the analysis of the nonlin-
mode was excited, thél,1) mode was always activated even ifear vibrations of the shells. On the other hand, the higher sym-
there were no internal resonances between(fh#) and (2,1) metric modes could be negligible because the effect of(3h®
modes. Frequency-response curves when a driving frequ@ngy mode on the response was very small. Next, we investigated the
nearw, were obtained by the shooting method. effect of the(1,1) mode on the frequency-response curves for the
In the numerical examples, we investigated in detail the nonlishell with one-to-one internal resonance, and showed that neglect
ear vibration characteristics of laminated shells having a ply layup the (1,1) mode led to incorrect results. Furthermore, it was
of (#=90deg/0 deg/90 deg). First, we treated a shell with no iproven through both the Lyapunov exponents and the Poincare
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sections that chaotic vibrations may occur over a certain rangeregponses activated by the internal resonance were changed
the driving frequency. Finally, the effects of radii of curvature andreatly with the value of the damping ratio.

damping ratio on the one-to-one internal resonance were iIIu&- .

trated. We showed that the effect of tli#,1) mode became ppendix

smaller with an increase of the radius of curvature, and that theDetails of w, F, and() are as follows:

Liwi(Lvivibwixi— Lvixibwivi) + Lviwi(Lxixibwivi— Lxivibwixi) .
(i=1,2,3,

2
@2= L
i = Lwiwi Lxivilyvixi— Lxixil vivi

_ % P pa’
TERr YT NER

__ .2 2 __ .2 2
Lxix1= =7 (dyy+ @“dgg) =Sss5,  Lxoxo= — 7°(d1;+ 4@ dgg) — Sss,

where

Lxays=— m(4d1+ a’dgg) —Sss,  Lxaxa=Lyixa=— ma(dip+dgg),
Lxava=Lyaxa=Lxayza=Lyaxz= — 2772a(d12+ dee)s Lvivi=-— 77'2(“2(122"‘ dee) —Sas,

Lyayz=— 7 (a?dyt 4dge) —Saa,  Lysys= — m(4a’dyyt dgg) —Sua,

Lxowe Lyaws
_ _ _ 2 _ _ _ 2
Lxiwi= 2 =Lxaws= — 7 HSs5,  Lvawi=Llyowe= =—m aHs,y,
~Lwaxa _ TSss _ _Lwsys  maSy
Lw1x1—_2 =Lwaxz=— H Lwivi=Lway2= > T H

2, \2

a118128866( I x T @Ty)
22,2 2 7 )
Hrir i@y 8e6+ aa1@,(a1,+ 2866) + @a,8,,866)

2, \2
Q11812822866 M x T @“Ty)
Lwawz= 72(a?Ssst 4Sse) + —577 2 Z )
Hriri{16a,a; 866+ 4@”ayia,5( 1, 28g6) + @*a;8,5866)

2, \2
118182866 x T a“Ty)
Lwaws= 72(4a?Syy+Sse) + —557 2 3 ,
Heriri{anarAget 4a”agazqant 2age) + 16a"a; 8,586
1 1 1 1 1
==, .
Erhlay; a1 " ag’ ase

_ .2 2
Lwiwi= 7 (a“Ssq+ Ss5) +

* * *
(Allv 1217722

Ech®
(D11,D12,D5,,Dg9) = EThS(dn:dlzvdzz,des): (S44,Ss9) = _ar(544:555):
a h Ry Ry
a/—B, H—a, I’X—;, ry—;.

It is to be noted that the nondimensional linear natural frequengyis related to the linear natural frequenay, by o;
— ai(pa4/ETh3) 1/2.
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Effect of Curved Bar Properties on
v.r.cemiy | Bending of Curved Pipes
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Moscow, Russia

A general solution is presented for in-plane bending of a thin-walled short-radius curved
pipe. The problem is solved considering the properties of a curved bar—an actual radius
of curvature of longitudinal fibers and the neutral line displacement. The theory is devel-
oped using minimization of the total energy. The relationships of the theory of elastic thin
shells are used. The obtained results for the strains and stresses in curved short-radius
pipe bends are compared with published theoretical and experimental data. The proper-
ties of a curved bar being taken into account enable to correct seriously the distribution
and peak values of the strains which take place in curved pipes of large curvature sub-
jected to bending.[DOI: 10.1115/1.1357518

Introduction condition. The relationships of the theory of elastic thin shells are
Bending of a curved pipe is accompanied by the flatteni used for the displacements, strains, and stresses. The solution uses
forces. They transform initial circular cross sections of a pipe in@izzm':'?:g“szt?g%n e?wfetrr(;/ t;):]zg ﬁgﬁ{%’l Il?n:zhgié?)?ancneer;g:]tRaaxleég?ér-
oval cross sections. As a result, longitudinal stresses in the curv%Ined through integration in the closed form. The analysis applied

pipe increase and their distribution changes. The rigidity of - . ) . .

: : : ipes of uniform thickness with a constant mean radius of the
curve(_:i plpe_subje_cted to bending decreas_es as compared_ to_t_h% 3952 section and constant curvature of the center line, and made
;g:{;’g:;lpg%en (;I,:,rlltg :‘,?ree sssagrs]e_rcr:gs; as Si?ggln,&hlé ocr?/ufsoersbzlr?gilgg%gfan isotropic material. Our solution is compared to the ordinary

: ' ' theory of curved pipes, the results of studies by Cheng and Thailer
curved pipes was developed by Karmjdi He was the first who ], and the published experimental data by Vissat and Del Buono

analyzed the reasons for significant decrease of their bending[é- . :
gidity. His work and the maijority of other studies assumed th |. As a whole, consideration of the new parameters has resulted

actual curvature of longitudinal fibers of a curved pipe should n 1 essential correction of the diagrams and peak values of the
9 pIp %éﬁins in short-radius curved pipes.

be taken into account. This curvature was considered to be eq
to the center line curvature. This assumption leads to an errorlé%rmulation of Problem

results if applied to pipes with a small radius of curvature. The

study by Clark and Reissng2] presents an example in which an Figure 1 shows a curved, circular thin-walled pipe with the
actual curvature of longitudinal fibers is given in problem formueenter line curvature radiu’, mean radius of cross sectiorand
lation but ignored in problem solution. A few works tried to takewvall thicknesst. It is assumed that the curved pipe has no restric-
actual curvature of longitudinal fibers into account. The mogions on size of the radius ratdo=r/R. The only condition is\
complete solution for this problem was developed by Cheng ardl. This condition is both a natural limit for a curved pipe design

Thailer[3,4]. and a sine qua non for existence of the certain integrals used
It is known that the approximate theory of bending of a curvetiirther in the paper. Thus, the presented theory is applicable to
rigid bar deals with the two factors: pipes of any large curvature.

It is supposed that the theory of thin shells may be applied to
e pipes in question. Under pure in-plane bending of the pipe by
e momentd, the central angle has a changay. It is also
implied that the neutral line is displaced from the central line at a
The second factor was ignored in the theory of bending of @istance ofs,. The points on the middle line of the pipe cross
curved pipe. The appropriate question seems to be first raisedséittion are determined through the radiasmd angular coordinate
the study by Stasenko and Rakhmanfivh However, their paper g. The vertical coordinatéin the direction of the OY-axisis
contains a mistaken hypothesis applied to the statics condition. As
a result, the neutral line displacement in a curved pipe was sup- y=r cosp. 1)

posed to be equal to that in a rigid curved tubular bar with the Flattening of the cross section is accompanied by the radial

same cross section. It will be shown in the present paper that thigplacementv and tangential displacementsof the points on

way of solving the problem is incorrect. ~ the cross section middle lingFig. 1), and also by vertical dis-
The problem of in-plane bending of a curved short-radius piRflacementgparallel to the axis OY of the same pointsv, . The

bend solved in the present paper allows for both the actual radfgfiowing geometrical formula describes their interrelations:
of curvature of longitudinal fibers and the neutral line displace-

ment. The latter factor's consideration provides the conditions of W, =W cosgB— v sing. 2

pure bendin_g of a curved pipe since it meets the re_quirement th_a;_et the approximate theory of curved bars be applied to the
the longitudinal force equals zero. The neutral line displacementsig, » components of longitudinal strains in a curved pipe. It as-
assumed to be unknown and is determined through the staligines that the hypothesis of flat cross sections is true. A longitu-
dinal filamenta-a is located at a distance sf,+y from the neu-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  tra| line. The “bar” component of the longitudinal strain fara
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- : ; ; _ B
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 23,f||ament with a curvature radll‘By R+y is equal to
2000; final revision, Oct. 19, 2000. Associate Editor: S. Kyriakides. Discussion on (S +y)A1,// r s+ COSB Al//
n
= = *

(1) actual curvature of longitudinal fibers;
(2) displacement of the neutral line from the center line of a b
cross section.

the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Department (80) — — -7 (3)
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and Va-a Ryg// R 1+\cosB '
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1 s+cosp
K 1+ cosp
It should be noticed that the produegr is a value convenient for

comparison because it means the maximal longitudinal strain in a
straight pipe subjected to bending by the momnt

£f

(xor). (@)

Longitudinal Strains
The total longitudinal strains consist of the bar strai@sand
the strains caused by flattening the cross section contours in a
curved pipe:
1 s+cos W,
== —B(Kor)+ L
K 1+\ cosB R+y

Radial components of the displacements may be presented as a
series:

©

€1

w:(KOrZ)ZZ X, cosng, (10)

where X, are unknown coefficients of the series.

The expression for tangential displacements may be obtained
based on the thin shells theory hypothesis of inextensibility of the
middle surface in the meridional direction:

Ju .

v=—(f<or2)§::2 n~1X,sinng. (12)

It is important to pay attention to the “inextensibility” concept
which means no as absence of lengthening of a mean line of cross
section as a result of displacements in a curved pipe as a thin shell

A-A only. However, there are meridional membrane stresses in curved
pipes, and this fact was mentioned, for example, by Cheng and
Fig. 1 Bending of a curved circular pipe Thailer[3,4].

According to (2), (10) and (12) the expression(9) takes the

following form:

1 s+cosB 11 <

A relative change of the central angle of the curved pigéys 1 stcosp 1 .
K 1+hcosp 2 anz XnWh | (kor ) (13)

is expressed further through a curvature chargef the appro-

priate straight pipe with the same lendthand the same cross
section. For this purpose we use the definition of rigidity fattor Where
for a curved pipe. Under influence of the identical bending mo- 1

: : o ; + -
mentsM on curved and straight pipes the rigidity factor is equal to  w* :m nn_l cogn—1)B+ nn_lcos{nJr 1)13}_

B0 @ (14)
Ay’ It should be emphasized that the radius ratie applied only to

where (A ), is the angle change in a straight pipe under bendin}f!ose terms which fefer to the_ act_ual curvature of longitudinal
According to the beam theory there are relationships whidipers. At the same time, the ratiéR is used in the same way as

connect the curvature change of a straight pipe with the andfethe ordinary theory of curved pipe bending.
change and the bending moment: A relative displacement of the neutral liseand rigidity factor

K can be found from the statics conditions:

€1=

(Al/f)o:KoL; KO=M/EI, (5)

2
whereEl is the straight pipe rigidity under bending. N=0: Ertf £,dB=0. (15)
It also necessary to mention that the central angle of a curved 0
pipe is equal to 2
— M=Ertj e1ydg. (16)
y=LIR. (6) o !
Putting the relation$4)—(6) together we have The former condition(15) provides pure bending of a curved
Ay R1 pipe (N is the longitudinal forcg
T i (Kol)- (7) Hereinafter(in the definition of potential strain energthe in-

tegration is carried out in the closed form. All certain integrals
Substituting(7) into (3) we obtain the formula for longitudinal may be presented as a sum of integrals described by the following
“bar” strains: general formula:
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27 cosngB a1y 2gn 012 o1 The curvature change of the middle lirg is determined ac-
o 1txcosB p=(=1)"—m n=0123...; , cording to the theory of shells,
Al
Kop= +1 27
where 2 dg? @7
1 If (10) is taken into account, then
e:X(l—\/l—)\z); (A <1), (18) ”
= n2—1)X, cosnp. 28
A le 19) ko= w02, (n=1)X,cosnp (28)
From (15) and(16) it follows that The minimum of total energy may be obtained in the Rayleigh-
a Ritz manner if
s=K—=>¢, (20)
1—-¢° Y
177 -1 X, 0. (29)
a r
K= 1-e2 ——2 CoiXn| (21) Substituting(25) and (26) into (24), integrating it and meeting
ec 2R ; A .
the requirement$29) we have an infinite system of linear equa-
1 tions describing unknown coefficients:
Cn:(—1)”He”’2[(n+1)+(n—l)e2]. (22) -

The e value (see(18)) has a quite certain physical interpreta- 8nnXnt ; 2 Xi=bp, N=234.... (30)
tion. This is the neutral line displacement divided by radifer a i#n
conditionally rigid curved pipe subjected to bending. This is equal The coefficientsa, ,, a,; and free termd, in the set of Egs.
to the displacement in a curved bar with a tubular cross section. (GD) are determined by the following expressions:
such rigid bar there is conditionally no flattening of cross sections. o1)?
The expressiori18) for e is received by consideration of the stat- * -1°
ics conditions(15) and(16) for this curved bar. ann=4 Unnt 3(1— 2) h

Formulating the problem, Stasenko and Rakhmar®jaas-
sume the parametsrin the formula(9) for longitudinal strains in
a curved pipe to be equal to the parametéor a rigid curved bar
with a tubular cross section. As the ratio of the parametarsde
is equal approximately to the rigidity factét according to the R1-¢?
expression20), the results of Stasenko and Rakhmanfipare by=-8 T Tcn' (31)
rather far from reality.

Finally, with (20) and (21), the formula for longitudinal strains Whereh is the curved pipe parametér=Rt/r?,
(13) may be rewritten as

an,=4U§,i+5i<n+l{>\ (n2—1)(i2—1)h2}

2
3(1—17)

a etcosp 11 < cosg Ur,=(@ bl (1+e™?) 1+2ﬁe2)(n:—1) +(1+e*"?)
o1 o Trrene* R, %o Wi Cri o [y e
X (ko). (23) n a "
The ratioa/(1—¢€?) in the formula(23) is the rigidity factor of (=" 1+e®
a curved bar with a tubular cross section. Ui =ani [(n+1)u1+(n Dup]= ——CiCis

Ukz(i +l)len+i+2(k—2)+e‘n—i+2(k—l)\J+(i_1)Len+i+2(k—l)

Determination of Unknown Coefficients +eln-ir2k-2l} (k=1 2)
CoefficientsX,, of the serieg10) are determined through mini- 1 (i=n=1)
mization of the total energy 5 _ - (32)
=D 0 (i#£n+1).
V=U-W, (24)
where The C; values are calculated under the form(22) in whichnis

U is strain energy; replaced withi.

W is potential energy of end moments.
Strain energy is determined according to the expression:

Strains and Stresses

1
U=3 f(Rlﬁ)f (1+\ cosB)(Etsf+Dk3)dB,  (25)  The longitudinal strains are determined un€28). The expres-
0 sion for meridional bending strains follows fro28) (the top
whereg, is the longitudinal straing, is the curvature change of mark refers to the outer surface of a pipe
the middle line of a pipe cross sectida,is the modulus of elas- 1 x
ticity, D=Et3/12(1— %), v is Poisson’s ratio. _.tnh 2_
Potential energy of end moments, s2= 5Ny “Orn; (n"=1)X, cosng. (33)

%

1r The longitudinal stresses only are considered in this paper.
W=—-M=*Ay=— KoE|(R¢) & 7R 22 CoXn |- They are described by the expression:
=
(20 S 34
In (26) the expressiongs), (7), (21) are used. 171, (81 v82). (34)
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From the Presented Theory to the Ordinary Theory of
Curved Pipes

We understand the term “ordinary theory of curved pipes” as &
solution without regard to parametersands ([1]). The accuracy =
of this solution is determinated by the number of terms in th
series(10) (n=2,3,4...). Theordinary theory can be received
as a particular case of our solution provided that-0. In this
case, from(18) by applying L'Hopital’s rule we get

lim e[, _o=0. (35)

Then according td19) and (20) we havea=1; s=0. From
(22) it follows that

lim Cn|2i§:3/2- (36)

If n=3: C,,=0.

Under the above conditions the ordinary theory of curved pipes
obtained.

Results and Discussion

We received numerical results for the curved pipes paranhete
ranging from 0.05 to 0.30. This range practically covers the ma
part of short-radius curved pipes.

The effect of the curved bar properties on the bending theory
curved pipes is estimated by comparison of our basic solutic
(A #0, s#0) with the ordinary theory of curved pipga =0, s
=0) ([1]). Thus, the calculations are made for two values of th
curvature parametdih =0.8 and\ =0.5).

To evaluate the separate influence of the neutral line displac
ment on numerical results we also developed a solution, in whi
the actual curvature of longitudinal fibers is considered dily

#0, s=0). This solution should be qualified as an intermediatgig. 3 Longitudinal strain distribution:;
variant of our basic theory. The results of the basic solution aggt0, s#0 (solid line ), (b) intermediate variant
(dashed line ), (c) ordinary theory A=0, s=0 (dotted line )

compared also to this intermediate variant.
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Fig. 2 Displacements of the neutral line of curved pipes;
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The neutral line displacemeli20) may be judged by the dia-
grams for function of the ratios/e ands=s,/r from the curved
pipe parameteh (Fig. 2. It follows from the diagrams that the
neutral line displacement in a curved pipe is rather little in com-
parison with the displacemeatin a rigid curved bar with a tubu-
lar cross section. However, it is shown further that the neutral line
displacement if taken into account enables to revise the distribu-
tion and peak values of the strains.

In what follows the strains and stresses are presented as dimen-
sionless ratios:

« for strains:

ey=—, (37)

« for stresses:
90)

o= E(xgl) (38)

Figure 3 shows the longitudinal strain distribution for a curved
pipe with parametere=0.3,r/R=0.8. The strain distribution is
found: (a) under our basic solution(b) under the intermediate
variant of our theory, an¢c) under the ordinary theory of curved
pipes bending. The comparison shows that for the peak values of
longitudinal strains the results of our basic theory are located be-
tween the results of the ordinary theory and our intermediate vari-
ant of the basic theory. The diagrams in Fig. 3 show that the
neutral line displacement influences the longitudinal strains con-
siderably.

The influence of the curvature paramekeon the longitudinal
strains distribution is reasonable. It is illustrated by the diagrams
in Fig. 4 for a curved pipe withh=0.3. The calculations are made

JULY 2001, Vol. 68 / 653
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) ) The longitudinal stresses are compared with published theoret-
under our basic theory and under the ordinary theory of curvgeh| and experimental data. Figure 6 presents diagrams of longi-
pipes. Increase of the parametercauses consistent decrease ofydinal stresses for the outer surface of a curved pipe With
the longitudinal strains on the convex part of a curved pipe andp 071527r/R=0.512. The comparison shows that our solution
increase of the strains on the concave part. ) is consistent with the experimental data received by Vissat and

The divergences of peak values for the longitudinal strains calg| Buono[6]. In the same figure there is a diagram which pre-
culated according to our basic theory for two values of_ parametgnts the theoretical results obtained by Cheng and THailein
A (0.8 and 0.5 and two values of (0.05 and 0.3Dare given in \which parametek was taken into account only. The comparison
Table 1. Analysis of the table data shows that our theory essefipws that our solution gives the better approximation to the re-
tially revises the peak values of longitudinal strains in comparis@fits of experimentFig. 6) for the peak values of longitudinal
with both the ordinary theory and the variant which takes intgiesses.
account the actual curvature of longitudinal fibers only. ~ The calculations under our basic theory and under the ordinary
Meridional bending strain distributions under our basic solutlogp]eory have shown that the rigidity factors of curved pipes do not
and under the ordinary theory differ insignificantly on the mos{ractically depend on the parametarands provided that these
the concave part of cross section at 130<l¢ly=180 deg(see gnd the maximal divergence in the values of the rigidity factors
Fig. 5. For this part of cross section our theory presents essentigly 7 percent.
bending strain. are executed by taking view of eight terms in initial expansion
into a serieg10) (to the 9th harmonic includedThe calculations
under the ordinary theory are executed including the 8th harmonic
in (10). This way provided the high accuracy of calculations and

Table 1 Differences (percent) in maximum values of the longi- reliability of the compared results.

tudinal strains compared to the presented basic theory

A=08 1=05
futi ign of strai ;
couton RN eTstane T —o0s | =030 | h=o0s | h-o30 | conclusions
» The presented theory of in-plane bending of curved pipes

“% extension +11 *+20 6 +13 takes into account the both factors describing longitudinal strains
5= : .

compression -14 -26 -9 -15 in a curved bar:
220 lextension = 25 5 45 + actual curvature of longitudinal fibers; _
s=0 « displacement of the neutral line as related to the central line

compression +8 +16 +4 1 of a pipe.
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0 - *The solution is presented as the infinite set of linear equations.
: \ The formulas are given for the coefficients and free terms of the
set of equations.
e The closed-form solution for integrals is obtained for the
At strain energy and neutral line displacement. In the expressions for
30 N L S —— . . . .
/ integrals there are the parameters which characterize bending of

curved rigid bars with a tubular cross section.
45 e o » The presented theory is applicable to pipes of any large cur-

/ , vature.
60 |- . — * It is shown that the ordinary theory of curved pipes can be

obtained as a particular case of the presented solution.

» The formulas for the displacements, strains, stresses and the
rigidity factor of curved pipes are obtained which include the
parameters describing the large curvature of pipes.

» The obtained results are compared to:

B, degrees

75 -

90

« the ordinary theory of curved pipes;

« the solution which takes into account an actual curvature of
fibers only;

« the published experimental data.

* The rigidity factor does not materially depend on the param-
eters describing bending of short-radius pipes provided that these
parameters are used together.

» The neutral line displacement and the actual curvature of lon-
gitudinal fibers have provided the essential correction of the dis-
. tribution and peak values of longitudinal strains in curved short-
s | | heder €\ . .| radius pipes under bending. _ N
outer surface } ; * The presented theory essentially revises the meridional bend-

: ing strains distribution for the concave part of cross sections of

7 © & 4 3 =2 4 o 1 2 3 4 s e Ccurvedpipes.

105

120 |-~

135 |

150 p—-

180

Fig. 6 Longitudinal stress distribution; (a) presented theory
A#0, s#0 (solid line ), (b) Cheng and Thailer [3] A#0, s=0 References
(dashed line ), (c) experimental data of Vissat and Del Buono  [6]
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The Transient Motion of a
x. markenscott | B@Mp-Gore Supersonic

Fellow ASME = =
_u | Dislocation
Department of Mechanical and Aerospace The transient motion of a ramp-core dislocation spreading frem<x< and jumping
Engineering, from rest to a supersonic speed in the x direction, is investigated by analysis on the
University of California, San Diego, complex transform plane. The new result of this analysis is that, instead of the Mach cone
La Jolla, CA 92093-0411 of the Volterra dislocation, there are two lines of discontinuity (of the stress) propagating

in the *z directions, inside of which there are arctan delta sequenceO] radiated
supersonic fields, as well as subsonic fields. The lines of discontinuity arise at the tangent
point of the Mach wavefront&0) to the cylinder with radius #ct.

[DOI: 10.1115/1.1380678

1 Introduction

The transient motion of a supersonic screw dislocation with
spread ramp-like core starting from rest and jumping to a constant . . .
velocity with which it moves thereafter, is analyzed in detail. Th@r}heref(xzz,t) (Markenscoff[5]) is the solution of the classical
analysis extends previous analysis by the auttidtarkenscoff volterra dislocation with coréd(x—I(t)), and* denotes convo-
and Ni[1]) for subsonic motion starting from rest with constanfution. This solution is investigated in the sequel.
velocity. Recently, Gumbsch and Gf®| showed by a molecular
dynamics simulation that dislocations can propagate supersoni-
cally if they are created as such. The present analysis compie- Analysis of the Supersonic Transient Motion
ments this molecular dynamics simulation. Previously, general ) ) o )
transient supersonic motion of Volterra dislocations had been ana-The solution of the Volterra dislocation jumping from rest to a
lyzed by Callias and Markenscd8] and steady-state supersonicsUPersonic speed is obtained by using Laplace transform in time
motion for Peierls dislocations by Weertmp. and two-sided Laplace t_ransfo_rm in space, analogously to

The new result of this analysis is that instead of the Mach cofdarkenscoff[5] for subsonic motion. Following the same nota-
of the Volterra dislocation there are two lines of discontingag tion, we obtain the transform
the stresppropagating in the- z directions, inside of which there J0 B s B
are arctan delta sequen@e~0) radiated supersonic fields, as well —(X,2,8)= = =— | eM———e B\, )
as subsonic fields. The lines of discontinuity arise at the tangent 9z 22mi Jg, s(at+\)

point of the Mach wavefronte=0) to the cylinder with radius ) . . . )
r=c,t. where by is denoted the dislocation’s slowness. The inversion of

the Bromwich contour is obtained by a Cagniard-de HGGgH)
technique as in Markenscdf]. It follows, from (4), that there is
: : a pole at\=—« if « is within the contour of integration. Consid-
2 Governing Equations ering the C-H contour, we see that, if
The dislocation with ramp-like displacement-core function sat-
isfies the differential equation for the antiplane strain field:

©)

1
u(x,z,t)=f(x,z,t)*;8—

bx
(i) —<a<b thereis no pole inside the contour  (5)
du . Fu b2 du L r
T @

bx
ii <— therei leak=—a. 6
with boundary conditions (i« r ereisapoe “« (©)

T From (i) it follows that, in particular, there is no pole for0.
+ " t<0 Condition (ii) for the existence of a pole, which gives rise to a
(2) delta function in the solution, is written

B1 ; X
arctan—
2 e
Tl t=0
Tt - az

B 1 x—1(t)
27| 2
X> s )
whereb is the shear wave slowness and B is the Burgers vector. b*—«a
By x=I(t) is denoted the motion on the plarme 0.

The solution is obtained as before, by superposition of Probl
I and Problem II, which has the solutigMarkenscoff and Nj1])

u(x,0t)=

ewpere we consider onlg>0. Forz<0 the field is exactly sym-
metric. By inverting(4), the contribution of the pole is

B
Contributed by the Applied Mechanics Division ofif AMERICAN SOCIETY OF > Vb= a?8(t— ax—\b*— a?z), (8)
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June 12, . . . .
2000; final revision, Dec. 14, 2000. Associate Editor: J. R. Barber. Discussion on tW;”Ch gives rise to the Mach wavefronts on the line

paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Department of

Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and will —aX t
be accepted until four months after final publication of the paper itself in the ASME z= + . 9)
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/ I = I ybrt—alz
a a
~ X
t=1 = ﬁ:_b‘b-;a‘t
\ /) z = -z-
L(z, z) = (%—‘ —i-—"bib““”>

Y

Fig. 1 Lines of discontinuity of the radiated field from a moving supersonic dislocation with ramp-like core

When a=x/r, the contribution is half of the valug).

It is easy to see that the Mach waysee Fig. 1 meets the

cylindrical wavefrontx?+ z2= (t/b)? at the point &,z) = (at/b?,
JbZ=a?/b%) which lies on the line defined byx
=az/\bZ— a2, ie., for equality in(7).

N

2<—

(14)

which, by consideration of the symmetry zndefines a strigsee
Fig. D,

The contribution to the solution of the ramp-dislocation from

the pole at\=—« is obtained by convolution of8), i.e.,

B o
"_“:sz ,s<t—ag—mz>‘j+

9z azNb?—a? %+ (x—§)°
(10)
which yields
ou B e
— /b2_a2
0z 2w t b2— o2 2
e+ | x——+ z
o o
b2
XH|t z (12)
b2_ C¥2

The solution given by11) is valid only for values ot in (10) that
satisfy

aZ

b?— a?

&> (12)

since in order to have nonzero contribution, the zero of the delta

function must be bigger than the lower limit, i.e.,

Vb?— a22> az

@ b?— a?

(13)

inside which the solution exhibits the delta-sequence terms given

—t\/bz— a?

<t\/b2—a2
b2

b?

z (15)

We thus see that the lings= +t\b%— a?/b? separate a region in
which the solution has a delta-sequence term give(ihyfrom a
region forz>t\b?— a?/b? (andz<t\b%— a?/b?, symmetrically
in which this term is absent.

The solution forgu/dz(x,z,t) has, in addition tq11) which is
due to the pole, the contribution from the convolution of the Vol-
terra field which is contained within=rb. This differs in the
supersonic casé>« from the subsonic case<b treated by
Markenscoff and Nj1], since in the evaluation of the convolution
integrals by integration in the complex plane, some poles are now
real. The convolution integral to be evaluated is given by (B4)
of Markenscoff and N[1], i.e., but now witha<b

I G(&2) ey
CNIP= 8 (24 ¢2) 5 (x—§)? ¢

(16)

where

gl(xvzlt)

G(x,z,t)= Do (X.Z1)

91(x,z,t) =t tx+ a(Z2— x?) |+ b?x| ar>x—t(222+ x?)|

92(x,z,t) =[ ax—t+ Vb?— a?z][ ax—t—z\b%— &?].

by (11). Physically the meaning of it is that to the supersonic field

will contribute only to those pointgin time) of the spread core

that lie on the Mach cone.
From (13) follows that

Journal of Applied Mechanics

In order to evaluat€16) by integration in the complex plane,

we find the poles ofG(&,x,t)/[(Z2+ £2)(e2+ (x— £)?)] which

are
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(i) £==zi,
(i) é=x=*ei,
(iii) the zeros ofg,(&,z,t):

b?— a?

o o

Note that in the supersonic case, the pdi&s are now real
numbers, as contrasted with those of Exp) of Markenscoff and

Ni [1]. We then evaluate the residues as follows:

(i) From the polesé==*zi the contribution to the solution

auldz (x,z,t) is

B b2 2R
2. H=b2

B —BxzeH(t—bz)
T (XPH(z+e)d)(XP+(z—8)?)

G(zi,z,t)
2+ (x—zi)?

(18)

(i) From the pole=x=*¢i the contribution taju/dz(x,z,t) is
as in the subsonic case

G(x+ei,zt)

1
R -
Jrr, e(22+(x+s|)2

1201~ 0)i

B
5-H(t=b2) (19)

where

r=[(1=-x)2+e2]"%  r=[(1+x)2+e2]"2

|:[(t/b)2*22]1/2
1 rirp+12—x2+g2]12
cos5 (01— 67) = o, |
V2eX

1
sinz (60,— 6,)= .
2 ! 2 \/rlrz[rlr2+|27)(2+82

However, the value of19) differs from its subsonic counterpart.

We define

G(x+ei,zit) 1 Rt Mai
22+(x+si)2_A_3[ 3t Mal]

(20)
where
Rs+Mai=g,(x+ei,z,t)[(Z2+x°—£?) — 2xei]
X[ (a(x—ei)—1)2=z%(b%— a?)]
A3=bz[x2+(z+e)2][x2+(z—s)z][(ax—t+zm)2
+ a?e?]-[(ax—t—z\yb?— a?)2+ a%e?

By comparison to the subsonic case, we observeRjatR,,

M;=M; whereR; andM are given in the Appendix of Marken-

scoff and Ni(2000.
We thus have for the contribution {19):

E{G(x+ ei,z,t)

11206, 6)i
22+ (x+ei)?

1 1
Ry cosz(elf 0,)— M4 sini(elf 0,) 1.

A

To O(e) Eq. (21) yields
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(21)

gl(xvzvt)

w

a?byrqr,

X+Z

1
7TSII’]§(01—6‘2)

aZDb\/I’ll’z

gl(X,Z,t) €
X2+ 72

1 ef
7 Sinz (61— 0,) [W(XZJF 7%)—2xg,

azDbyrqr,

(x*+2%)?

(22)

with

D=+b%— a2

(i) We analyze the contribution from the poleé=t/«a
+7zb%Z— a?/«, which unlike the subsonic case are now real and
lie outside the branch cut interval,(-1), wherel and —1| are
branch points of the integrand {i6). Their contribution is

T 1 g1((t—zD)/a,z,t) e?
2zbD |/ t zD)\? t zD\2
LI 224 —— — 24 x— —+ —
a « a «
(t+zD)
T 1 J1 a ,Z,t
 azbD zD\?
azb Mz X t/a+zDla 22+ X— —+ — )
a «
x ° 23
5 t zD\? (23)
g2+ | x— —+—
a o«

Whenz—tD/b? the first term in(23)—0, since from(16),

2 -0

(t zD\?
———| +z
o

a

. t—zD zD?
lim g, Zt|=——(tD—zb?
) a a
z—tD/b

(in which case the pole coincides with the branch).cut
The total solution td(¢) is
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au B DH(tD—b?%z)e B —2xez 1 g1(Xqtt)

—(X,zt)=— + —H(t—Db2) +
ot 27 , t b2— o )2 27 [P+ (z+8)? X%+ (2=8)%]  \r,r,a?h (X*+2°)
et | X——+ z
o o
7°D?
x—tla)?— cosé
( ) a? 1 t zD
X 5 = sinfF(x,z,t)—F| — —,z,t
t zD t zD azDb a «
g2+ | x——— — g2+ | x——+—
o o o o
€ 1 t zD e
X 5+ sinfF(x,z,t)—F| —+ —,z,t >
t zD azDb a o« t zD
2+ | x—+— 24| x—— —
o o o o
d9, t zD t zD
2 2
. — - (X“+2°)—2x0; gl X———— gl X——+—
sing X a « a o«
+ : 24
r,r,azDb (x2+22)? t zD)? t zD)2 (24)
24| x— — — e+ | x——+ —
o o o o
I
where §= %( 6,— 6,) and the radiated stress field consists of delta-sequence stresses around
the two linesx=t/a+ \b?—a?/az, confined within a stripg=
F(x,2,1)= 9:1(x,z,t) _ +t\b?— a?/b? and a radiated subsonic field between the wave-
T (x4 22) front z+t/b and the linez= *t\b?— a?/b?. In the steady-state

We see from the above solution that in the limitsasO there is I|.m|t., only tkle dslta-sec;t;gnce frontsbremaln. T]tlehllnes .Of discon-
no contribution outside the subsonic wavefroatrb except from  UNULY ezu Z=1y g t/b® appear because of the point,()
the delta function which is the first term i24), since, inside the = (at/b%,yb“—a“t/b) (where the tangent meets the subsonic

circle, i.e., for|x|<l, as:e—0:cos6—1,sin6—0 and wavefrontr =c,t having a special physical meaning in the solu-
tion of the Volterra dislocatioristep function discontinuiy At
au T g1(x,z,t) this point, the Mach wavefront that starts at the current position of

5—> > )2 the di.slocation (/a,Q) ends. The Maph Wayefron'g, i.e., the tan-
25 e )| [ x— —| (b= a?) gent line from the dislocation to the circle with radius c,t, can
@ b =X be considered as the envelope of the wavelets of ragiuemit-

ted by the dislocation from every point on its path. Thus, the
and outside the circle, i.e., fgr|>1, ase—0: cos¢—0,sin6—1 wavefront starts at the tangent point to the cirghéth center at

t

and the origin and radius =c,t) and ends at the current position of
Ju B the dislocation. As the core becomes spread, the effect of this
— 2—DH(tD—b22) 8(t— ax—\b?— a?z) tangent point is carried as a line of discontinuity.
0z T

which coincides with the Volterra dislocation soluti@@allias and  Acknowledgment
Markenscoff[ 3]).
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The Contradicting ASSUTT]ptiOI’]S of Zero tions of three-dimensional elasticity are systematically reduced to

a set of two-dimensional equations of various orders with the

Transverse Normal Stress and Strain in jowest order equations corresponding to the thin plate, for
the Thin Plate Theory: A Justification ~ &<amplel4-6).

The Elasticity Solution

f The problem considered is that of an infinitely long slab of
rectangular cross section undergoing cylindrical bending due to
transverse sinusoidal loadirigig. 1). The two longitudinal edges
are assumed to be supported by shear diaphragms such that

K. Bhaskar and T. K. Varadan
Department of Aerospace Engineering, Indian Institute o
Technology, Madras, Chennai 600 036, India

The need and validity of the contradicting assumptions of zero atx=0a: w=0, =0 foraly andz. (1)

transverse normal stress and the corresponding strain in the clas-The Navier equations of equilibrium, for the plane strain prob-
sical plate theory are critically examined here. This is done blgm, are
studying the relative magnitudes of these quantities with respect to _
other stresses and strains for a test problem amenable to an exact (2G+ MU xx+ GU 7z (GHMWx,=0

@
elasticity solution.[DOI: 10.1115/1.1352061 (G+ MU+ (2G+ MW ,,+ Gw,,=0

whereG and\ are Lame’s constants, dependent on the Young’s
modulusk and the Poisson'’s ratig.

Introduction The lateral surface conditions are
The thin plate theory{1,2]) is a two-dimensional simplification X
of the three-dimensional problem based on the following assump- 0,=—0o sin? and 7,,=0 at z=—h/2,
tions:
(@ normals to the midplane of the undeformed plate remain for all x andy @)

normal to the midsurface after deformation, i.e., the transverse
shear strains are negligible;

(b) normals to the midplane of the undeformed plate suffer no The problem admits to a closed-form solution as follows. Cor-
change in length during deformation, i.e., the transverse nornigsponding to the sinusoidal load, the displacements can be as-
strain is negligible; and sumed to vary harmonically witk as

(c) the transverse normal stress is negligible.

o,=7,,=0 atz=h/2, for all x andy.

X

The second assumption is not consistent with the third assump- u= U(Z)COS( ?)
tion, since as per the three-dimensional constitutive law, the nor- (4)
mal strain and the normal stress in any direction cannot be simul-
taneously zerdunless the problem is one of pure shedrhe
objective of this Note is to critically examine why these two con- q,sin %
tradicting assumptions are required in plate theory and to what
extent they are reasonable; this is done in the light of an elasticity
solution for a simple test case. A discussion of the need and va-
lidity of both these contradicting assumptions is not available,
either in historical accounts of the development of the thin plate
theory (for example, se¢3]) or in references wherein the equa- a

~
O
1
'
'

|
2 _
hi2

f

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- z
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 10,
1999: final revision, Nov. 6, 1999. Associate Editor: J. W. Ju. Fig. 1 The test problem
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w=W(z)sin

These variations satisfy the shear diaphragm conditions of1q.

e q5a’
b 3847El
+12Bh(1— u—2u?)(cosh 28h—1)

[3(1— u—2u?)(sinh 48h—2 sinh 28h)

and reduce Eq(2) to a set of ordinary differential equations as

given by
—(2G+N)B2U+GU ,,+(G+N)BW ,=0
—(G+\)BU ,+(2G+\)W ,,—GB*W=0

()

where B=m/a. The lateral surface conditions can also be ex-

pressed in terms dff andW. The solution for the resulting two-
point boundary value problem is straightforward and is

U=A coshBz+B sinhBz+ CzcoshBz+DzsinhBz ©)

—12(Bh)%(1— u—2u?)sinh 28h+8(Bh)3{ — 10+ 2u
+12u?+ (7+ pw—6u12)cosh 28h}
—8(Bh)*(1+ u)sinh 28h+16(8h)>(1+ u)]

2,2
gsa(l+pum
Us=—

(8)

) o .
m[(:% sinh 48h— 6 sinh 28h)

+12Bh(cosh 28h—1)—12(Bh)? sinh 28h—8(Bh)3

C(3-4u) D(3—4u)] | X (24 cosh 28h)+8(8h)* sinh 28h—16(8h)®]  (8h)
W=|B— 5 coshBz+|A— 5 sinhpBz (e
— o 2\ (i i
+DzcoshBz+CzsinhBz v 3847ED [3(5=n=6u")(sinh 48h =2 sinh 28h)
where +128h(5— u—6u?)(cosh 8h—1)
2 2\ i 3 2
qo(lw)smhﬁ?h D( 1-2pm %h Cothﬂ;) 12(Bh)%(5— u—6?)sinh 28 —8(Bh)*(5— p— 6u?)
D= , A= X (2+ cosh 28h)—8(Bh)*(1+ w)sinh 28h
E(Bh+sinhBh) B
+16(1+ ) (Bh)°] (8)
ph(ph . ph  pgh
D coth7 (7 +smh7 cosh7> whereT' =[sinl? gh—(Bh)?]%
C= A plot of the three energy components versus the thickness
ﬁ_hi sinh'B—h cosh'B—h parameter is as shown in Fig. 2. From this figure, it is clear that
2 2 2 the bending action is more predominant compared to those of
transverse shear and thickness-stretch as long as the thickness of
C( 1-2,— B—htanhﬁ—h) the slab is small compared to the span; this is, of course, as can be
K= 2 expected. What is of greater interest is to find out how the ratios
B= B Us/Uy, Uy /Uy, andU,/Ug vary with the thickness. This is eas-

The Particular Case of a Thin Slab

ily accomplished by obtaining the Taylor expansions correspond-
ing to these ratios after substitution from E¢®), as given by

To arrive at a comprehensive understanding of the behavior of Us/U,=2.82h/a)?+1.06h/a)*+ ...

the structure, especially as it becomes thinner and thinner, it is

necessary to consider the components of the total strain energy U /U,=—0.423h/a)*+2.86h/a)*+ . ..

9)

due to bending, transverse shear and thickness-st@tcontrac-
tion) separately. These denoted, respectivel{JgsUg, andU,,
are defined as

1 1
Ub:if oyedVol US:EJ TyzYx A Vol
@)

1
UI=E f o,e,dVol.

These, for the present problem, turn out to be

Ublutotal

0.8

0.6

Us 1 Utotat

0-4

0-2
Ut /U total
| L

Fig. 2 \Variation of strain energy components with respect to
thickness

Journal of Applied Mechanics

U;/Ug=—0.150+ 1.07h/a)?+ . ..

for ©=0.3. Thus, for small thickness-to-span rati@say, up to
1/20, both U4/Uy, and U, /U, grow nearly quadratically with
h/a; further,U,/Ug remains a constant for such thin plates with a
value of 0.15(i.e., u/2 for arbitrary w).

Considering the limiting case of an extremely thin plate, i.e., as
h/a tends to zero, it is immediately seen that bath/U, and
U,/Uy tend to zero. This, then, is the starting point for the devel-
opment of the thin plate theory. In other words, a “thin” plate is
one for which the strain energy corresponding to transverse shear
or thickness-stretch is zero. A look at E(f) reveals that the
energy componentslg and U, can be made zero by neglecting
either vy,, or 7,,, and eithere, or o,. Since the shear stress and
shear strain are directly proportional to each other, the neglect of
the shear strain, by virtue of assumpti@ stated earlier, implies
that the corresponding shear stress is also absent. As far as the
other two assumptions are concerned, it is clear that only one of
them would have been sufficient and the other appears to be an
unnecessary, redundant constraint.

It is now necessary to examine which of these two
assumptions—namely one that neglestsand the one that ne-
glectso,—is really reasonable. For this purpose, it is enough to
consider the relative magnitudes of these quantities with respect to
their in-plane counterparts. For the present problem, the maximum
value of o, occurs on the loaded surface={ —h/2) at midspan
and is equal to—qg,. Comparing this with the value afy nay,
which occurs at the same point, one obtains, for the case of van-
ishing h/a,
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. S max accuracy the zeroe, assumption, though inconsistent with the
lim ﬁ.) =0. (10) zeroe, assumption, is necessary in the thin plate theory.
h/a—0 xm
Similarly, at the same point, one gets .
Conclusion
lim (82_”‘6:) - P~ 043 for ©n=0.3. (11) An exact elasticity solution has been presented for the simple
h/a—0\ €x ma (1—p) case of cylindrical bending of an infinite strip. The magnitudes of

various energy components, and of the transverse normal stress

d the corresponding strain with respect to their in-plane coun-
erparts, are studied. The relaxation of the zero-transverse-normal-
stress and the zero-transverse-normal-strain assumptions in thin
plate theory are critically examined. On the basis of these studies,
one can conclude that:

Thus,while o, does turn out to be negligible, is not really so
However, it ise, that needs to be neglected to keep the thin plai
theory simple, as explained below.

Justification of the Contradicting Assumptions of Thin (@ the transverse normal stress is certainly negligibly small

Plate Theory compared to the in-plane stresses. However, the transverse normal
The displacement field of the thin plate theory, obtained bstrain is not negligible, but has magnitudes comparable to those of
direct integration of the transverse shear strain and transverse iBg- in-plane strains;

mal strain which have been taken as zero, is (b) neglect of the transverse normal strain in thin plate theory
is necessary only to effect simplicity, it cannot be justified other-
u(x,z)= TZWy (12) wise.

(c) having reconciled to the above fact, one should not endeav-
our to adopt the three-dimensional constitutive law as being con-
where the special case of cylindrical bending is considered ongietent with it rather than the plane-stress reduced law. This is
again, for the sake of simplicity. If the assumption of zerois because the resulting theory would then become more erroneous;
not employed, it is clear thay would also depend om, and its  (d) finally, the assumption of zero-transverse-shear is quite rea-
variation with z has to be assumed to obtain a two-dimensiongbnable for thin plates because the corresponding strain energy
theory; such a theory would obviously be more complicated thammponent does become negligibly small for a thin plate.
the conventional thin plate theory. Thus, though not really negli-
gible, £, has to be ignored frorthe viewpoint of simplicity

Having thus justified the need for the zerp-assumption, one References
m_ay be curious to find OUt_ whether th_e zerpassumptl_on n _the . [1] Timoshenko, S. P., and Woinowsky-Krieger, S., 1958gory of Plates and
thin plate theory can be dispensed with so as to avoid a violation ~ shells McGraw-Hill, Tokyo.
of the material constitutive law. This question can be answered byz2] l\/aradsn, T. Ki:’ eg;d hBhaSﬁar, K-,S%ié?nalysis of Plates—Theory and Prob-

1 _di i i ems Narosa rPublisning House, beini.
g?r;eﬁ_?)lszogn%f r?ot\r?lzoe?Ayr:e(?jlgga(;ézgﬂgtggsss I(\)l E'FENazs\:JrFr)lg[tlgr}%] Timoshenko, S. P., 1958]istory of Strength of MaterialdylcGraw-Hill, New

€ A . York.
Theory), with the conventional thin plate theory based on neglect[4] epstein, P. S., 1942, “On the Theory of Elastic Vibrations in Plates and

W(X,2) =wW(X)

of both ¢, and o, (referred to as CPT While a plane-stress re- Shells,” J. Math. Phys (Mass. Inst. Tech, 21, pp. 198-209.
duced constitutive law as given by [5] lyengar, K. T. S., Chandrashekhara, K., and Sebastian, V. K., 1974, “On the
Analysis of Thick Rectangular Plates,” Ing. Arci3, pp. 317-330.
E [6] Widera, O. E., 1970, “An Asymptotic Theory for the Motion of Elastic
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is used in CPT, the three-dimensional constitutive law given by gew. Math. Mech.49, No. 8, pp. 449—458.

0,=2Ge,+ ey (14)
is used in NPT. Thicknesswise integration would result in the
following expressions foM,: On Dynamics of Bar of Rectangular
Eh?

CPT: My=—-Dw,, where D= Cross Section

214 g

(2G+Mh® _ (1-p)°D N, B, Rassoulova
12 (1=2p) Institute of Mathematics and Mechanics, Academy of

The equation of equilibrium for the case of cylindrical bendin@ciences of Azebaijan, 9F. Agayev st, Baku, Azerbaijan
is given by

NPT: M,=-D’'w,, where D'=

My xxtq=0 (16)

which is valid for both CPT and NPT. Substitution fist, from
Eq. (15) results in the following governing equations:

The propagation of nonstationary waves in semi-infinite elastic
rectangular bars is studied. It is assumed that two opposite lateral
surfaces of the body are free of forces, while the two others are

CPT: DW =0 subjects to cross conditions. By introducing three new potential
’ (A7) functions, the author succeeded in getting closed-form solutions in
NPT:  D'W xuxx=0- Laplace and Fourier transform parameters. Inversion of the

It can easily be verified thad’ is greater tha for all possible transform solutions, carried out by an original method of inver-

values ofu, except whenu=0 in which case botld’ andD are sion, is suggested hereifDOI: 10.1115/1.1352063
equal. If one keeps in mind that CPT is known to yield a stiffer——
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lead to underestimates of deflectidfig]), then it is C|e‘ar from EQ. cranics, Manuscript received and accepted by the ASME Applied Mechanics Di-
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Introduction = T1(Y) (1)

This paper deals with the three-dimensional problems of dy- oy=1(X) () on z=0
namics of elastic bodies for the semi-infinite rectangular bar. In w=0
contrast to the previous worff1]) where this problem was con-
sidered only for mixed boundary conditions, we now investigatorresponding to the tangent impact, is reduced to the following
the solution for the case of free surfaces. system:

(A 2u)H0=—uqHyi,

Statement and Solution of the Problem HoH2¢,=0

. o . . f(p) ®)
We consider a semi-infinite rectangular prism occupying the Hoyy=— m(y)dy— | m(x)dx
space—asx<a; —b=<y=<b; z=0, where 2 and 2 are the H
sizes of cross section of the prism. At time 0, the end-section of . th f the following f las:
the prism is affected by the applied forces. The process takiHE" € use ot the tollowing formulas:
place in an elastic prism initially in a nondeformed state, is de- J o o
scribed by a three-dimensional system of Lame equation which in *Cz_‘P L2 _2;
vector form is as follows: 2 28
#?U ) — de dYy I
pr()\-i-/.L)gl’addIVU-i-,uAU UC_W_WH}W' (6)
@
U=U(u,v,w) Py iy
We=—(Q¢— —5— —>% -
whereU is the displacement vector, apds the density of mate- = ae x> ay®
rial. . )
As is known from([1]) the system(1) under the end-section 1he systems3) and(5) are simpler than the input syste(t)
conditions and they easily yield to obtain solutions of the problem.
In the present paper we investigated the syst&m where
5= oo(X,y) (1) oo(X,y) is a function of axial forces, distributed at end section of
u=0 for 2=0 () the par. . . .
—0 This system has to be integrated according to the lateral condi-
v= tions, which are chosen here as follows:
and under initial zero data is reduced to a simpler form: * two opposite surfaces= *a are free of forces:
maHz=(N+2u)H ¢ Oxx= Oyy=0x;=0 (7)
Hy1=0 (3) - the other two lateral surfacgs= =b assume one of the follow-
ing variants of cross conditions:
a(X,y)—
HoHoio=————1f(p) oy,,=0
K (a) 2. _ on y=*b
u=w=0 g
where ®)
ay,=0
P2 P [p? >
==+t |zt i= (b) y,=0} on y==*b.
H; ax2+ay2 Ci2+q , 1=1.2 be0
5 &2 ) It is evident, that the solution of the considered problem exists
HOZW"— (9_y2_q only on the clasgse) of functions with separated variables with

respect toc andy. Taking into account this fact, the conditio(®

are the Helmholtz operators; = (N +2x)/p; c,=ulp; and easily have been satisfied by choosing the corresponding solution
the functionse, #,, andy, are related to twofold integral trans-in the following form:

forms (the Laplace transform with respect taand the Fourier

transform with respect ta) of the displacement functions by the _
following formulas: ¢ Ek: fx)cospiy
— do I Iy
UTox Py 9 d1= 2 L0sinyy ©)
. :(9_(’0_ é_l/ll_ (9_{/12 (4)
Say T ax Tay ¢z=§k: gk(x)cospByy
_ Py Py . . .
=go— - where the parametes, is different in each variant:
We=qe¢ X2 —Zﬁy p By
1
Here, the indices & and “c” indicate sin and cos Fourier (a) ,Bkz(—Jrk)z;
transforms, ang andq are the parameters of Laplace and Fourier 2 b

transforms, respectively.
Analogously, it can be proved, that the same systé&jmfor (b) B :W_k k=01
another variant of end-section conditions: K ' s
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The functionsf(x), 1 (x), andgy(x) can be determined from Q okf_(p)q Q akf_(p)
the system(3). Skipping the details, we arrive at the following K T N 202 BE 1 o2 ; kT T T2 a2 oy
solution: (N+2p) vy (Bi+97) Mo Bit+d )(11)

fr(X)=Cy coshvy X+ Q1 (X) where o (x)= 1/23fklbao(x,y)cosﬁkydy and Vik

=\p%ct+q%+ B i=1,2; k=0%.
ConstantC,, Ay, |, are the solutions of the following linear
algebraic system:

I (X) =1} sinhvyx (10)

k()= Ay coshvy X+ Qo (X)

Cx d;
Here Q4 (x) and Q4 (x) are particular solutions of the corre- A | xD,=|d, (12)
sponding differential equations. It can be shown that for the sim- | k d
plest case whenry(Xx,y)=og=const oroy(X,y)=o0p(y) these k 8
particular solutions are as follows: where the third-rank matrio, is as follows:
|
[V2.(N +2u) — \(B2+g?)]coshrya —2uqv3, coshrya 2BV cOshvya
Dk: 72Blek SinhV]_ka 72qu1/2k Sinhv2ka 7([;&"’ ng)sinhVZKa (13)
2quy sinhvy,a — vo Q%+ va— BY)sinhvya By sinhvya
I
and for constanf);, For simplicity, assume thaf(p)=1/p (this corresponds to

f(t)=H(t), whereH is the Heaviside function Then according

to (4), we can define the functiow (the velocity of central axis
alongz):

d=\Qy(B2+q?), d,=0, ds=0.

Final solutions are presented in the form(®f and considering
the solution to the systerfl2), one can assert that the conver- |
gence of these series up to the third-order derivatives is evident. W = —

Note, that ifo(X,y) = op=const and in the cag®), i.e., when
the sidesy==*b are in contact with ideal smooth surface, the

q%+v3, sinhvy@a 1 coshryx
v3,  coshuyd 13, coshvia

q2 )\0'0 )
H(N+2p)

solution takes a simplest form: ZCOShVZOX __Sinhve
_ v5oCoshv,a  v19Coshyyga
Noof (p)vao 4+ 1300 a
o(X)= 5 sinhv,a- coshyx Yo oo 1
DovigA+2u) XDS N2u V%O (17)
aof (p)
_ where
Qv+ 20) ) o o
_ D3 =[v1o(A+2u) = Na7][q"+ v vpptanhvi@
Noof 2sinhv oof
go(X)= Bo(li)()?)\JrzM)lOa coshwypx— ;T(sz) (15) —4uq?vigrytanhvg.
20
L Following [3], we can present;/D} in the form of the power
(x)=0, k=000 series:
4 o
T 1
h0=0:0=0, k=1z EL )
Do =1 vy

Do=—[ 13N +21) — NG2][ g2+ v35] vaocOShr - sinh
0=~ [VigA+20) ~haTIa™+ vl va0COShY1R V28 hose elements are transforms both in Laplace and in Fourier.

+410%v,gv3,coshvy@a- sinhv, . (16) If we consider the solutions for the small values tofit is
sufficient to keep first few terms:
Thus, the problem is completely solved at transforms. Return-

. . - e A 4
ing to real variables comprises a great difficulty. All existing Y20 1 i_ﬁ h _1- C1=Co A
methods are unpromising to find the inverse transforms to obtain- D} - w\ vag Vgo » where e= 2¢, AN2u

ing general solutions. .
Only for the simplest solutiongl4) and (15) can we use the  Similarly, for the functionsU (the velocity of particles on a

“The Second Theorem of Expansior([2]) because as a whole, free surface along thex-axis) we obtain

these functions are meromorphic ncomplex plane. However,

even in this case, this method does not reduce to the desired - Nooq

1 sinhvyg@a 1 sinhvy,a
V1o COShyygd Va0 COShyy

results, because it is impossible to obtain the roots of the equation Ugl=sa=— w(N+2u)
Do(p)=0 for arbitrary value of.
Now, we propose the original method, which makes it possible ( 1 qu)

to find the inverse functions, even for transforms of general solu- o3 (19)

3
14 14
tions. For visualization purposes, we show this method for the 20 T2
simplest case of solutior{14) and (15), and construct graphs of The inverse Laplace transform of the functiofd§) and (19)
certain quantities to verify the validity of the proposed method.(taking into accoun{18)), could be obtained as follows:
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C1

T z . Hamilton Principle and Generalized
N+ 2% A+ 2u ( ) ™) Variational Principles of Linear

The calculations ofv andU are made for the following values of 1 N€rMopiezoelectricity
parameters and time interval@raphs are attached at the end

Figs. 1-2) .
¢,=2¢,=6200 mic Ji-Huan He _ _
. Shanghai Institute of Applied Mathematics and
\=2p=15x10" kg/n? Mechanics, Shanghai University, Shanghai 200072,
o= — 2% 10° kg/n? P. R. China
a=0.2m
t,=kalc;; k=1;1.5:2;25... . Via the semi-inverse method, a family of various variational prin-
ciples is established for thermopiezoelectricity, including a Hamil-
Discussion of the Results ton principle and a minimum complementary energy

) o principle. [DOI: 10.1115/1.1352067
Up to the moment=alc,, the solutions on thezaxis will be

presented by the plane way®), representing longitudinal wave,
propagating in the infinite elastic medium. Although this fact is

known from physical considerations, it can be proved rigorousiytroduction
from the mathematical point of view.

The forepart of perturbations propagating with the velocity
corresponds to the region where the reflected waves do not aff
the behavior. Here the solutigi) takes place, and the width of
the peak decreases according to the law:

Recent interest in piezoelectric materials stems from their po-

tial applications in intelligent structural systems. Chan-
rasekharaialil] proposed a generalized linear thermoelasticity
theory for piezoelectric media, and H2] applied the Lagrange
multiplier method in search for a variational partner to the Chan-

_ [(22_ .2 drasekharaiah model. This revealed that the traditional approaches
do=cyt=yeit™—a’. failed due to the variational crisigsome of multipliers become
ero during the identification of the multiplierd.iu [3] obtained
él_nified variational principle for thermoelasticity. In this Note,
applying the semi-inverse methgde [4,5]), we obtain two gen-
ralized variational principles for generalized linear thermopiezo-
lectricity. By constraining the obtained generalized functionals,
two minimum energy principles are deduced, one of which is
%oved to be of Hamiltonian type.

Next to the forefront, there is a front of low-energy diffractiorf
waves and a well, appearing as time progresses, between the f
front of waves and “quasi-front’AA’ of the rising new wave.
(Fig. 1) This wave can, without any doubt, only be the rod Wavg
propagating with the velocitg;= E7p. The back part of this
wave will correspond, on average, to the solution given by t
elementary theory of rods. The possible variations around t
above solution can be related to the cross section inertia.

Simultaneously, in order to clearly demonstrate the advantage
of exact theory over the elementary theory, the calculation fgteneralized Variational Principles
normal velocities of free surface particles- =a has also been .. .

The essence of the semi-inverse method is to construct an

carried out. t?gergy-like functional with a certain unknown function, which can
The results are shown in Fig. 2. The given graphs are mobe identified step by step. An energy-like trial functic;nal for the

significant as compared to any arguments. The breakpgoiot ™. ) ) .
those curves corresponds to the transverse shear wave front. PAiEEUSSed problem can be constructed in the following form:

ably, a detailed investigation of the roots of equat@g=0 for o

the higher values of time would show the possibility of diffraction [

wave degeneratiofpartly) into the Rayleigh wave concentrating Joij iy Ui, 60,0i,Di B @) = (-1 Ldvdt+Bl, (1)
the main energy of motion near the free surfaces.

where stressj; , strainy;; , displacement;, temperatured, heat
flux q;, electric displacemerD;, electric fieldE;, and electric
Conclusions potential® are treated as independent variationss a trial La-

] ) ] ~grangian andBl is the “boundary” integral, which are defined,
1 The existence of three new potential functidqose longi- respectively, as

tudinal and two transverséescribing a three-dimensional motion
of a linearly elastic rectangular bar has been proved. The system
of the Lameequations in these potential functions is simpler and
is easily solved.

2 The method of inverse integral transform for low and finite !
values of time has been proposed. The validity of this method is Bl =Z f
proved once more by the logical results obtained. k=1 Ju

L:(Uij,j+fi)ui+%Pui,tui,t+Fv )

t(n

f deAdt+fGSdV. 3)
Ay %

(n—1

In the above expressions,andG; (i=1-8) are unknowns which
References can be determined in the manner described in the author’s previ-
ous papergHe [2,4,5)). Using a sequence of manipulations, we
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L=(aij'j+fi)ui+%pui,tuiyﬁr aijyij—%yijaim Y Constraining the generalized Lagrangigh, we obtain the fol-
1 ) . lowing Lagrangian with only two independent variations

+ yijemijEm-i- y'lb'l 0+ 50000 + QCiEi_ ot qiyi—aﬂ and ®:
+5(Kij7+1')qi0;— B0 — EiD; + 3E;&;E; + Di® ;+ g .

4
We introduce a new variabl@ defined as
The unknowns appearing in the boundary inte@iatan be writ-

ten as follows: Q=oyr;—1I, (16)

[(Ui:(D):Uinij_H+g(D+%Pui,tui,t- (15)

Gy=— O'ijnjUi ,Gy=—u;(oyjn; _E)’G?’:aDini , and we call) the complementary energy density of thermopiezo-

— — electricity. So we have the following functional:
G4=®(Dini—Dy),Gs=~t'q;(6—-0),
Gg=—t'6d,,G7= —t'Bif(36- 0), ﬁ(ui,cp)=J
t

—Gg=3[ fyui+(ui—f)u; J" P+ p[ugT; ™. (5)

tm 1
1J (Q—g<1>+§pumuiyt dvdt+BI, (17)
(n—
which is proved to be a minimum principle, and we name it the

Here the bar(for exampleu;) indicates that the variable is pre-Minimum complementary energy principle of thermopiezoelec-
scribed on the boundarffs are given functions of the coordinatest/CIty-

x; (i=1-3), Tj , is considered as a restricted variation, il , We can also begin with the following trial Lagrangian:
=0, the timet is semi-discrete, and the time difference is defined 1 1
ast’=t—t(""1 where the subscript denotesith time stepn=1 L1= o (i — 2Ui,;— 2uj,) +F. (18)

and tP=0. So we can obtain the analytical solution for
e[t (=D 4 t']. The variablese and 8 in Eq. (4) are de-
fined, respectively, as

Using the same sequence of manipulations as before, we can ob-
tain the following generalized Lagrangian:

1 1 1
Ly=3pU; (Ui (— I+ 05 (yi;— 2U; j— 3U;,) + 0(L' G i+ @)

a:CHOH(nfl)-i-bijyi(jn_l)-i-CiEfn_l)-i-t'pQ, (6)
+ai[ 2(Kym+t)g;— Bl1-(D; i~ ). (19)
p=Kra" . @
Constraining the Lagrangiail9) results in
The definitions of the other variables in the above equations can _
be found in Chandrasekharaift]. L,=T-1I, (20)

It is easy to prove that the stationary conditions of the obtained
variational principle satisfy all the field equations and boundaryhereT= %pui,tui,t. Clearly, Eq.(20) has the form of a Hamil-
initial conditions. Further, it should be pointed out that the Eulgonian.
equations with respect td andq; read

Chb+byiyii+GEi—t'qi i=a, 8 ,
oDy TaE TG T ®  Conclusions

t' 6+ (Kjj7+t')q=p. 9) In this Note, we have succeeded in obtaining a family of gen-

eralized variational principles for linear thermopiezoelectricity,

If the caset’—0, the above difference equations turn out to be thgom which various variational principles can be obtained by con-

Fourier’s laws for heat conduction: straining the functional through the choice of field equations or
boundary/initial conditions. All the obtained variational function-

96 3y JE; als can be reduced to the known variational principles of elasticity

C9oﬁ+bij St TG T9iteQ (10) if the thermal and electrical effects are ignored. The present for-

mulation provides a more comprehensive theoretical basis for fi-
nite element applications, and other modern numerical techniques.

— k| D 11
0i==Kij| 7= +ai/. (11)
Equation(11) can be written in a more convenient form: Acknowledgments
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whereKj; is the inverse ok;; .
Next, we introduce a generalized thermo-strain-piezoelectric

energy density defined as References
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Stability of Beams on Bi-Moduli Induct the following changes intfl):
Elastic Foundation x=XIT, W=WiT, \=TYKIEL,

_ — @)
. P=P/JEIK, II=III/VEIK.
Z. H. Liu Then
LWang _1 11 AYA "2 lta 2\\ /2
e-mail: wanglei@sdu.edu.cn H—EL 372 (W)= PW)™+ —— AW
Department of Civil Engineering, Shandong University, + —l_ax2w|w| dx. 3)
Jinan 250061, P. R. China 2

The interval [0, 1] is divided into n small intervals:

[Xo,X11,[X1, %21, + « - [Xn-1.Xn]. The displacement function
L. Z. Pan made in the intervalx; _,,%;] is
Shanghai Institute of Applied Mathematics and s
Mechanics, Shanghai University, Shanghai 200000, Wi(x)= A, Slnxi, - i=12;,n 4)
P. R. China
W/ ()= — A Cose =L =1 5
i(X)_AXi i 0S AXi =1,z ,n. ()

This paper adopts the newly structurédunction and displace- Equation(4) should be subjected to the following conditions:
ment function. Using two adjacent transition points as two inter- , , .

val terminals while beams buckle makes the intefoal;,x; /. Wi () =Wi(x) i=1,2,--,n—1, (6)
According to the Winkler’s beam buckling theory on elastic foupr (5) and (6) yield

dation, we present the energy solutions of beams and then the

exact solutions of buckling load of simple supported beams on A A
bi-moduli elastic foundation.[DOI: 10.1115/1.1360181 TAX Ak, CbZon )
Then
1 Introduction Ar (1DPTA, (1)PTTA, (—D)"'A,
The bi-moduli elastic foundation model assumes that when the A_X1: Ax; B Axz T Ax, ®

foundation is compressed or tensioned, the reaction that the foun- At (—1)2 A, (—1)" 1A, (- 1)1A,

dation gives its above construction is expressed by 9
AXq+AXy+- -+ AX, AX;
KiW(x,y), W=0
P(x,y)= Thus
KoW(x,y), W<O0 .-
— 1) A

in which k;, k, are the non-negative reaction coefficients. When Axi:n()—' i=1,2,---,n, (10)
k, equals tok,, the bi-moduli elastic foundation model becomes 2 -1
the Winkler elastic foundation model. Because the variation of the “ (=D7A

tension and pressure reaction of the foundation leads to the non- .
linear of governing equation, the mechanical problems of struter (10) yield
tures on bi-moduli elastic foundation becomes more complicated. _ayi—1p o

Even if relatively simple conditions, it is very difficult to get the (CDTA=AAX =120, (11)
solutions of the nonlinear differential equations. In 1967, Tsai ankhen
Westmann first made the analysis of bending of beams on tension-

2_p2 2 =
less foundatiorik; or k, is zerg ([1]). Since that, many scholars AT=AYAX)T i=12:-n (12)
have always studied the bending of beams on tensionless founigawhich
tion ([2]). In 1985, Adin first made the analysis of bending of _ o
beams on relatively common bi-moduli elastic foundat{f@i). AXi=Xj=Xj-1 1=12,,n
At present, no one has presented the analysis of the beam stability A=A = Ayt Ag— Ayt +(—1)" A, .

on bi-moduli elastic foundation. In this paper, authors present the - )
exact solutions of buckling load of simple supported beams &®r (12), three following integral solutions are
bi-moduli elastic foundatioriSee Fig. L

2 The Solution of the Stability of Beams on Bi-Moduli

. . = K:>0 = -
Elastic Foundation P ydatidstrr s e s zes P x
If k;=k and a=k,/k, then the potential energy of beams is FLELfErrs s 7 rrry ”:%_,
K>0
— 1 (1 fszzl-i-ale—a——
=z EI(W")*—=P(W') "+ ——KW +—KW|W| dx. i
2 /o 2 2 |
@ |
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF — 1 L |
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- w
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb. 3,
2000; final revision, Dec. 22, 2000. Associate Editor: S. Kyriakides. Fig. 1

668 / Vol. 68, JULY 2001 Copyright © 2001 by ASME Transactions of the ASME



5
4, b
3 9
2 L
1}
0 1 1 1 1 A
T 21 3n qm 81
Fig. 2
(X 1 For dI1/9A;=0 j=1,2,---,n, and={_;Ax;=1, thus
(W))2dx= 5 m*A%(Ax;) '
Xi-1 2 - A2
x. 1 P=172 (Ax) "+ — X [5'(Ax)°]  (18)
f (Wi’)deZEWZAZAXi (13) i=1 T =1
i P \2

Xi 1
f W?dx:EAZ(Axi)3 i=1,2,---,n
\ Xi—1

In the interval[x;_,,X;], Il is signed adlI;,

2
7:_1 )72 -5 )2 = e
A% N2 (Ax)""+3— SHAX)? i=1,2,--,n. (19)

To find the minimum ofP, solve the equatiodP/JAx;=0, thus

1(x[1 _ T g0
Hi:EL [)\Z(W{’)Z—P(W{)2+)\25f‘wf dx i=1,2,+,n M=t AN (20)
i—1
(14) AX IAXg =87 =12 1. 21)
where
, For
S=a'tCVB j=12---n (15)
n n n
n —1 —1
AX;= AX, 6 “]=Ax 5 =1,
Mm=> I i=12--,n (16) Zl ' Zl[ 1971 121 '
i=1
For (13), (14), and(16) yield thus
2 n n n A 1 29
4H:A2FE(AXi)’1—Tr2PE INERTS 5?(Axi)3} Xl‘}ﬂ) ] (22)
i=1 i=1 i=1 T
(17) =
P
5
41
3 3
2 2
I
0 1 ] 1 1
n 27 3T 47 ST
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Fig. 3
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Fig. 4
n 1 n2.m2 A2
Ax;= 5i_§:l 5#} . (23) P=z " rz2-

=

And its curvep-\ is Fig. 2. Comparing Fig. 2 with Fig. 3 and Fig.
4, it can be gotten that more increases, farther the minimum
) -3 points of the curvep-\ deviate from the lingg=2. The buckling
1

Substituting(23) into (18), thus
2( N n 2
T A . . . . .
P= —2(2 5i) ( Z 5]-’1 +— of beams on bi-moduli elastic foundation first occurs along the
A= i=1 ™ direction of the least reaction coefficient of the foundation.aSo
_ (24) =1 is adopted in(25) and (28). But the displacement function
If nis an even number, then adopted by this paper does not adapt to the analysis of stability of

- n2m2 (1+ o) (1+ o~ 14 N2 A(1+ oYY simply supported beams on tensionless foundation, nam|Q

=z 2 + 2R a7 (25) in (25) and(28). This special condition needs more study.
for 9P/aN=0, thus
_ Referen
)\:%(1+a 1/4)n71- (26) ererences
[1] Tsai, N. C., and Westmann, R. A., 1967, “Beams on Tensionless Foundation,”
Pmin=2a*. 27 J. Eng. Mech., ASCE93, No. EM5, pp. 1-12.
. [2] Selvadurai, A. P. S., 197%lastic Analysis of Soil-Foundation Interaction
If nis an odd number, then Elsevier, Amsterdam.

[3] Adin, M. A., Yankelevsky, D. Z., and Eisenberger, M., 1985, “Analysis of

Beams on Bi-Moduli Elastic Foundation,” Comput. Methods Appl. Mech.

2,2 1
—1/4 —1/4
(I+a "+ (1-a™™) Eng.,49, pp. 319-330.

P

1
(1+ )+ (1= a')

2

1
(1+a™+ = (1-a'

+
n2,77,2

Period-Doubling Bifurcation and Non-
s Typical Route to Chaos of a Two-

Degree-Of-Freedom Vibro-

Impact System

-3

1
(I+a ™+ —(1-a ¥

for 9P/9N =0, thus

1 1
A=5|(Tra Y4 —(1-a Y n7 (29)
~,  G.L.Wen andJ. H. Xie
P in=2 (1+a1/4)+1(1_a1/4) (1+a—1/4)+3(1_a71/4) ~ Department of Applied Meghanips and Engineering,
n n 20 Southwestern Jiaotong University, Chengdu 610031,
(0 p R, china

According to (25), (26), (27) or (28), (29), (30), the following

curves are plotted. In Fig. 2, Fig. 3, and Fig. 4, the cupes are

shown fora=1, 2 and 5 when the half-wave numbeis 4. The

solid line represents for the real curvyes\. When\ exceeds the
critical A corresponding to the point of intersection of two adja
cent curves, the half-wave number will be increased one.

A nontypical route to chaos of a two-degree-of-freedom vibro-
impact system is investigated. That is, the period-doubling bifur-
cations, and then the system turns out to the stable quasi-periodic
response while the period 4-4 impact motion fails to be stable.
Finally, the system converts into chaos through phrase locking of
3 Conclusions and Discussion the corresponding four Hopf circles or through a finite number of

The dividing point of any two adjacent half-waves can be go%l_mes of torus-doubling.[DOI: 10.1115/1.1379035

ten by (22) and (23) when the buckling of beams on bi-moduli Comibuted by the Abplied Mechanics Division OfiE A %
; ; ; ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF
elastic foundation happens. Assume:1 in (25 and (28), then MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-

yields the equation Of bU_Ck“ng load of beams on the Winkleganics. Manuscript received by the ASME Applied Mechanics Division, Apr. 2,
foundation. The equation is 2000; final revision, Dec. 5, 2000. Associate Editor: N.-C. Perkins.
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Introduction M, K, P,

Vibro-impacting phenomena exist in many areas of applied me- Pm=my P BT B fo= P,+P,’
chanics and engineering. Because the noncontinuity property ex-
ists in the differential equations of vibro-impact systems, to inves- _ My ~ Cy =T /Ky b BK,
tigate the Poincarenaps of vibro-impact systems is more suitable K’ J ' M, P,+P,’

~oir ) _ _ 1 2JKiM, 1 172

for the exhibition of complicated dynamic behaviors of the system ) .
than to do directly for the differential equations of the motions XK, o XKy o XKy
(see Shaw and Shajt], Luo and Xie[2], and Xie,[3]). Unfor- Xi= PP, X1+ = P.+P, X1-= PP, =12

tunately, the Poincarmaps of vibro-impact systems can only be

written as implicit forms. Therefore, some enormous difficultie! Ed: (1), a dot denotes differentiation with respect to the nondi-
exist unavoidably in the study of dynamic behavior of vibromer_ISIonal timd, t.h‘? phase ar_lglels used on!y to make a suitable
hoice for the origin of time in the calculation between two con-

impact systems, especially for multiple-degree-of-freedom vibr& R . : . X
impact systems. Even though a large amount of results on Iﬁge:(?qt've Impactsy,, andx,_ represent the impacting mass ve-
dynamics of one-degree-of-freedom vibro-impact system halR¥ities of approach and departure, respecilvely.

been presented, there is still more work to be done in multiple- €hoosing ~a ~ Poincare section oCR"*XS, where o
degree-of-freedom vibro-impact systems. The existence of quasitX1,X1,%z,X2,0) e R*XS, x;=b, X;=X;,, we can establish
periodic impact motions of a two-degree-of-freedom vibro-impadfe Poincarenap of the systentsee[2]) and express it briefly as
system similar to the one herein was still recently investigated by NG :?(U X) )
Luo and Xie(see[2]). ]

It is well known that the routes to chaos from period-doublingvhere 6= wt, f=(f;,f,,f3,f)7, XeRY X=X*+AX, X'
cascades and from a finite number of times of torus-doubling bothX* + AX’, v e RY. X* =(X1, ,X20,X20,70)" is a fixed point in
are typical. In this brief note, after the period-doubling bifurcatiothe hyperplaner. AX andAX’ are the disturbed vectors ¥f X',
of the two-degree-of-freedom vibro-impact system aforesaid igspectivelyy = w is the bifurcation parameter.
verified by analytical method, we briefly reported a nontypical With a change of variables, the mé& is given by
_routﬁ to ch_agsdforbtlhe multipa:jrameter vibro-impafct:t system. Thatf et
is, the period-doubling cascades occur cease after two times o , 3
period-doubling bifurcations, and then the system turns out to the AX'=1(v,X)=X* = f(v,AX). )
stable quasi-periodic response while the period 4-4 impact motitap (3) is C*. Suppose that there exists fixed poXit for v in
fails to be stable. Finally, after the simultaneously appearing fosome neighborhood of the critical parameter valuesv., at
Hopf circles fail to stable, the system converts into chaos directiyhich Df ,x(v,0) satisfies the following hypotheses:
through phrase locking of the corresponding four Hopf circles or HL Df,x(v,0) has an eigenvalue;(v.) = — 1, and the other
through a finite number of times of torus-doubling. eigenvalues stay inside the unit circle;

However, though it is perhaps easy to investigate by theoreticalH2  d|\4(v)|/dv], -, >0.

analysis the process of period-doubling cascade for some Simpl%ubject to the hypotheses H1 and H2, the fixed péintwhich
map systems, few proper analytical methods could be employeqdasiaple fory<v,, becomes unstable far>v,, whereas there
investiga’ge the whole process of period-doubling c'ascades Rhy exist period-doubling bifurcation in the mép) for v=v..
some quite complex dynamic system such as multi-degree-of-r, getermine the existence of period-doubling bifurcation in the
freedom vibro-impact systems so far. Usually, one may take it f@f ,+ dimensional may3), a center manifold reductiofsee, for

granted a route from period-doubling cascades to chaos eXiSti”gﬂPmple,M]) and a normal form techniqueee[5,6]) are applied
a very complex system after the arduous analyses of one or twaQfreqyce the Poincamap (3) to a normal form, as follows:
period-doubling bifurcations and a seemly reasonable plot of

period-doubling bifurcation cascades are made. According to the X' =9(s,%) ==X+ N(,X)=—x+Nyux+nex’+--+  (4)
results presented this brief note, it is very possible for those cofjherep=v — v, . Letg?(u,x)=g(u,9(x,X)). It follows that the
plicated vibro-impact systems with multiple degree-of-freedomeriod-two points of Eq(4) satisfy
that the long period motions, quasi-periodic responses, and cha- )
otic responses are quite easily be confused each other. 9°(u,x)—x=0. ()
Supposing now
N13-No3# 0, (6)

Analysis of Period-Doubling Bifurcation of the System  one can easily obtain by the implicit function theorem that

The mechanical model of a two-degree-of-freedom vibro- No3
impact system with a gap is shown in Fig. 1. The mas¥l, w=p(x)=— —x2+0(x?). 7)
impacts against a rigid surface when its displaceménequals N11

the gapB. The impact is described by a coefficient of restitution
R, and it is assumed that the duration of impact is negligible

compared to the period of the force. P,sin(QT +7)  Bsin(QT +7)
Between two consecutive impacts, #y<B, the equations of
motion of the vibro-impact system with proportional damping of - - B
the Rayleigh type are written in nondimensional form : 6'2 Cl
1 0](x 2 -2¢ X , g
e . e PP e VAR
0 uml(X2 =2f 2{(1+pu) (%2 L ] 2 [\I\M\ 1
1 -1 (%) (21—, g ) r
+ = in(wt+ X1<b SN 1 00
X =—Rx_, (x3=b) —= X = ¥
@) 2 1
where the nondimensional quantities are in forms Fig. 1 The mechanics model
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Fig. 2 v=0.75, stable period 2 fixed points

In other words, the implicit function theorem guarantees the exis-
tence of period-doubling bifurcation of m&@) for v in a neigh-
borhood ofv. (corresponding tqu in a neighborhood of zejo

when (6)

The stability of the theoretical fixed point and the period-two_
points may be determined, respectively, from _

holds.

Fig. 4 v=0.7563, four stable Hopf circles

(1) The system with parameterg;,=2, w,=6.1,f,=0, =0,
b=1.6, R=0.82 has been chosen for analysisis taken as the
bifurcation parameter; that isp=w. When v is at v,
0.745716, find that the eigenvalues Dff yx(v,0) in (3) Ay
—1.000003, \,=—0.893354 \;,=—0.183694-i0.835633.

Then, with v increases throughv, on the interval v
99 = 14n,u+O(w) €[0.744,0.75], N,(v) will cross the unit circle and the other
IX| o s m eigenvalues will still stay inside the unit circle; is a period-
g2 ! . doubling blfurcatlo_n cr_ltlcal value. _
= =1+4n,u+0(u) The map(3) satisfying the hypotheses H1 is reduced to the
X |y = i) normal form (4). It then follows thatn;;=—0.572016, nys

=0.009147, and a stable supercritical period-doubling bifurcation

Nontypical Routes to Chaos occurs. Numerical simulations of original four-dimensional map
In this section the interesting dynamic characters of the vibré2) are carried out for determining dynamics near the bifurcation
impact system given in Fig. 1 involve a sort of a nontypical routealue v.. The dynamic behavior of the vibro-impact system is

to chaos. shown in the projected Poincasection in Figs. 2—6. The Poin-
1.4 1.6
L2 f - " L4 F
. 1.2 b
i ) - LF
6.8 F &
RN A A + o"‘ RN @-8 N
a6 F 7, L :
[ 0.6 |
8.4 E‘ .. @.4 5_
0.2 | \,0‘ . 2.2 E
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T

Fig. 3 v=0.7554, stable period 4 fixed points
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Fig. 8 v=0.754, stable period 4 fixed points
Fig. 6 v=0.75705, chaos

Section 2. Aw keeps on increasing, find stable period-four points
care section is taken in the formw, which will be four- shown in Fig. 3. After then, it is surprising that the period-
dimensional. Here, the numerical results is projected to thimubling cascade stops and four Hopf circles appear simulta-
(7.%,)-plane, which is called the projected Poincaegtion, but neously by the Hopf bifurcations of the corresponding period-four
the other the projected Poincasections are not shown herein forpoints as seen in Fig. 4. As the valuesvomoves further away
the sake of succinctness. The theoretical fixed point of fouirom v., the system evolutes to cha@s Fig. 6) through a finite
dimensional mag4) corresponds to the 1-1 periodic impact monumber of times of torus-doubling process “4 Hopf circl@s
tion of the systen{l). We take it as an initial map point in nu- Fig. 4—4X2T torus (in Fig. 5—4X4T torus—4Xx8T
merical simulations and denote its location by The vibro- torus—the breaking of & 8T torus—Chaos(in Fig. 6)". With
impact system (1) exhibits stable 1-1 orbits asv further increase in the value of, the system will be drawn out
€[0.744,0.745676). As passes through, , there exists a family from chaotic motions, and stable quasi-periodic impacts occur,
of stable period-two fixed pointé.e., stable period 2-2 impact which is represented as the more complex torus. Finally, transition
motion) bifurcating from the theoretical fixed point. As an ex-again to chaos through once torus-doubling bifurcation of the
ample, the theoretical fixed point correspondingute0.75 is complex torus occurs.
taken as initial map point, and it is attracted to the stable period 2(2) Consider another family of system parameters;=2, w
fixed points after 1500 impacts, as shown in Fig. 2. The result is #a6, f,=0, (=0, b=1.5,R=0.7.v=w is still taken as the bifur-
agreement with the one obtained by the analytical treatment in
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Fig. 7 v=0.7515, stable period 2 fixed points
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Fig. 9

4!

v=0.7552, four stable Hopf circles
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3.9 tion cascades plots emerging in well-known classical systems
such as-,(x) = ux(1—x). As a matter of fact, the real dynamic

3Ir . . . evolution of the vibro-impact system, however, is different at all
>5 L : : . to only from period-doubling bifurcation cascades to chaos. The
' ‘. .. . significance of the nontypical route to chaos presented in this brief
2 F e et ' . " R note is just located in the information of easily confusing long
Pl R fe period motions, quasi-periodic responses, and chaotic responses in
Lo § : . complicated multiparameter vibro-impact systems.
o LF ‘. .
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25 ; \ , , An analytic solution for the elastic response of anisotropic com-

posite beams of rectangular cross section is presented. The for-
mulation is based on the expression of the stress tensor compo-
nents as trigonometric series and exponential functions. The
ability to predict the elastic response and the corresponding elas-
Fig. 11 v=0.755971, chaos tic coupling mechanisms is well demonstrated and discussed.
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cation parameter. Whanis atv ~0.7444904, the eigenvalues of

Dfax(v,0) is A;=-1.000001, A,=-—0.8505967 N3, .

=—0.148746-10.732957. Withv increases through,, a stable Introduction

supercritical period-doubling bifurcation occurs. The dynamic For the last three decades, the analysis of composite beams has
evolution of the vibro-impact systeiid) is shown in Figs. 7-11, been the focal point of many research efforts, and the rapidly
in which the phrase locking in Fig. 10 is obtained by ignoring thgrowing interest in this area during the last decade testify for its
first 500 impacts among 5000 impacts. It is remarkably mention@dtential in a vast range of engineering applications.

the fate of the simultaneously appearing four Hopf circles differs One of the classical approaches to the analysis of anisotropic

from that of the first family of system parameters. beams has been presented by Lekhnitgkjj who expressed the
stress functions and the stress tensor in terms of complex poten-
Conclusions and Discussion tials, developed a rigorous derivation of the associated governing

The dynamic responses of the two-degree-of-freedom vibrgguations and boundary conditions, and presented analytic solu-

impact system in Fig. 1 have been considered in this note. If t

he—
; : f A Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
bifurcation plots ¢,7,) of this system under the two families of MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME-

Parameters was presgnted out respectively, one Can ﬁnd. SUriiSinics. Manuscript received by the ASME Applied Mechanics Division, Apr. 20,
ingly the plots very alike to those usual period-doubling bifurcazo00; final revision, Nov. 8, 2000. Associate Editor: M.-J. Pindera.
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tions for some specific cases. In this note, an exact solution for d .
generic anisotropic beams is derived and discussed in terms o > End Cross-Secticn
Lekhnitskii's formulation.

The linear problem may be divided into smaller subproblems b
and classified with respect to three main categories.fiFbiecat-
egory deals the nature of the applied loads. Here, it is convenient r

&llll

to obtain first the solution for the case where the stresses do noi (b) ,

vary along the length of the beam, and subsequently extend it to ’ N,

the general case of nonuniformly distributed surface loads. The ,' Phe TN o .o/
secondaspect for which classification of the problem is required is 7 P ’

the number of laminae. The basic level with that respect contains ’

the case of a single lamin@e., a homogeneous beanuch a VAN
solution may be extended for cases of two or more laminae using 7 Outer Surface

interlaminar compatibility equations, see also Rand and Rovenski
[2]. The third aspect of classification is the shape of a section.
Since the present methodology is closely related to the solution of
Dirichlet problem for the domain occupied by lamina, it is first
convenient to apply the analysis to rectangular cross section.
The present approach employs analytic techniques and does nc / Mt

(@

End Cross-Section

include numerical approximationsuch as predetermined shape
functions, iterative schemes, numerical integration and/or differ- Pz
entiation, etg. Subsequently, the model is free of simplified as-
sumptions regarding the solution, and therefore all global and nfig. 1 Composite beam notation; (&) general view, (b) a rect-
nor effects and detailéncluding all stress and strain componéntsangular cross section

are simultaneously kept. For that reason the accuracy of the

present approach is well analytically established. For other analy-

sis techniques, the reader is referred to Savoia and REgldy .
Whitney [4], and Makeev and Armanids]. not vary along the beam, the loads are limited to the case where

The core solution presented in this note is focused on the c488Y aré not functions of and they create no force or moment

of a homogeneous beam where the loads create stresses whicFegiual,

not vary along its span. The associated complex potentials, the I

stress functions, the stress and the strain vectors, and the displace- J {X,Y,ZXY~-YX,XZ,yZ}ds=0, (1)
ments are presented as trigonometric series, the coefficients of 2

which are the solutions of a linear system of algebraic equatioRgherex=x—d/2 andy=y—h/2. The above described loading
The method may handle both tip and surface loads. The ability f3ds to a state where the beam curvature comporients
predict the elastic coupling mechanisms is also presented. The, = andk,=—v ,,, the axial straineo=w ,(d/2,h/2) and the
generality of the core solution enables a direct extension of thgist g= 1/2(vyxfu',y),z(dlz,hIZ), are all constants. The curvature

method to several cases that include laminate beams, spanvdiggracteristics and the axial strain are related to the tip and surface
dependent loads, polar anisotropy, and additional solid and thigads by the equalitiés

walled cross section geometries. The analytic derivation and the
illustrative examples have been carried out using MAPLE symr»k | =M

bolic manipulations software. 11— Sssti2
g/

all

My

1 — — 1]
5 (A1F°— 2, F%) X+ a XYY + 5 23Xy Z | ds,

Formulation of the Problem gohd=agP,
Consider an uniform composite bedne., a solid slender struc- -~ - ~S 2
ture having two kind of boundaries: the two end cross sections + Ln(algxx+a23yY+a3 Z)ds, @

and the outer cylindrical surfageas shown in Fig. (8). In the
present note, the case of a rectangular cross section of ditid Kol - = 2aaM < — 835
heighth will be under discussion, and for the sake of conveniencg, 21~ “38%1 5
the origin of the Cartesian coordinate system is placed at the cq
ner of the rectangulafl={0<x<d, O<y=<h}, see Fig. 1b). +f
The material possesses anisotropy which is obtained by a rotatipn a1l
of orthotropic material by the angle-t about the y-axis,
and therefore, thex—z planes exhibit elastic symmetry. Duewhere I,=1/12h%, 1,=1/12hd® are the principal moments of
to the above defined anisotropy, the constitutive relationgertia of IT. The twist can be derived using the solution of the
e=[a]o are defined using a symmetric compliance matrinear system as will be shown in what follows.
[a]={ajj}1<i, j<6, containing 13 nonzero constants nine of The derivation of the displacementsv,w in the x,y,z direc-
which are independent.o={oy, 0y ,UZ,TyZ,TXZ,TXy}T, and tions, respectively, is aimed towards the determination of the
e={ey,8y,8,, yyz,yxz,yxy}T are the stress and the strain vectorsyarping functionsU, V, andW of x, y for a given set ok, k,,
respectively. €9, andd. Thestress functions RndV are defined so that equi-
The end loads are assumed to be given only by their residudibrium equations are satisfied identically. They are linear combi-
tip momentsM ={M,,M,,M,} (about the—x, y, and—z direc- nations(with known coefficients, ,\) of thecomplex potentials
tions), and an axial forc®, (in the —z direction), see Fig. a). In &, (z,) =Py(z,) +1Qx(z), k=1,2,3, and analytic functions of the
addition, distributed loadB.={X,Y,Z} (per unit arepalong the complex variablesz,=x,+iy,=x+uy in the rectangleslI
outer surface of the beam and body forégs={X,Y,Z} (per unit ={0=x,<d, O<y,<hg,}. Here uy,u, are six roots of the
volume are applied. For simplicity we assume bel&y=0. To
comply with the basic assumption that states that the stresses dérhese formulas in absence of force projectibare given in Lekhnitski[1].

M,

=

— 1 1 _
a;XyX+ > (8%~ a;X°)Y + 5 agsXyZ|ds,
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polynomiallg(«) associated with the compatibility equations, de- mnd

pending ont and on the reduced elastic constatis=a; v1D1n sin)—( ha, )+u2D2n sm?—( hG, ) Ds, sinf(m)
—ayzag;/ags (i,)=1,2,4,5,6), see Lekhnitskjil]. For the cases 8

considered in the present ng@nd for the materials discussed in h2(-1)"-1) hZs,

Makeev and Armanio$5]) u=iBx, (B>0), and\ =iv, are
purely imaginary. In the isotropic casgy=1, A =0.
The stresses, strains, and displacements may be expresse

terms of complex potentials as well. The stresses have to satlsn}] 2 _[Igl(Al —1)"B,, )H -+ Bo(Ag — (—1)"By ) H?
the 12 boundary conditions ! ] i 7T in

27T3n3b55 2n

{Ux,fxy,fxz}(O,y)=—{_Ya,js,_za}(y), + Bava(Agi— (—1)"B3)H, ]~ Dy, cosr{ hﬁd —Dyn
{ox 7y T (dyY) ={X4, Y4, Z4}(y), d

(505 5 (X0)= — (X0, Y2 ZaH ) ©) Xcos?‘(h—lgz) —v3D3, cosk( ha, )—%C1H+C2n+v3c3n
[y 10y Ty 6 = (%0 Y2 Z5} (), S L) ©)

from which the complex potentials can be found. HE[(&;VI Z . . : 5 )
1<i<4 are the distributed surface loads along the edges of thdere 7, =1/d[oXodx,  Hj,=—2d“n(—1)" sinh(@h;s,/d)/

rectangular cross section. m(Wj?p%+d’n?), and the surface loadB,,Y are represented as
series
Method of Solution Zy= TXZ+E Zan cos( ) E Yan sm( y)
Each of harmonic functionB, (andQ,) is uniquely determined @)

in IT, by its boundary values, as a sum of four harmonic func- . o ' ) .
tions. We represent these boundary values as the standard Foulgletruncating the infinite series using terms only, we write the

series with coefficient$A,,Byn,Cxn,Dkn}- For example, above linear system of equations in a matrix form as

0 f_

mn mn(ys—h Y= — /4

P3(x,y3):2 [(A3n sinl-( dYs) - B3, sim—(—(ysd ’83))) Mx= 2V+V, (8)

n=1

where the vectok contains 1#h variables{A.,,Bxn,Ckn:Dkn}s
NX 7NX : ; ;
% sin ) (C3n smk( ) M is a square matrix(generally nonsinguldr Note that
d hBs V=0 whenM=0, P,=0, andV=0 whenF=0. The known

Cfan(x—d)\\ [ mnys vectors M~V and M~V are expressed in terms of the
Dj, Si )‘( h )) n( h )] (4) coefficients {Ax,,Bxn,Ckn.Dknt and {AcnBin:Cin - Dicnt-
Ps Ps other  words, {An,Bin,Cien:Dicn} = — f/2{Akn,Bkn,Ckn,Dkn}
wherey;=yB;. Hence the stresses are expressed as 12 term$Axn,Bin»Crn . Din} hold. Hence, the stress functions are ex-
series. For example, pressed as

_ . fo - f_

.1y mnyBy ! __ '

sz=sz+W55+27TEl H_AlnCOSI‘(T b1 W=+ Tw,, F=—sF+F+F, ©)
=

whereW,Fq are known functions. In a similar form, the stresses,
mn(y—h)B;

+By, cosr{ )UlﬁrAzn cosr{ )Uzﬂz the strains, aqd the d!splacements are expressed.
d d The proper integration of the stress components over the cross-

sectional area yields

n(y—h n
+BZnCOSf{W(yT)'BZ)U2,32+A3n005r{W 3153)183 o
M=—-5C+C. (10)
mn(y—h)Bs n mNX
—Bj, cOs —,83 sin| —— L= o ~
3n d d The quantities C=(1,/by) +(11/bss) + [ [(X7y,~V7x), C

=JIn(X7,,— V7, in (10) may be expressed as series as well.
v1+D.. sin mn(x— d)) v For obvious reasons, the quant@y(integral of the stress function
1h hgB; . V¥ in casef = —2 andF,=0) may be referred to as thersional

] '_(wnx
+| —CypSin ha,
n(x—d) rigidity, see also Lekhnitskii1l]. OnceC, C, andk, are calcu-
—Cop, sin?{ v+ Doy, smk(—) v, lated,f and the twistd may be determined in terms of the applied
hB, hB. moments and surface loads. One may verify #at=Byn, Cyn
TNX an(x—d)|]n ny Dkn hold, moreoverAkn Bkn Ckn Dyn=0 hold for evem.
+Cjsp, sin?{—) —Dg, sinf( —) —c 5<—) ] Therefore, in the absence of external surface loads the number of
hBs hBs h h equations is considerably smaller.
(5) It should be emphasized that the present approach offers a ge-
neric solution methodology for orthotropic material. Note that the
where,,= 1h[§Z,dy and f = —26—ags/ask,. Therefore, us- application of the general formulation presented in LekhnifeKii
ing the boundary condition&), we define the 12 series of linearwas confined to special rectangular orthotropic configuraien
equations with the unknownA,,,Byn,Cyn,Din}, See details in the case where the angle of rotation is 2érowhich the stress
Rovenski and Rand[6]. For example, 7,(0)y)=—2Z5(y), function F=0 and the stress functioW satisfies the following
Txy(0y) = = Y3(y) yield PDE:
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¥ yxtass¥ ,,=f. (11)
Therefore, the Fourier series in Lekhnitskii] are applied to sim-

pler cases. The following example shows the above capability

the present methodology.

Example 1. An Orthotropic Beam. To solve the special

orthotropic configuration case by the present approach, we let2q O SRS

=0 (or 90 deg andF¢=0. Then\A,=0, andB;= Jas,/ass. Ex-
amination of the systen{8) shows thatA,,=B,=Cyn=Dyn
=0,k=1,2, and

fd?((—1)>-1)

Azn=Bzn=— mnhgs)
27T3n3a44sin)—( g )

fh2((—1)"—1) (12)

nd)| "
2n® s'n)—(ﬁ—)
a55 | ‘ hB3

HenceF =0, and¥ has the following forn{equivalent to solution
in Lekhnitskii's [1]):

X(x—d)
day,

C3 =Dz =~

fd?
3
T A44n=

sinI‘( Wnyﬁs) —Sih)’( mn(y— h)ﬂa)
i d d

1,2,5...”3 . ’_<7Tnh,33)
sin

d

X sin

nx —h) fh? - 1
L s

——
4ass T Assp=135... N

(13)

_)_(wnx) - [mn(x—d)
*"Mhas _S'”’( hBs ) .r(wny)
X sin

_"(Wnd
sinn ~——
hBs

h
For isotropic beam one obtaires,=ass, azs=0, f=—26, By
=1, v,=0 (for all t), while (12), (13) are still applicable.

Solution Implementation

The solution contains two main stagdarst the initial data
(i.e., engineering constants, shape parameters, lay-up angle,
surface loadsis used to carry out the following stepd) calcu-
lation of the reduced elastic constantg) determination of the
compatibility equations polynomials root$3) solution of the
boundary equation@& linear system In the secondstage, the end
loads (tip axial force, bending, and torsional tip momengse

1.64

1.4+

Fig. 2 Thetwist, 6, and the bending curvature k,, as functions
of the layup angle, t, due to torsional moment

Journal of Applied Mechanics

) —

NN
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x\\\\\kx\
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ARSI

Fig. 3 The stress component 7,, (M;=1 N/m)

used for(4) calculation of the deformation measures, k,, g
and g; (5) series representation of the stress functions, the stress
and the strain vectors, the displacements.

In the examples presented in this note, a homogeneous beam
with h=d=1m, made of graphite/epoxy orthotropic material of
the following characteristics is used:

E;=129.110° N/m?, E;=E,=9.4-10° N/m?,
G,=4.3 10° N/m?, G;3=5.510° N/m?, (14)
G,=2.5 10° N/m2, v1,=0.5, v13=v,3=0.02.

Here we transformed the data of Rafid when the axes are
replaced according to the rul¥— -2, Y—Z, Z—-Y.

Steps 2. For t=15deg we calculate matrice®;;} and
{bj;}. The roots of the polynomidls and the coefficients, are
obtained as

B1:180, ﬁ2:0661, ﬁ3:l49,

(15)
v1=2.71, v,=0.0573, vz=1.40.

Step 3. The linear system of equations is solved for the un-
knowns{Ayp,Byn,Ckn,Dkn}, Se€ Section 2. The inverse matrix
M~! and the vectordd ~V,M 1V are determined. Thei§; and
@ndre calculated. For the present cases4 was found to be
sufficient for determining the value of the torsional rigidity of
0.861 10° N/m2

Step 4. Assuming thatM;=1N-m, M;=M,=P,=0 and
Fs=0, (2) is used to derive the curvaturds =0, k,=0.23
-107%m and the axial strairso=0. Then, using the torsional
rigidity (see Step 8 and(10), we derivef=—2.3210"%m and
the twist #=1.40 10 °%m. By varying the angle, the function
0(t) andk,(t) are derived and presented in Fig. 2 in a nondimen-
sional form.k, represents the induced elastic coupling., the
bending due to the torsional momgnt

Step 5. At this stage, the expressions in the form of truncated
series(with the coefficients obtained in Steps Bfér the stress
functions, the stress and the strain vectors, and for the displace-
ment components are used. Due to the relatively lengthy expres-
sions for functions, stresses, displacements, and warping func-
tions, only graphical results are provided in Figs. 3¢Hese
illustrative examples have been obtained rioe 14).

The convergence properties of the present methodology are
demonstrated by Fig. 5 in terms of the ratio of the twist and the
stressesy(d/4,h/4),7,,(d/4,h/4) for m=2,4,...,16 to the limit
value. As shown, the global quantit§,converges rapidly, and the
large stress components converge faster than the small ones.

JULY 2001, Vol. 68 / 677



The derivation in Rand8] shows that for this cask, =0, k,=
—M,/las5 (identical to the present resultand in addition

T, ™2
Xy \/m
LRI
VTR M, [1
e ) \\'\\\\ = — _ a2 + — 2

003 N A, “s::\\:\:\};“ o 21,833 rz(a%"’155 3a5) t 5 83 (47)
0.02 AR R RN o

1 AN G T where
00 R A RN X

5 “WW?,;;;WN‘ S

1 NN N ‘ i Ay ® .

3 R T NRE 1928 (—1)" _ [sin(m)
o0t ‘\\ ““ """-’a'!ﬂﬂ' M. =% —9_ _

‘ LAY . r 7 7 tani(mq)| —=—-—cogm) |,

0.024 \“\\}l\\\‘\'i‘\l\‘\‘:;{ 3 0 z qm’ i=h (2n+1) m
003 s 02 (18)

R ooy 04

02 06 X () _
and m= (2n+1)/27, g=d/h\/azzass— a325/a33a_44. Tht_a abo_ve ex-
pressions correlate perfectly and are practically identical to the

04

)
75 (0,y)=0 Y(m °*

Fig. 4 The stress component

1.24

11 rxy(x,h) =0 e pe

results presented in Fig. 2.

Continuing series of examples, and assuming that the only ex-
ternal load is X which acts along the faceg/=h, as X,

= cos(2mx/d)—cos(4mx/d), we obtainC=—0.97-10"¥N/m, 6

7y (M;=1 N/m)
=0.11:10"%/m, k;=0.71: 10" *¥m, k,=£,="0. The solutionr,,

is presented in Fig. 6.

X
AY
S ——

\

Z'(m)yz

¥z

0.8

0.6
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Introduction where u is the eigenvalueW is eigenfunction vector depending

For an elastic wedge subjected to tractions proportional %ﬂy on 6. W must satisfy equation

r“~Y(u=1) on the surfaces, the classical solution becomes infi- H¥ =W (8)
nite when the vertex angle and constansatisfy certain definite
relationships. Dempsell], Ting [2], and Wang[3] have given
solution of this paradox in special case. Ding et[dl recently
restudied the paradox, and discovered the secondary paradox.
of these methods above are limited in the Euclidean space, the v=0, S,=0 when 6=0. 9)
information on the characteristics of the paradox is incomplet
Looking from the analogy theory between computational stru

and the boundary conditior(§).
In this paper, we will only discuss symmetric deformations. The
sxrpmetric boundary conditions are

-0r convenience, let

tural mechanics and optimal conti@5]), the Hamiltonian system S(w,a)=sin 2ua+ u sin 2a;
theory can be introduced into the theory of elasti¢f]), so the ) (10)
powerful methods, such as the separation of variables, etc., can be Sy, @) =08(p, @)l du=2a cOS Zua+sin 2a

applied directly([7]). By pt,cr) = — . COS 2— COS Zucr!
1 ] - ’

Ao p,@)=—2pma sin 2a— (cos 2x+cos 2ua)/(1— )

Hamiltonian System in Polar Coordinate By solving Eq.(8) with boundary conditiong6) and (9), the
In a polar coordinate systen,(), let an elastic wedge of nonzero eigenvalue equation can be givers(@s,a) =0, that is,
vertex angle & occupy the region & R;srsR,<w», —a<6§ whens(u,a)=0 ands;(u,a)#0, uis a single eigenvalue; when
<a. We denote by, v the radial and circumferential displace-s(u,a)=s;(u,)=0, u is a double eigenvalue.

ment, and by, , o4, 7,4 the stress components. By introducing
variables

vS,+E(U+dolde)=p, S,=q when f=a. (13)
(@) Wheny isnt the eigenvalueTo solve Eq.(8) with condi-
tions (9), we can give its general solution as
u v) [~ (1+»)A, cOL 1+ u) 0+ (3= v— p— vpu) A
Xcog1l—pu)6)/Eun
[(L+v)A;sin(l+u)0—(3—v+u+vu)A

E=Inr, r=expé); S=ro,, S;=roy, S s=ITy An Elastic Wedge Subjected to Tractions Proportional
1) torti(p=1)
rewritten as
vS,+E(u+dv/df)=prt=pexpué),
In Rz Ju (12)
—aJInR
" And on the other surfacé= — «, the load is symmetric witkl2).
Due to the fact that the load on surfagks = « is proportional to
) o o separation of variables, see E#). So boundary condition€lL2)
Now a dot denotes the differential with respectétaMaximizing can be rewritten as
S,=vS, +E(u+dv/db). 3)
The substituting of Eq(3) in Eg. (2) then yields

the Hellinger-Reissner variational principlsee, e.g.[8]) can be On the surfacé®= «, we assume the load as
Jv " h
T +Sm a_g_Ha_e So=ar*=gexp(ué) when 6=«
1 2 2 2 —
~ e[S TSy 2vSS,+2(1+)S;y] 1 déd0=0. (2) expé), the original problem can be solved by the method of
(2) with respect taS, gives

f fln R,
—aJInRy

SU+S o+ vS|ut +Sm

WPl e . wio= :
+2(u+ %) —E[(l—v )S,+2(1+V)Srg]]d§d0=0. w Xsin(1—uw)60l/En
—A;cogl+u)0+(3—um)Acog1l—pu)b
(4) A;sin(1+w)0+(1— w)Asin(l—u)6
The dual variables ofi, v areS,, S,,, respectively, and together (14)

they constitute the state function-vecter {u,v,S; ,S;,}" in sym-  the substitution of14) into the boundary conditiond.3) results in
plectic space. Expanding the variational E4). gives dual equa- equations

tions _ Ajcodl+pu)a+(l+u)Acodl—p)a=p
V=Hv; A sin(l+p)a+(1-pAsinl-wa=q: )
where The solution of(15) is
“vo Twalds (1=WHE 0 Ar=[~p(1-wsin(1-p)a+q(ltp)
—adld6 1 0 2(1+v)/E Xcog1l—pu)all/s(u,a)
H= ¢ Ed/90 , —aon | A=[psin(1+p)a—qcos1+u)al/s(p,a) (16)
—~Edld0 —Ed4a6> —vdldo -1 =Alm.a)ls(p, @)

(5)  So we can give the classical solutloyff *r"\I'(O of a wedge
Besides, the free boundary conditions on the surféces: « are  subjected to traditions proportional t§~*. It is the same as the
results of Dempsef1], etc.
v§+E(U+d/d0)=0, S,=0; whenf==*a. (6) (b) Whenu(# 1) is a single eigenvaluén this case, due to the
The dual Egs.(5) with the boundary conditiong6) can be Vanishing of the determinant ¢15), no solution exists in general,
solved by the method of separation of variables: and so initial paradox occurs. However, the eigenfunction vector
_ _ for u exists. Substituting14) into free boundary condition),
v=exp(ué)W(0)=r*{u(0),v(6),S(0),S 40} (7) we can give as
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Ajcodl+pu)at+(l+u)Acogl—pw)a=0

: ( v =exp(né)[ WD+ AW+ CoW! Y]
A;sin(l+u)a+(1—w)Asin(l—u)a=0"

17)
=W+ AInrPY +Col)] (23)
Becauseu is an eigenvalu¢s(u,a)=0], nontrivial solutions
of (17) is A;=A.(u,a)A. For simplicity, let A=1 and A;
=A,(u,a) in expression(14), we can write the eigenfunction where constants, andA are defined upot2). C, is an arbitrary
vector \11(0 for eigenvaluew. With the load eigenvalue being constant. The solutio(23) is the same as the result of Ding et al.
equal to natural eigenvalue, its solution must be a Jordan folfl-

one. The governing equation for the Jordan form solution is
HW(D =W+ AP (18)

whereA is a constant. According t(18), we can give the first-
order Jordan form general solution

W= (@, 7, S, ST 19)
where
U(”:a —(1+v)A, cog 1+ u) 6+ (1+ v)A A0 Sin(1+ )6
1+v. )
AjAcog1l+u)0+(3—u—v—ru)Absin(l
3—6utul—v+2vutvu? ]
—p)o— Acog1l—pu)6
M) PN g1-p)
(2G8)
B 1 _ -
u<1>:E— (1+v)A,sin(1+ ) 0+ (1+v)A;A0cod 1+ u) 6
Ve~
AjAsin(1+pw)0+(3+u—v+vu)Adcogl
3—6u—ul—v+2vu—
— )0+ ASI 1—wn)6
M) ai-p) n1l—pu)
(200)

SV=—A,coq1+pu)0+AAOSIN1+ )0

2

+(3—p)AbOsIn(l—pu) 6+ mACOE{l—#)H (20c)
S =A,sin(1+u) 6+ AA0 coL L+ 1) 6

—(1-p)Abcog1l—p)b. (20d)

Substituting(20) into (13) and using relationshig(u,a)=0,
we can give
. 2
A, cogl+u)a+2Aasin(l—u)a+ EA
Xcogl—w)a=p (1)

A, sin(1+p)a—2Aa cogl—pu)a=qa.
Its solution is

2
Sl(/,L,LY)

A,= asin(l—u)a

[pa codl—uw)a+q

cogl—
L ooslmpa
1-u

slpa)’ (22)

]_ ZKUmw

So the solution for the initial paradox can be solved as

680 / Vol. 68, JULY 2001

(c) Whenu is a double eigenvaluen this case, due to the
vanishing of the determinant @®1), no solution exists, and so
secondary paradox occurs. Becauss a double eigenvalue, non-
trivial solutions A,=A,(u,a)A of the homogeneous equations
for (21) exist. For simplicity, letA=1 andA,=A,(u,a) in ex-
pressiong20), we can write the first-order Jordan form eigenfunc-
tion vector (! .

Because load eigenvalue is equal to a double natural eigen-
value, its solution must be of the second-order Jordan form. Its
governing equation iHW? =W+ AL | To solve these
equations with condition&9), we can give a second-order Jordan
form general solution as

WU, v, S, SR (24)

where

1 -~
UfZ):a[ —(1+v)Agcog 1+ )0+ (1+ v)A,AQ0SIN(1+ u) o

1+v

- 1+v.
A, Acog1+u)0+ AA0? cod 1+ u)6

Vo . 1+v.
AAOSIN(1+p)6— 7A1A cog1l+u)6

3—u—v—v
—% 62 cod1—u)6
3—6,u+,u2—v(1—2,u—,u2)A0 1)
_ sin(1—
m(l—p) H
3 9u+9u?— ud—v(1-3u+3u’+ ud
pi(1=p)?

X Acog1l— M)e] (253)

1 -
v =——{(1+v)Agsin(1+pu) 0+ (1+v)A, A cog 1+ u)

V"" .
AAG? sin(1+u)6

1+v. . 1+
- TAZA Sin(1+pw)6—

1+v

~ 1+v.
AjAfcogl+ )0+ P AjAsIn(1+w)6

3+u—v+v
AT LTV ENPRAY
3—6u—p—v(1—p)?
m(1—p)
3-9u+9u’+ uli—v(1—p)d
wi(1—p)?

Abcod1l—pu)6

Asinl-pu)6) (250)
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SP= — Ay cod 1+ 1) 0+ A,A0 SIN(1+ 1) 0 Chaotic Motion of a Symmetric Gyro

1. 1 Subjected to a Harmonic Base
+§A1A62005{1+,u)0—E(S—M)Aﬁzcos(l—,u)ﬁ

Excitation
2 , 2
+HA0$IH(1_ILL)0+ mACOE{l_M)g X. Tong
(25c) Lucent Technologies, 480 Red Hill Road, Middletown,
NJ 07724
S =Agsin(1+ u) 0+ A,A0 cog 1+ w) —[A, sin(1+ u) 6
e %L) i j oA w) N. Mrad
(1= p)sin(1—p) O1A6°/2. (2%)  structures, Materials, and Propulsion Laboratory, Institute

for Aerospace Research, National Research Council
Canada, 1500 Montreal Road, Building M-3, Ottawa,
Ontario K1A OR6, Canada

Substituting (25) into (13) and using relationshipss(u,a)
=8s;(u,a)=0, we can solve

codl—w)a

sin(l—pu)a+ - na

As= M Sin 2a [ P
. Chaotic motion of a symmetric gyro subjected to a harmonic base
sinl—pa cosl—pa||, excitation is investigated in this note. The Melnikov method is
(1-p)a (1— ,u)2a2 applied to show that the system possesses a Smale horse when it is
= 2 subjected to small excitation. The transition from regular motion
A=A(p, @)l (2pa”sin 2a) to chaotic motion is investigated through numerical integration in
(26) conjunction with Poincarenap. It is shown that as the spin ve-

. ) locity increases, the chaotic motion turns into a regular motion.
So the solution for the secondary paradox can be given as [DOI: 10.1115/1.1379036

—qcogl-u)a—

1
(2 _ (2) FU o = A 20 SE) (0
Vi3 —r/‘[\lfﬂ FAINTWL 4 S AINZ LY+ Co[ Wi+ Inr )] .
Introduction

In recent years, several researchers have conducted studies in-
vestigating the chaotic motion in rigid-body systefis—6]). Re-
cently, Ge et al[7] conducted a detailed study evaluating the
It is the same as the result of Ding et pd]. nonlinear behavior of a symmetric heavy gyroscope mounted on a

vibrating base. In their study, the chaotic motion of the system
with linear damping was investigated by using a variety of tech-
) niques, such as the Melnikov method, Poinaaap, power spec-
Conclusion trum analysis, and Liapunov exponents.

This approach is different from the traditional semi-inverse so- N this note, the motion of a symmetric gy(Big. 1) subjected
lutions and it gives rationally all solutions of the paradox, and it @ harmonic vertical base excitation is studied, with particular
result reveals that such a special paradox in Euclidean spac&faphasis on its nonlinear dynamic behavior without taking into
just the Jordan form solution in symplectic space. For a wedg@&count the damping effect. The symmetric gyro can be used to
subjected to tractions proportionalté~1(x=1) on the surfaces, Medel a variety of physical systems, ranging from a child's top to
the following conclusion can be drawft) the paradox does not @ modern gyroscopic navigational instrument. The Melnikov
exist wheng is not the eigenvalug?) the initial paradox occurs method is applied to predict the transversal intersections of stable
when 4 is a single eigenvalue, and its solution is one which i nd unstable manifolds for the system when subjected to small

composed of the first-order Jordan fort8) the secondary para- ase excitation. The transition from regular motion to chaotic mo-
P dion is investigated through numerical integration in conjunction

with the Poincarenap. The effect of the gyro’s spin velocity on its
global motion is also investigated. It is shown that the gyro’s spin
velocity has a significant effect on dynamic behavior of the sys-

ur(0)
+C B0 (27)

which is composed of the second-order Jordan form.

tem.
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X

Fig. 1 A symmetric gyro subjected to a harmonic base
excitation

Fig. 2 The phase plane of a symmetric gyro

wherev=1,/15. Although the right-hand side of E¢bb) appears

to be singular atx;=0 where y=4, a careful application of
I'Hopital’s rule reveals that it is regular at that point; namely,
whenx;=0, x,=0. The above system representation is one of few
rigid-body systems for which analytical solutions were found
e.g., se¢8)]). For 0< y<2,Mgl/T; andy= 6, the vertically spin-

wherel,; andl; are the polar and equatorial moments of inertia Q%ing state(x,=0, x,=0) of the gyro is unstablésaddlg. The
the symmetric gyroMg is the gravity force, is the distance homoclinic orbit(separatrix connecting the saddle to itseffig.

between the center of gravity and pof| andw are the ampli-
tude and frequency of the base excitation, respectively.
Letting

p q p, 1L (23)
X1= and X,=—=—— a
! 2 I 1106
p, 1L p, 1L
=i =Hems @)
I 119¢ l1 119y

the normalized canonical Equations of MotiEOM) of the gyro
employing the time invariant generalized angular momengéad

S can be written as
X1=Xp (3a)

(y— & cosxq)(5— vy Ccosxy) ) — . .
L ! +F sinx;+ eF sinwt sinx;

Xe== Sir x,
(3b)
where
Mgl — Mgl
F:—g sF:—g. 4
I Iy

Application of the Melnikov Method

For the symmetric gyro of Fig. 1, without base excitati@n
=0), the normalized canonical EOK8) can be reduced to

2) is given by[8] as

ab
cosx;=1-b se@(ﬂt)

. @)

where
b=2—9%a y=6 a=2Mgl/l,.

However, for the symmetric gyro subjected to a small base exci-
tation (¢#0), the highly degenerate homoclinic orbit is expected
to break and perhaps to intersect transversely. In such a case, Eq.
(6) can be viewed as a Hamiltonian with a time variant perturba-
tion,

x=f(x)+eg(x,t) (8)

where
X=(X11X2)
f(X)= (X, — (y— 8 c0sX;)(8— vy cosxy)/Sirt x; + F sinx,)

g(x,t)=(O,Esin ot sinx,). 9)

The existence of the transversal intersections of homoclinic or-
bits implies complex dynamic behavior in the sense of the Smale
horseshoe and provides a necessary condition for chaotic motion
to occur. Due to Melnikoy9], analytical technique exists for de-
tecting the transversal intersections of homoclinic orbits in the
Poincaremap of a perturbed system. The detection of these trans-
versal intersection is accomplished by calculating the appropriate
Melnikov integral, which is the first-ordefin the perturbation
parameter) measure of the distance between the stable and un-
stable manifolds associated with the saddle point on the Pdincare

for which the normalized time invariant Hamiltonian can be exMap. A convenient form of the Melnikov method for computation

)‘(1:)(2 (5&)
: (y— 6cosxy) (65— ycosxy) )
Xp=— v +F sinx, (5b)
pressed as
H X3 —8cosx;)? &
h=—=2 u+u—+Fcosx1 (6)

2 sirf x, 2
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purposes is expressed @$0])

M(to) = f, f(q%() Dg(a°(t), t+to)dt (10
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where the wedge product is of the tyfieg=f,9,— f,g,, andtis o Jab Jab

time. The homoclinic orbit of the unperturbed symmetric gyro M(ty)= f Fbabsed Tt tanr‘(Tt)sinwtdt
system is then given by - J

X coswty. (13)
q°(t)=| cos [1—-bseé(\abt2)], The integral in Eq.(13) can be evaluated by the residual
method, to yield
_ 1— '
 byabsed( /abv2)tant( abv2) an M(to)= 5 Fbyab cos)’( %) coswty

V1—(1-bsed (Vabt/2))?

1F —— 5 Tw
By substituting Egs(9) and(11) into (10), The Melnikov inte- =2 E(\/4F— y©)® cos TS
gral is reduced to

coswty. (14)

It can be deduced frortl4) that the Melnikov function has simple

° [ab "( Jab - : :
_ N ; zeros. Thus the motion of the symmetric gyro subjected to small
= + T L
M(to) fﬁbu\/abseé( 2 t)tan 2 t)smw(t to)dt base excitation is chaotic in the sense that the system possesses a

Smale horseshoe.

«_ __ [Jab Jab
- fﬁbu\/abse@ > ! tanr( > ! Numerical Analysis
X (sinwt coswty+ Coswt sinwty)dt. (12) To investigate the transition from regular motion to chaotic mo-

tion as the amplitude of the base excitation is varied, the perturbed
Since the odd part of the above integral is zero, the MelnikdzOM (8) is integrated numerically for 14 different initial condi-
function M (ty) can be simply reduced to tions. Throughout this analysis, computations were performed for

oo o e,
PSRN e e,

. - ‘e empr®
LR e -

-150 -100 ~50 4 50 DM 150

-150 -100 -50 0 50 100 150

Fig. 3 (a) The Poincare’ map of a symmetric gyro  (£=0.01); (b) the Poincare’ map of a symmetric gyro  (£=0.1); (c) the Poincare” map
of a symmetric gyro  (¢=0.5); (d) the Poincare’ map of a symmetric gyro  (£=1.0)
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4 T T y v T points in Poincarenap covers all values of;, between 0 and 180
8=2.0 deg. This result agrees with the celebrated KAM theofafter
3t . 1 Kolmogorov, Arnold, and Mosen([11]). This theorem states that
= - for a sufficiently small perturbation, most of periodic and quasi-
1 periodic motions existing in the unperturbed system, will be
slightly distorted but still preserved. In addition, it is observed that
i asmall region that is close to the separatrix is covered by chaotic
trajectories. This feature corroborates the results obtained in the
1 previous section by means of the Melnikov method.
If the amplitude of the perturbation is increased by small
1 amountge=0.1 ands=0.5), as shown in Figs.(®) and 3c), one
can observe that on the Poincanap some regions are covered by
1 regular trajectories and some by chaotic ones. If the amplitude is
further increased to a relative large value, as shown in Fig). 3
31 ) 1 (=1.0, one observes that the whole Poincarap is covered by
chaotic trajectories except for few islands. This result indicates
TSR m - 0 00 50 that an onset of global chaos has occurred. _
It is important to realize under what conditions a nonlinear
X system will become chaotic but more important to realize how
(a) chaotic motion can be prevented. To investigate the effect of the
gyro’s spin velocity on the various dynamic behavior of the sys-
. . , , v . tem, the amplitude and frequency of the base excitatibrs ¢
§=5.0 =1.0), and the aplitude of the perturbatiofe=1.0) were fixed,
at 1 and the parametey= 6= (l3/1) w3 (w3 is the gyro’s spin veloc-
ity) is varied. Asé is increased from 0.3 to 2.0, one can observe
1 from Fig. 4a) that more and more chaotic motion has disap-
peared. AsS is further increased to 5.0, Fig(l), the whole Poin-
1 caremap is covered by regular motion. These results indicate that
the gyro’s spin velocity has a significant effect on the gyro’s dy-
namic behavior, i.e., a chaotic motion will turn into a regular
motion as the spin velocity increases. This can be explained by the
fact that for F=1.0, the homoclinic orbit does not exist in the
unperturbed system faf>2.0. This finding has practical impor-
tance for the design of gyroscope instruments. For instance, it is
desirable to set the gyro in more stable spinning state by simply
giving higher initial spinning velocity.

X2

X,
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The author is to be commended for his new approach to tRemail: narita@hit.ac.jp
important problem of calculation of natural frequencies for aniso-
tropic plates. However, two comments are in order. Although the main idea of the paper is an introduction of the

First, the paper lists only three classical boundary conditionBolya counting theory to an engineering counting problem that
simply supported, clamped, and free. Actually, there is a fourthay be encountered in applied mechanics, this author equally
one: guided or slidingBert and Malik[1]). For this boundary appreciates the interest shown by Professor Bert in the proposed
condition, the effective shear force and the bending slope are b&hz method to calculate natural frequencies of anisotropic plates
zero. Exact natural frequency results were given for a variety @fith arbitrary boundary conditions. Professor Bert raised two con-
such cases of isotropic plates|ih]. structive comments that are answered in order.

The second comment is that, although the Ritz method is anThe first comment is that the present author took up only three
upper bound solution, it converges rather slowly in the case efassical boundary conditiong.e., free, simply supported, and
anisotropic plates. For design purposes, a lower bound to a fegamped edgesin numerical examples and did not consider the
guency is often more important than an upper bound. The convésurth boundary condition of a guided or sliding edge with zero
gence of the Ritz method, a Fourier series metftiitney[2]), effective shear force and bending moment. The funct@g) in
and the differential quadrature method were studied by Bert et giex andy-direction([1]) is not applicable in its direct form to the
[3] for free vibration of simply supported plates of highly anisofourth boundary condition but it is widely accepted that the fourth
tropic material(E, /E1=25, compared to 15.4 in the present paecondition is not as important as the first three ones. It may be

pen. The latter two methods provided lower bounds. possible to apply the present function to the fourth boundary con-
dition by adding a constant term to give a constant displacement
References caused by the guided or sliding edge and also constraining the

[1] Bert, C. W,, and Malik, M., 1994, “Frequency Equations and Modes of Fre§IOpe at the edge. . . . .
Vibrations of Rectangular Plates With Various Edge Conditions,” Proc. Inst. 1he second comment, which is more important, is on conver-

Mech. Eng., Part C: J. Mech. Eng. S2D8C, pp. 307-319. gence rates of the present solution applied to anisotropic plates.
[2] Whitney, J. M., “Free Vibrations of Anisotropic Rectangular Plates,” 1972, JBefore commenting on that, | have to make it clear that the cap-
(3] Bt . e B e e, A, G.. 1984, “Convergence of the pdioN in Table 2 of 1] was erroneous. The convergence result in the

Method in the Analysis of Anisotropic Plates,” J. Sound VIO, pp. 140— table was for a specially orthotropic square pléite., anisotropic

144, plate with a fiber orientation anglé=0 deg, not for skew ortho-

tropic square plate&9=30 deg. This was obvious that the con-
verged values in Table 2 are in exact agreement with those of
specially orthotropic plates in Table 5 {f].

Professor Bert stated that “itRitz method converges rather
slowly in the case of anisotropic plates.” | agree that the Ritz
method tends to give slower convergence for anisotropic plates
than for isotropic and specially orthotropic plates, but this ten-
dency is also found for other methods and the important question
is how slow the solution becomes. To see this, another test is
conducted here to observe convergence rates of the present
method for highly anisotropic material.

Q11/Q2,=25, Q12/Q»=0.25 and Qg/Q2,=0.5
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Table 1 Convergence of frequency parameters Q of diago- 21
nally orthotropic square plates (=45 deg, Q,/0Q A o .
=25, Q12/Q;,=0.25, and Qgs/Q2,=0.5) BT | —4—Ashton’s Ritz
= -t~ Whitney's Fourier
B.C. |Numofterms] 1st 2nd 3rd 4th = 19 F --u--Bert's DQM
3 .
6x6 1890 2470 4330 5960 18 | —o—Present Ritz
S
8x8 18.82 24.60 42.67 58.79 S L 4
X 18.82 £4.60 :L_’ 17 \‘\‘
. 4. 42. A -
FFFF ‘ 10x10 18.82 24.60 2.65 58 S 16 b \,\L\‘“‘“A ,
12«12 | 1882 2460 4265 5870 o O~ A
Eqs | O—0—0—0—0
14x14 18.83 24.60 42.65 58.70 B S S S eyt u
c
4x4 5387 9506 1655  178.1 c"r //D(H‘L—.
6x6 52.91 91.58 143.6 156.0 13 }
8x8 52.46 91.55 1424 1544 12 R N R .
SSSS 10x10 52.19 91.54 1423 153.8 0 5 10 15 20 25
12«12 | 5201 9154 1423 1533 Number of terms in series (m=n)
14x14 51.89 91.54 1423 153.0 Fig. 1 Convergence of the fundamental frequency parameter
16x16 51.80 9154 1422 152.8 W=Qb?(p/(Q,,h?)¥? by Ashton's Ritz method. Whiteney’s
Fourier, Bert's DQM, and the present Ritz method. (Data are
6x6 91.31 145. 208.2 2170 replotted from Fig. 4 in  [2].)

8x8 91.24 1458 2080 216.3

CCCC 10x10 91.22 1458 208.0 216.2

12x12 91.22 8 208.0 2162
8

14x14 91.22 208.0 216.2

6x6 5947 18.28 35.78 43.23 and are shown in Fig. 1 with those presented in Fig. 2¢flt is
observed that the present Ritz method gives much better upper
8x8 5919 1811 - 35.25 42.93 bound than the Ritz result of Ashton and approaches closely to the
CFFE 10x10 5.904 18.05 35.12 42.90 lower bound of the Fourier analysis and DQ method. This figure
therefore indicates that the convergence rate of the Ritz method is
12x12 | 5898 1803 3508  42.89 rather dependent on the choice of displacement functions.

14x14 5.898 18.03 35.08 42.89 The present author has an opinion that use of the Ritz method
— with (modified polynomial functions yields very accurate upper
bounds with advantages in applying to arbitrary boundary condi-
tions and in computation time, when it is used with the following

used in referencd2]. This material has stronger anisotropypoints in mind([3]).
(E_/E;=25) than that E, /E;=15.4) used in[1)). ) . . .
: » The first few terms of the polynomidkay, ten give rapid
Ta_lble 1 presents convergence test results c_)f diagonally Orthcc())'nvergence of the solution buF; tt?e useaof);]ighr)ergorder Fp))olyno-
tropic square plate&y=45 deg with Suc-h material for boundary mials (say, 20 or more tern)slénds to make the eigenvalue equa-
conditions of FFFRfree platg. SSSS(simply supported plaje '

. tion numerically unstable, unless it is somehow modified.
CCCC (clamped plati; and CFFF(cantilever platk: Frequency ™, The plate region considered should have a regular plan, such

W= wb?(p/Qyh?)*? )

parameters . ;
as rectangular and elliptical plates. For plates of irregular geom-
etry, e.g., with cutouts or L-shaped plates, the solution accurac
Q=wa?(ph/Dy)Y? with a reference stiffnes®, detyerio?ates. pedp y
=Erh?/12(1-v vy, @ In summary, the Ritz method with modified polynomials is a

valuable and recommendable approach. The only problem is that
are presented with four significant figures for the number of ternpecause it is very easy to use and guarantees good accuracy, one
MXN=6X6~14x14 (4x4~16x16 for SSS$in Eq. (15 of cannot escape this easiness and does not create hew methodology.
[1], and underlined figures are converged values within the range
of our significant figures. It is seen that two extreme cases of the
FFFF (totally free plate with only natural boundary conditipns
and the CCCQthe most constrained plate with only geometricaReferences
boundary COI‘I_dItIOI‘?Sp|ateS do yield fast cpnvergence, while the gl] Narita, Y., 2000, “Combinations for the Free-Vibration Behaviors of Aniso-
SSSS plate with both natural and geometrical boundary conditionsS ™ yropic Rectangular Plates Under General Edge Conditions,” ASME J. Appl.
does slower convergence, particularly for the fundamental mode. Mech.,67, pp. 568-573.

The convergence behaviors of some different solutions ard2] Bert, C. W., Wang, X., and Striz, A. G., “Convergence of the DQ Method in
compared fr the fundamentl frequency of he SSSS plate iy 1515 "SR O, £ S0 R, i o
referencg 2]. The present values are converted to their frequency  postbuckiing of Composite PlateS. J. Turvey and I. H. Marshall, eds., Chap-
parameter man and Hall, London, p. 56.
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Discussion: “Common Errors on means that the inverse mapping *(z) is analytic, single-valued

and nonzero in the exterior of the curVe,. This is just part of

Mapping of None”iptic Curves in the definition(2)—not any further “proof” is needed. Here, simi-

Anisotropic Elasticity” (Ting T C. T. lar to all other conformal mapping methods, the inverse mapping
' ' w, (2) is treated as the known, and we need not discuss how to

20001 ASME J. Appl MeCh-’ 671 construct an explicit expression for the inverse mappi:jgl(z)

pp. 655—657) from the single-valued branches of the multivalued inverse func-
tion of (2). In particular, all branch points of the inverse function

of (2) fall inside the interior of the curvé’, in the z-plane, or

C.Q.Ru inside the interior of the unit circle in théplane. For example,

Department of Mechanical Engineering, University of fgr a nypotrcich_oidal_curvi, ;]t is re?dily Teen fr%gll)h_OL [‘;r]]
that all singularity points of the conformal mappitat which the
Alberta, Edmonton, AB T6G 2GB, Canada derivative of the mapping function vanishes, as described by the

e-mail: c.ru@ualberta.ca condition(3) or (6) of [1]) fall inside the interior of the unit circle
in the &-plane and thus do not trouble the single-valued inverse

Professor Ting's papef1]) clearly clarifies several simple but mapping for the exterior.
important concepts on conformal mapping techniques applied toBased on these facts, it is easily verified that the desired func-
anisotropic plane elasticity. Here, | would like to add my owiion D ,(2) is given by
comments on these interesting issues.

(2) First, it should be stated that conformal mapping techniques,
combined with the Stroh’s method, have been successfully applied —
in some important cases to anisotropic elasticity with nonelliptical Da(z):Wa(m -
curves. An example is the Eshelby’s problem for an inclusion of
arbitrary shape in an anisotropic mediyfg]), or in a piezoelec-

tric medium[3], of the same material constants. As stated by Pr%herewgl(z) is the (unique inverse mapping of the polynomial

Ting in [1], and also by some other authors elsewhere, becausﬁ1 ing(2). First,D,(z) given by(3) meets the conditiofil) on
pointzon I" will be transformed, under three different .ma.pping%fpcpur\?ef Seéonacg )bgcauwyl(z) is analytic, single-valued
w,(&) (a=1,2,3), to three different point§, on the unit circle a: ’ a ’

in ¢-plane, the transformed boundary conditions on the unit circfd!d nonzero outside the curle,, 1w, 1(2)_and[wa_l(z)]k (k
in the ¢-plane will contain three unknown Stroh’s functions whictS @ny integer not larger thaN) are analytic and single-valued
take values at three different points. Therefore, unless the bougiiside the curvé', . Thus,D,(z) given by the right-hand side of
ary conditions are decoupled for the three Stroh’s functions, ofi® iS Obviously analytic and single-valued in the exterior of the
cannot solve the transformed boundary value problem in ti¥rvel ., exceptatinfinity wher® .(2) tends to a polynomial of
-plane. The key fact associated with the problem studid@jiis ~ degreeN. Therefore, the auxiliary functiob ,(z) complying with
that the three interface conditiofim complex forn for an arbi- the conditions(1) can be constructed k) in terms of the asso-
trarily shaped inclusion, surrounded by an anisotropic medium gi¢ted polynomial mapping which maps the exterior to the curve
the same material constants, can be written in a decoupled forn} ijm ONto the exterior of the unit circle. Similar auxiliary functions
which the three unknown Stroh’s functions are completely deco{}2ve been applied to isotropic elasticii#] and piezoelectric
pled to each other. It is this fact that allows one to apply confofhaterials(3]. ) _
mal mapping techniques to each of the three Stroh’s functions and2) Finally, as stated 1], the mapping(15) of [1], although
the associated curve independently of the other two. For a simiRfPvides a one-to-one mapping for the boundaries, does not al-
result for piezoelectric materials, SESJ. ways offer a one-to-one mapping for the exteriors of the bound-
The second key result of2]) is that for each of the three ares. Regardllng'thls issue, as state@Zi;ﬁBJ, the boundayy corre-
closed curved, («=1,2,3) (that is T defined in[1]), one spondence principle of conformal mappings for exterior domains

can construct an auxiliary functiob (z) which satisfies the ([5)) can be used to identify the conditions under which a one-to-
condition one mapping for the boundaries automatically offers a one-to-one

mapping for the exteriors. For instance, for an elliptical boundary
T', because the right-hand side(@b) of [1] is analytic outside the
unit circle and has a simple polef degree ongat infinity in the
&plane, it follows from the boundary correspondence principle
[5] that the expressiofl5) of [1] provides a one-to-one conformal
mapping between the exterior of the cuivg and the exterior of
the unit circle in theé&-plane, not any pointwise verification is

eded. | believe that this comment offers a valuable insight to
this interesting issue.

calW, (2]¢  (3)

|
g
+
M=z
|

z=D_(2), zel, (1)

and is analytic and single-valued in the exterior of the curye
except at infinity wheré ,(z) tends to a polynomiaP ,(z). As
shown in[2] (and[3] for piezoelectric materialswith aid of these
auxiliary functions, the techniques of analytic continuation can
applied to the inclusion of arbitrary shape to get an analytic sol
tion for the Stroh’s functions.
The above key resultvhich has been questioned by somegne!
can be shown, clearly and rigorously, as follows. Assume that the
exterior ofI", is mapped onto the exterior of the unit circle in the
&-plane by a polynomial conformal mapping References
N [1] Ting, T. C. T., 2000, “Common Errors on Mapping of Nonelliptic Curves in
Z=W, (&) =N+ 2 Cak€™ k» a=123 () [2] gzl,sgt.r%p.!Czlél)als,tl‘?:%alctiMSiI‘l]J.tiﬁg %r’\giclrr]{gﬁs?cfﬁ st irb?tsr;.ry Shape in an
k=0 Anisotropic Plane or Half-Plane(submitted for publication

. [3] Ru, C. Q., 2000, “Eshelby’s Problem for Two-Dimensional Piezoelectric In-
Where)‘ﬂ is areal numbepﬂk are some complex constants, ad clusions of Arbitrary Shape,” Proc. R. Soc. London, SerA456, pp. 1051—

is a finite integer. It is emphasized that the definition of the con-  10gs.
formal mapping(2) implies that it has a unique inverse conformal [4] Ru, C. Q., 1999, “Analytic Solution for Eshelby’s Problem of an Inclusion of

mappingw, *(z) which is well defined on the exterior of the Q;g“_rgg’z Shape in a Plane or Half-Plane,” ASME J. Appl. MecAg, pp.

curveI', and maps the exterior of the cunig, (Wit.hOUt any  [s] vanov, V. 1., and Trubetakov, M. K., 1995fandbook of Conformal Mapping
branch cutl on to the exterior of the unit circle. Evidently, this With Computer-Aided VisualizatioGRC Press, Boca Raton, FL.
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Closure to “Discussion of
‘Combinations for the Free-Vibration
Behavior of Anisotropic

Rectangular Plates Under General
Edge Conditions’” (2001,

ASME J. Appl. Mech., 68, p. 687

T. C. T. Ting

Department of Civil and Materials Engineering,
University of lllinois at Chicago, 842 Taylor Street, M/C
246, Chicago, IL 60607-7023

e-mail: tting@uic.edu

Contrary to what Professor Ru stated in his first sentence, the
paper did not discuss “conformal mapping” techniques applied to
anisotropic plane elasticity. The paper discussed “mapping” in
anisotropic elasticity. As emphasized in Section 4 of the paper,
mapping in anisotropic elasticity is not conformal. Many papers
that dealt with mapping in anisotropic elasticity used the word
conformal mapping indiscriminately.

| have presented clearly what | wanted to say in the paper. |
have no further comments.
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Erratum: “Explicit Equations of Motion for Mechanical Systems With Nonideal
Constraints”
[ASME J. Appl. Mech., 68, pp. 462-467]

F. E. Udwadia and R. E. Kalaba

In this paper, iten(S2) of Section 3, page 464, should read
2 ¢(q1t):07 t/f(q,q,t)=0, with ¢(q010):O! ¢(q070)201 and‘/j(qoqu!O):O'
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